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Hypoxia, a typical hallmark of numerous tumors, indicates poor infiltration of antitumor
lymphocytes, as well as facilitates the development, progression, and drug resistance of
malignant cells. Here, the present research was performed to identify novel hypoxia-related
molecular markers and their correlation to the tumor immune microenvironment (TIME) in
colon cancer. The expression of hypoxia-related gene signature was extracted from The
Cancer Genome Atlas (TCGA) COAD cohort. Based on this signature, a risk score model
was constructed using the Lasso regression model. Its discrimination ability and stability
were validated in another independent cohort (GSE17536) from Gene Expression
Omnibus (GEO) database. Moreover, molecular biology experiments (quantitative real-
time PCR and multiple immunohistochemistry) were performed to validate the results of
bioinformatics analyses. Three hub genes, including PPFIA4, SERPINE1, and STC2, were
chosen to build the risk score model. All of these genes were increasingly expressed in the
hypoxia subgroup (HS). Compared with the normoxia subgroup (NS), HS had worse
pathological features (T, N, M, and stage) and overall survival (OS), more expression of
immune checkpoint molecules, poorer infiltration of some pro-inflammation immune cells
(CD4+ T cells and CD8+ T cells), and enriched infiltration of M0/M2 macrophages. After the
risk model was proven to be valuable and stable, a nomogram was built based on this
model and some clinicopathological factors. Moreover, it had been identified that three hub
genes were all increasingly expressed in hypoxic conditions by quantitative real-time PCR
(qPCR). The results of multiple immunohistochemistry (mIHC) also showed that higher
expression of hub genes was associated with poorer infiltration of pro-inflammation
immune cells (CD8+ T cells and M1 macrophages) and richer infiltration of anti-
inflammation immune cells (Treg cells and M2 macrophages). In conclusion, the
present study uncovered the relations among hypoxia, TIME, and clinicopathological
features of colon cancer. It might provide new insight and a potential therapeutic target for
immunotherapy.
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INTRODUCTION

Colon cancer (CC) is one of the most common malignancies
worldwide and responsible for more than 0.5 million deaths in
2020 (Sung et al., 2021). Compared with 2018, the numbers of
new cases and deaths of CC have rapidly increased (Bray et al.,
2018; Sung et al., 2021). Despite the advance in medical
technology, patients with CC still have a relatively high
mortality rate, 13.1% in the transitioning and 4.7% in the
transitioned countries (Sung et al., 2021). Owing to the heavily
medical and financial burden caused by CC, it is urgent to develop
novel methods to improve the diagnostic and therapeutic
efficiency for these patients.

Recently, immunotherapy has attached much attention from
the public for its promising therapeutic efficiency. It is well
established that the killing effect induced by immunotherapy
relies on some immune cells that are recognized as tumor
suppressors (Hiam-Galvez et al., 2021). While in the complex
tumor microenvironment (TME), besides these tumor
suppressors, there are many other components that promote
the development and progression of cancer (Anderson and
Simon, 2020). These promoters and the tumor itself deprive of
the oxygen and nutrient and subsequently produce a hypoxic and
acidic TME, which significantly restrain the function of those
antitumor immune cells (Kaymak et al., 2021). Previous studies
have well established that hypoxia is a hallmark of tumor growth,
survival, and metastasis of CC and confers to resistance to
immunotherapy (Hsu et al., 2020; Singhal et al., 2021).
Therefore, the establishment of a hypoxia-related gene
signature may help to comprehend the immunogenomic
profile of CC and provide a useful prognostic tool for CC patients.

Here, based on The Cancer Genome Atlas (TCGA) and the
Gene Expression Omnibus (GEO) databases, we developed a
hypoxia-related gene signature to depict the tumor immune
microenvironment (TIME) and predict the overall survival
(OS) of CC patients. Moreover, we also did quantitative real-
time PCR (qPCR) and multiple immunohistochemistry (mIHC)
to verify the results of bioinformatics analyses.

MATERIALS AND METHODS

Training and Validation Cohort
The FPKM RNA-seq data (398 tumors and 39 normal tissue
samples) and related clinical information of 385 CC patients were
obtained from the TCGA database (https://portal.gdc.cancer.gov/
) using the GDCAPI tools on 7 July 2021. Then, 282 patients with
complete overall survival (OS) data were included in the training
set. Meanwhile, the GSE17536 cohort was applied as the
independent validation set. It included 177 colon tumor tissue
samples and was obtained from the GEO database (https://www.
ncbi.nlm.nih.gov/geo/query/acc.cgi?acc=gse17536). The FPKM
RNA-seq data from TCGA were transformed to log2(x+1).
Then, they were normalized to eliminate the batch effect using
limma (version 3.48.1) and sva (version 3.40.0) packages.

Gene Signature List
200 hypoxia-related genes were accessed from the
HALLMARK_HYPOXIA gene set of Gene set Enrichment
Analysis (GSEA) database (http://www.gsea-msigdb.org/gsea/
msigdb/cards/HALLMARK_HYPOXIA.html). The complete
gene list was contained in Supplementary Table S1.

The immune-related genes were obtained from the
Tracking Tumor Immunophenotype database (http://biocc.
hrbmu.edu.cn/TIP/index.jsp) (Xu et al., 2018). This gene list
contained negative regulatory, positive regulatory, T cell,
CD8+ T cell, CD4+ T cell, dendritic cell, eosinophil,
macrophage, monocyte, neutrophil, nature kill (NK) cell,
Th1 cell, Th17 cell, Th 2 cell, Th22 cell, and Treg cell-
correlated genes.

Procedure of Developing Risk Score Model
First, the fold change (FC) of the 200 hypoxia-related genes
between tumor and normal tissue samples was calculated using
the limma package. Genes with log2|FC|>1 & adjusted p-value <
0.05 were identified as the differentially expressed genes (DEGs).
Meanwhile, the statistically prognostic genes were identified
using univariate Cox regression analysis. Then, the DEGs
(Supplementary Table S2) and prognostic genes
(Supplementary Table S3) were intersected to identify
hub genes.

Based on the least absolute shrinkage and selection operator
(LASSO) regression analysis, the formula of the risk score model
was built as follows:

Risk score model � ∑
i

βi p hub genei

The i index represents a significantly prognostic gene of the Lasso
regression analysis and βi stands for the beta coefficients of
these genes.

Differences in RNA Expression and Clinical
Characteristics Between Subgroups
To compare the differences between subgroups in RNA
expression/gene function/clinical characteristics, we used Rtsne
(version 0.15) and pheatmap (version 1.0.12) packages/GSEA
analysis/stats (version 4.1.0) package.

Evaluation of Tumor Immune
Microenvironment and Drug Response
To investigate the association between tumor immune
microenvironment (TIME) and the risk score model, we used
CIBERSORT and microenvironment cell populations-counter
(MCP-counter) to estimate the infiltration of different immune
cells (Newman et al., 2019; Becht et al., 2016). While for single-
gene analysis, we used the TIMER webserver to evaluate the
relation between six different types of immune cells and the target
gene (https://cistrome.shinyapps.io/timer/) (Li et al., 2016; Li
et al., 2017).
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To evaluate the response of immune checkpoint blockade
(ICB), we used the website tool ImmuCellAI (http://bioinfo.life.
hust.edu.cn/ImmuCellAI#!/), which was based on ssGSEA
analysis (Miao et al., 2020; Miao et al., 2021). But the
pRRophetic package (version 0.5) was applied to compare the
differences in drug response for cytotoxic and targeted medicine
(Geeleher et al., 2014).

Model Visualization, Validation, and
Comparison
To visualize the risk score model, we used the rms package
(version 6.1-0) to create a nomogram that could predict the 1-
, 3-, and 5-year OS of CC patients. It contained clinical factors
(age, pathological M, and stage) and the risk score.

The discrimination ability of the risk score model was
assessed using operating characteristic curve (ROC)
analysis. Based on a series of different binary classification
methods (critical or cutoff value), it could calculate the true
positive (TP) and false positive (FP). The curve was drawn
with TP or sensitivity as the ordinate, and with FP or 1-
specificity as the abscissa. The area under the curve (AUC)
was used for quantitative analysis in ROC analysis. Generally
(Sung et al., 2021) AUC between 0.5 and 0.7 would be
considered lower accuracy (Bray et al., 2018); AUC
between 0.7 and 0.9 would be considered to be valuable
(Hiam-Galvez et al., 2021); AUC above 0.9 would be
considered high accuracy; however, AUC = 0.5 meant that
the model had no diagnostic value. In this study, ROC analysis
was performed using the timeROC package (version 0.4).

The calibration plot was used to assess the 1-, 3-, and 5-year
OS, based on the Cox proportional hazard model. Meanwhile,
the Kaplan-Meier (K-M) survival analysis was performed
according to different subgroups (NS vs. HS) in both
training and validation sets. The calibration and K-M
analysis were performed using the rms and survival (version
3.2-7) packages.

In this study, Decisive Curve Analysis (DCA) was used to
estimate prediction ability among different models. The
abscissa of the DCA plot was threshold probability, and the
ordinate was the net benefit (NB) after therapeutic advantages
minus the disadvantage. In general, the farther the curve was
from the extreme curves the better its prediction power
represented. The DCA analysis was performed using the
ggDCA (version 1.2).

Cell Culture and Culture Conditions
The human colon epithelial cell line (FHC) and colon cancer cell
lines (HCT-8, RKO, SW480, and SW620) used in vitro
experiment was purchased from the Cell Bank of the Chinese
Academy of Science and authenticated by the supplier. These cell
lines were grown in DMEM (Gibco) supplemented with 10% fetal
calf serum (FCS). We have identified the source of cell lines by
STR profiling. Meanwhile, the cells were routinely tested for
mycoplasma contamination (MycoAlert PLUS Mycoplasma
Detection Kit, Lonza).

In normoxic conditions, cell lines were maintained at 37°C in
the humidified incubator with 5% CO2 (Thermo Scientific). Cell
lines would be plated at the desired density (60%–70%) 24 h
before the placement into a hypoxia incubator (BioSpherix). The
condition of hypoxia treatment was set to 1% O2 and 5% CO2

for 24 h.

RNA Extraction and qRT-PCR
RNA was isolated using TRI reagent solution (Sigma) followed
by the on-column RNeasy mini kit and DNase treatment
(Qiagen, Germany). cDNA synthesis was performed using
the Transcription First Strand cDNA Synthesis Kit (Roche).
qRT-PCR was performed using ABI 7900T PCR System
(Applied Biosystems). Gene expression using SYBR Magic
was normalized to the expression of β-actin. The primers
used in the present study were supplied in Supplementary
Table S4.

Multiple Immunohistochemistry Staining
Four-micron slices, cut from the paraffin block of tissues, were
mounted onto charged slides and baked at 60°C for 1 h as the
first step. Then, they were dewaxed with xylene for 10 min and
stained with 100%, 90%, and 70% ethanol for 10 min per
concentration. After being washed with deionized water for
2 min, these slides would be soaked in neutral buffered
formalin for 30 min. Next, Opal manual kit (PerkinElmer)
was used to stain the slides according to the manufacturer’s
instructions. After nonspecific antigen sites were blocked,
slides were incubated with antigen-specific primary
antibody overnight at 4°C; secondary antibody incubation
was performed for 1 h at room temperature. Then, dyes
contained in the kit (Opal TSA) would be applied for
immunofluorescence staining. We found slide stained with
3 markers plus 4 colors was the optimal choice. AR9 buffer
would be used for antigen retrieval after three steps
(incubation of primary antibody, secondary antibody, and
dye staining) were finished. Finally, the slides were
incubated with DAPI for nuclear DNA staining.

All of the primary antibodies used in mIHC are listed in
Supplementary Table S5.

Statistical Analysis
Continuous and categorical (frequencies and percentages) variables
were analyzed using independent t, chi-square, or 2-tailed Fisher
exact tests, respectively.Meanwhile, ranked data were analyzed using
the Mann-Whitney U test. The discrimination of the prediction
model was assessed using ROC analysis. The OS was defined as the
period from the date of surgery to the date of death due to any cause.
OS between different groups was measured using the Log-rank
method of K-M analysis. Cox regression analysis was used to assess
time-event-dependent OS status of CC patients. The correlations of
RNA expression among different hub genes were measured using
spearman analysis. A p-value less than 0.05 was considered
statistically significant. All statistical analyses were carried out
using R (version 4.0.3; https://www.r-project.org/) and R studio
(version 1.3.1093; https://www.rstudio.com/) software.
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TABLE 1 | Different characteristics between low- and high-risk groups in the training (TCGA) and validation (GEO) sets.

Characteristics TCGA GEO

Total
(271)

High risk
(135)

Low risk
(136)

t/X2/Z P Total
(177)

High risk
(88)

Low risk
(89)

t/X2/Z p

BMI — 28.23 ± 5.96 31.95 ± 26.47 1.361 0.175 — — — — —

Position — — — 2.812 0.422 — — — — —

Right colon 134 65 69 — — — — — — —

Transverse colon 22 8 14 — — — — — — —

Left colon 17 10 7 — — — — — — —

Sigmoid colon 93 50 43 — — — — — — —

N/A 5 2 3 — — — — — — —

Lymph node — 2.45 ± 5.27 0.98 ± 1.98 2.975 0.003 — — — — —

Tumor history — — — 0.361 0.548 — — — — —

Yes 90 48 42 — — — — — — —

No 158 78 80 — — — — — — —

N/A 23 9 14 — — — — — — —

CEA — 41.67 ± 161.07 38.00 ± 268.81 0.114 0.909 — — — — —

Venous invasion — — — — — — — — — —

Yes 62 43 19 10.203 0.001 — — — — —

No 183 84 99 — — — — — — —

N/A 26 8 18 — — — — — — —

Lymphatic invasion — — — 3.371 0.066 — — — — —

Yes 93 55 38 — — — — — — —

No 157 74 83 — — — — — — —

N/A 21 6 15 — — — — — — —

Perineural invasion — — — — — — — — — —

Yes 36 25 11 4.710 0.030 — — — — —

No 107 52 55 — — — — — — —

N/A 128 58 70 — — — — — — —

History of colon polyps — — — 0.495 0.482 — — — — —

Yes 72 34 38 — — — — — — —

No 157 82 75 — — — — — — —

N/A 42 19 23 — — — — — — —

Colon polyps — — — 1.900 0.168 — — — — —

Yes 64 29 35 — — — — — — —

No 116 65 51 — — — — — — —

N/A 91 41 50 — — — — — — —

dMMR — — — 6.322 0.012 — — — — —

Yes 48 17 31 — — — — — — —

No 153 86 67 — — — — — — —

N/A 70 32 38 — — — — — — —

Gender — — — 0.295 0.587 — — — 0.048 0.826
Female 124 64 60 — — 81 41 40 — —

Male 147 71 76 — — 96 47 49 — —

Age — 67 ± 12.76 64.85 ± 12.59 1.418 0.157 — 63.18 ± 14.17 67.75 ± 11.55 2.354 0.020
*Stage — — — 18.733 0.000 — — — 14.901 0.002
Ⅰ 47 12 35 — — 24 6 18 — —

Ⅱ 106 50 56 — — 57 23 34 — —

Ⅲ 79 47 32 — — 55 37 18 — —

Ⅳ 39 26 13 — — 41 22 19 — —

*T — — — 14.236 0.003 — — — — —

T1 8 1 7 — — — — — — —

T2 45 14 31 — — — — — — —

T3 190 102 88 — — — — — — —

T4 28 18 10 — — — — — — —

*N — — — 16.819 0.000 — — — — —

N0 160 65 95 — — — — — — —

N1 68 38 30 — — — — — — —

N2 43 32 11 — — — — — — —

M — — — — — — — — — —

M0 232 109 123 5.175 0.023 — — — — —

M1 39 26 13 — — — — — — —

Race — — — 0.681 0.712 — — — 2.165 0.539
Asian 8 3 5 — — 17 7 10 — —

Black 47 24 23 — — 9 4 5 — —

White 170 89 81 — — 151 77 74 — —

(Continued on following page)
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RESULTS

Baseline Characteristics of Training and
Validation Sets
All detailed information on baseline characteristics of both
training and validation sets are listed in Table 1.

In the training set, 271 CC patients had complete clinical and
pathological data and the remaining 11 patients only had follow-
up information. Among the 271 patients, 124 patients were
female (43.97%) and 147 were male (52.13%). The average age
was 65.06 ± 12.70 years. Meanwhile, 224 patients (79.43%) had
advanced disease (Stages II–IV), among them 39 patients
(13.83%) with distant metastasis.

Also in the validation set, data of average age, the constituent
ratio of gender, and pathological stage were provided. The
average age and constituent ratio of pathological were
comparable between the two sets. The information on
pathological grade was only available in the validation set.
There were 16 patients with grade 1 (9.04%), 134 with grade 2
(75.71%), and 27 with grade 3 (15.25%) disease.

Searching Procedure of Hub
Hypoxia-Related Genes and Development
of Risk Score Model
The complete pipeline of this study is shown in Figure 1.

We defined hub hypoxia-related genes as those that were
differentially expressed between tumor and normal tissue samples
and were statistically associated with the prognosis of CC patients.

According to these criteria, we first extracted the expression of
200 hypoxia-related genes from the TCGA-COAD cohort.
Second, 64 DEGs (Figure 2A) and 11 prognostic genes
(Figure 2B) were identified. Then, three hub genes (PPFIA4,
SERPINE1, and STC2) were established as the intersection of
DEGs and prognostic genes (Figure 2C).

After the confirmation of hub genes, Lasso regression analysis
was used to construct the risk score model (Figures 2D,E). The
formula was built as follows:

Risk score = 1.582 × PPFIA4 + 0.249×SERPINE1 + 0.279
× STC2

After the risk score of each patient was calculated, these
patients were divided into two subgroups, according to the

median of the risk score. The normoxia subgroup (NS)
represented the one having a lower expression level of hub
genes, while the hypoxia subgroup (HS) was defined as the one
with a higher expression level of hub genes.

To evaluate the distinguishing ability of the risk score,
principal component analysis (PCA), t-SNE (t-distributed
stochastic neighbor embedding), and heatmap were used. The
results of the PCA and t-SNE methods suggested that two
subgroups could be separated clearly and stably according to
the risk score in the training (Figure 2F) and validation
(Figure 2G) sets. Figures 2H,I shows that the expression of
all three hub genes was also higher in the HS compared with that
in the NS in both sets.

After the grouping method was proven to be acceptable, we
then investigated the differences in clinicopathological
features, survival, and immune status between the two
subgroups.

Different Clinicopathological and
Prognostic Characteristics
First, we compared clinicopathological characteristics between
two subgroups in both training and validation sets. In the
training set, we found that there were more patients with
metastatic lymph nodes, venous invasion, lymphatic
invasion, perineural invasion, and proficient mismatch
repair (pMMR) in the HS. Meanwhile, these patients had
the worse pathological stage, T (invasion depth), N (lymph
node metastasis), and M (distant metastasis). In the validation
set, patients in the HS had poorer pathological stage and grade,
and younger age (Table 1).

Second, compared with NS, HS had a higher mortality rate
(19% vs. 10% in the training set; 51% vs. 31% in the validation
set) (Figures 3A,B). The results of the K-M analysis suggested
that patients in HS had significantly poorer OS in both training
(p = 0.004) and validation (p = 0.029) sets (Figures 3C,D).

The Validation of Discrimination Ability and
Stability of the Risk Score Model
In the training set, the results of the ROC analysis showed that
the AUCs of our risk score model were larger than 0.6 (1-year:
0.645; 3-year: 0.700; 5-year: 0.669) (Figure 4A). Then, we used

TABLE 1 | (Continued) Different characteristics between low- and high-risk groups in the training (TCGA) and validation (GEO) sets.

Characteristics TCGA GEO

Total
(271)

High risk
(135)

Low risk
(136)

t/X2/Z P Total
(177)

High risk
(88)

Low risk
(89)

t/X2/Z p

Others 46 19 27 — — — — — — —

*Grade — — — — — — — — 7.307 0.026
1 — — — — — 21 7 14 — —

2 — — — — — 119 56 63 — —

3 — — — — — 37 25 12 — —

Note: *These variables were ranked data, so they were compared between different subgroups using the Mann-Whitney rank sum test.
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Cox regression analysis to determine whether the risk score
was an independent prognostic factor. The univariate Cox
analysis suggested that age, pathological stage, distant
metastasis, and the risk score were associated with the
prognosis (Figure 4B). The multivariate Cox analysis
identified that age, distant metastasis, and the risk score
were the independent prognostic factors (Figure 4C).

In the validation set, the AUCs of 1, 3, and 5 years were all
above 0.5 (1-year: 0.644; 3-year: 0.596; 5-year: 0.583)

(Figure 4D). Through univariate and multivariate Cox
analysis, we found that the pathological stage and the risk
score were the independent prognostic factors
(Figures 4E,F).

Taken together, the results confirmed that the risk score
model based on the hub hypoxia-related genes had valuable
discrimination ability and stability. It could predict the
prognosis of patients with colon cancer accurately in the
different study populations.

FIGURE 1 | The complete pipeline of the present study. It contained three major parts, including prognostic model construction, analyses between different
subgroups (clinical, immune-related, calibration, bio-functional, and single-hub gene analyses), and multiple immunohistochemistry validation.
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Visualization and Calibration of the Risk
Score Model
We decide to use the clinicopathological features (age, M, and
pathological stage) in the TCGA-COAD cohort, along with risk
score, to build a nomogram for clinical application.

First, in Figure 5A, the result of calibration analysis showed
that the blue, red, and green lines, which represented the
performance of 1-, 3-, and 5-year prognostic prediction, were
just close to the diagonal. It meant that the risk score was a stable
prognostic model. Next, we compared the prognostic ability of
three models, including the risk score, clinical characteristics (age,
M, and pathological stage), and risk score plus clinical
characteristics using Decisive Curve Analysis (DCA). The

results showed that the performance of the multiple-factor
model (risk score plus clinical characteristics) was slightly
better than that of the single-factor model (the risk score
model alone); however, both of their performance was
significantly better than that of the sole clinical characteristics
model (Figure 5B).

Since the diagnostic ability of the risk score model was
validated to be valuable and stable, we then visualized it using
a “nomogram” (Figure 5C). Patients with colon cancer could
predict their 1-, 3-, and 5-year OS according to the information of
age, pathological stage, status of distant metastasis, and our risk
score model. It also could help doctors to predict the prognosis of
patients with colon cancer accurately and easily. After the

FIGURE 2 | Construction of the prognostic model. (A) The volcano plot showed hypoxia-related DEGs extracted from the TCGA-COAD cohort. (B) The forest plot
displayed the hypoxia-related prognostic genes extracted from the TCGA-COAD cohort. Three hub genes were marked in red font. (C) The Venn diagram showed that
the intersection of DEGs and prognostic genes were three hub genes, including PPFIA4, SERPINE1, and STC2. (D) 20-Time cross-validation for tuning parameter
selection in the LASSO Cox model. The plot of LASSO coefficients (E) showed the best choice of the number of these genes was 3. The PCA and t-SNE scatter
plots confirmed that the risk score model could precisely classify patients into two different groups in the training (F) and validation (G) sets. The heatmap visualized
different expression patterns of hub genes in NS and HS in the training (H) and validation (I) sets. DEGs: differentially expressed genes.
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construction of the nomogram, we also evaluated the prediction
power of the nomogram; the AUCs of 1-, 3-, and 5-year OS were
0.871, 0.788, and 0.807, respectively (Figure 5D).

Meanwhile, we also did calibration analysis, DCA, and ROC
analysis, and built a nomogram in the validation set. The results
showed that the risk model had stable prediction performance and
the combined usage of the risk model with clinicopathological
features had better prediction power than that of mono-marker
(Supplementary Figure S1). The AUCs of 1-, 3-, and 5-year OS of
nomogram in the validation set were 0.768, 0.724, and 0.676,
respectively (Supplementary Figure S1D).

Analyses of Differentially Expressed Genes
and Functional Enrichment
After the confirmation of the correlation between risk score and
the prognosis of CC patients, we then investigated different bio-
functions between NS and HS. First, we used the limma package
to identify DEGs between NS and HS. There were 72 DEGs
(log2|FC|>1 & adjusted p < 0.05) between different subgroups.
Because bio-functional analysis should be built on enough
DEGs, we reset the standard of DEGs to |FC|>1.5. As a
result, there were 163 DEGs (4 down and 159 up in the HS)
(Figure 6A).

FIGURE 3 | Patients in different subgroups showed statistically different prognoses. (A) The patient distribution, risk score, and status plots showed that patients in
the HS in training set related to poorer prognosis. (B) Similar results were identified in the validation set. The survival plot of K-M analysis confirmed that patients in HS had
statistically poorer overall survival in the training (C) and validation (D) sets.
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Through GO and KEGG analyses, we found that the bio-
functions of upregulated genes in the HS were enriched in
proliferation, differentiation, and tumorigenesis-related
signaling pathways, including PI3K-Akt, Hedgehog, and Wnt
signaling pathways. Meanwhile, these DEGs were also involved in
Growth factor and Cytokine binding and extracellular matrix
reorganization and reconstruction (Figure 6B). Moreover, GSEA
analysis revealed that compared with NS, HS was enriched in
hypoxia, epithelial–mesenchymal transition (EMT),
angiogenesis, and KRAS, IL2/STAT5, and Hedgehog signaling
pathways (Figure 6C).

Taken together, HS had enriched bio-functions in
tumorigenesis, proliferation, and differentiation. Meanwhile,

some signaling pathways that would induce the resistance of
antitumor drugs (EMT and KRAS) were also found to be involved
in HS. These might partially explain why the patients in HS had
worse pathological features and prognosis.

Tumor Immune Microenvironment and the
Expression of Different Molecules
Previous studies have found that the infiltration of types of
immune cells was significantly associated with the clinical
outcomes of CRC patients (Galon et al., 2006; Craig et al.,
2020; Picard et al., 2020). Based on the previous analyses, we
found that the OS between NS and HS were statistically different.

FIGURE 4 | The ROC analysis suggested that the prognostic ability of the risk score model was valuable and stable in different survival durations in the training set
(A) and validation set (D). In the training set, the univariate (B) and multivariate Cox (C) analysis showed that the risk score was an independent prognostic factor.
Meanwhile, the results of Cox analysis in the validation set (E,F) were following those in the training set.
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We wondered whether it was also associated with different TIME
between the two subgroups. Then, we analyzed the immune-cell
infiltration of each CC sample in both the training and validation
sets using CIBERSORT.

The result showed that the HS had a significantly smaller
number of CD8+ T and resting memory CD4+ T cells and a larger
number of M0 macrophages in the training (Figures 7A,B) and
validation (Supplementary Figure S2A) sets. While in the
training set, we could also find that the number of plasma and
resting dendritic cells was smaller in the HS than that in the NS.
Compared with that, HS had a higher infiltration level of M2
macrophages and neutrophils (Figure 7B). Moreover, to ensure
the stability of the results, we then used another algorithm (MCP-
counter) to evaluate the infiltration of immune cells in different
subgroups. The results showed that the infiltration of T cells,
CD8+ T cells, and cytotoxic lymphocytes was significantly fewer

in HS, whereas the infiltration of monocytic cells, endothelial
cells, and fibroblasts was enriched in HS (Figure 7C). These
results revealed that in the hypoxic microenvironment, the
infiltration of pro-inflammation immune cells was significantly
impeded, whereas the anti-inflammation immune cells and
fibroblast were enriched in the hypoxic conditions that would
also hinder the proliferation and migration of antitumor immune
cells (Vitale et al., 2019; Davidson et al., 2021).

We then investigated the differential expression of negative
regulatory immune-related genes, immune checkpoint molecules,
human leukocyte antigen, CXCL, and CCL chemokines. First, we
found that numerous negative regulator immune-related genes,
including some immune checkpoint genes, were highly expressed
in HS (Figure 7D). Second, we also found that almost all of the
immune checkpoint molecules were highly expressed in HS,
except LAG3 and ICOSLG (Figure 7E). Multiple studies also

FIGURE 5 | (A) The calibration analysis suggested that the prognostic performance of the risk score model was stable. (B) The DCA analysis showed that the
prognostic ability of the risk score model plus clinical factors was best, followed by the risk score model alone and clinical factors alone. (C) The nomogram was built
based on the risk score model and several clinical variates. (D) The ROC analysis of nomogram in the training set.
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found that the highly expressed immune checkpoint molecules
would inhibit the antitumor immunity, resulting in a poor
prognosis for colorectal cancer patients (Neupane et al., 2021;
Kudo-Saito et al., 2021; Gordon et al., 2017). Besides, the
expression of some human leukocyte antigens (HLAs) was
lowly expressed in HS, which was also consistent with the
results of fewer infiltration of pro-inflammation immune cells
in HS (Figure 7F). A plenty of studies have confirmed that
impediments to processing HLA would hinder the identification,
migration, and infiltration ability of tumor-infiltrating
lymphocytes (TILs), thus facilitating the proliferation and
invasion of malignancy (Dong et al., 2021; Maggs et al., 2021;
Kawazu et al., 2022).

Next, we found that most chemokines, including CXCL5, 6, 8,
9, 10, 11, and 12, CCL1, 2, 3, 4, 7, 8, 11, 12, 13, 19, 21, 23, 26, and
28, were significantly highly expressed in HS (Figures 7G,H).
Other studies revealed that the upregulated expression of
chemokines, including CXC and CC chemokine families, could
impede the TILs infiltrating into a tumor, support the growth of
malignant cells, and facilitate the migration of myeloid-derived
suppressor cells (MDSCs), which would cause the drug resistance
to the chemotherapy and immunotherapy (Korbecki et al., 2020;
Bullock and Richmond, 2021; Matsuo et al., 2021).

All in all, these findings revealed that the TIME and the
expression of immune checkpoint molecules, immune-related
genes, and chemokines were quite different between NS and

FIGURE 6 | The differentially expressed genes and functional enrichment. (A) The volcano plot showed that 159 genes were highly expressed and 4 genes were
lowly expressed in HS. (B) The bar plot revealed different functional enrichment involved in HS, according to the DEGs. (C) The results of GSEA analyses showed that
hypoxia, EMT, angiogenesis, KRAS, IL2, and hedgehog pathways were enriched in HS.

Frontiers in Genetics | www.frontiersin.org June 2022 | Volume 13 | Article 90173411

Xu et al. Gene Signature Predicts Prognosis

https://www.frontiersin.org/journals/genetics
www.frontiersin.org
https://www.frontiersin.org/journals/genetics#articles


FIGURE 7 | Illustration of different infiltration of immune cells and expression of immune checkpoint molecules and chemokines in NS and HS. In the TCGA-COAD
cohort, the stacked bar chart (A) and the grouped bar chart of CIBERSORT analysis (B) showed that a higher level of anti-inflammation macrophages (M0 and M2) and
neutrophils and a lower level of T cell (especially CD8+ T cell) were in the HS. The result of MCP-counter (C) confirmed that T cells, CD8+ T cells, and cytotoxic
lymphocytes were enriched in NS, compared with those in HS. It also indicated that the infiltration of endothelial cells and fibroblasts was higher in HS. (D) The

(Continued )
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HS, which might be associated with different pathological
features and prognosis between the two subgroups. Next,
based on the findings mentioned above, we would evaluate
the differences in therapeutic responses between NS and HS.

Drug Response of Immune Checkpoint
Blockade, Cytotoxic, and Targeted
Medicine
We used several methods to evaluate the therapeutic
responses between NS and HS, including the website tool
(ImmuCellAI: http://bioinfo.life.hust.edu.cn/ImmuCellAI#!/)
for ICB and pRRophetic package for targeted and cytotoxic
medicine.

First, in NS, there were 38 CC (26.9% of all CC patients in NS)
patients who responded to ICB therapy. Compared with that,
only 17 CC (12.1% of all CC patients in HS) patients would
benefit from ICB therapy. The difference between the two
subgroups was statistically significant (p = 0.002) (Figure 8A).
Second, we evaluated three cytotoxic drugs that were most widely
used in clinical application, including 5-fluorouracil (5-FU),
cisplatin, and gemcitabine. The result showed that the half
inhibitory concentration (IC50) of cisplatin was statistically
lower in NS (Figure 8B). For targeted medicine, we found
that the IC50s of bosutinib, imatinib, sorafenib, and sunitinib
were all lower in NS (Figure 8C).

Although most targeted drugs were not approved to be used
as the first-line therapy for CRC by FDA, some studies revealed
that tyrosine kinase inhibitor (TKI), including bosutinib,
imatinib, and sunitinib, could enhance the infiltration of
cytotoxic and effector T cells, which would directly affect
the efficacy of immunotherapy (Roulleaux Dugage et al.,
2021; Tazzari et al., 2021; Hirata et al., 2022). These studies
revealed that the application of TKI might be positively related
to the infiltration of pro-inflammation immune cells, which
meant that the combination therapy of TKI and ICB might
receive better efficacy than monotherapy. Recently, in a CRC
mouse model, researchers found that the combination therapy
of TKI and ICB could reduce tumor-stromal volume and
increase the infiltration of CD8+ T cells and the activation
of immune-related pathways (Yorita et al., 2021).

Analyses of Correlated Expression and
Quantitative Real-Time PCR for Hub Genes
Although our previous work revealed that the expression of three
hub genes (PPFIA4, SERPINE1, and STC2) might be positively
related, we still wondered whether there were direct correlations
among these genes. The results suggested that all three genes were
indeed positively expressed (Figure 9A). Meanwhile, we found that
the correlation between the expression of PPFIA4 and SERPINE1
was statistically highest (Figures 9B–D). To ensure the accuracy of

FIGURE 7 | heatmap displayed the expression of negatively regulatory genes in different subgroups. The immune checkpoint genes were marked in red font. Almost all
of the immune checkpoint genes (E), CXCL (G), and CCL (H) chemokines were highly expressed in HS. But some human leukocyte antigens (F), including HLA-DQB2,
HLA-DOB, HLA-DPA1, HLA-DQA2, HLA-DPB1, HLA-DOA, HLA-DRA, and HLA-DMB, were lowly expressed in HS. * represents p < 0.05, ** represents p < 0.01, ***
represents p < 0.001, **** represents p < 0.0001.

FIGURE 8 | The differences in drug response between NS and HS. (A) ICB response prediction showed that the number of patients sensitive to ICB therapy was
larger in NS than that in HS (38 in NS vs. 17 in HS). (B) The results of cytotoxic therapy response prediction revealed that the IC50s of these drugs were comparable
between the two subgroups. (C) The IC50s of targeted medicine, including bosutinib, imatinib, sorafenib, and sunitinib, were lower in NS, compared with those in HS.
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FIGURE 9 | The correlation among the expression of three hub genes. (A) The plot illustrated that the expression of all three genes was positively related. (B,C,D)
Three expression correlation plots visualized that with increasing expression of one hub gene, the expression of two other hub genes statistically increased. (E,F,G) The
plots of the Pearson correlation coefficient showed the correlation between PPFIA4 and SERPINE1 was the strongest, followed by the correlation of PPFIA4 and STC2
and the correlation between SERPINE1 and STC2. This result was following the previous result shown in (A). The results of qPCR (H) showed that three hub genes
were highly expressed under hypoxic cultivation in different colon cell lines, including colon epithelial cell line (FHC) and CRC cell lines (HCT-8, RKO, SW480, and
SW620). * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001.
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the results, we also used the website tool TIMER to evaluate the
correlations among three hub genes. The results confirmed that
these genes were statistically positively related (Figures 9E–G).

All 200 genes included in our analysis were in the hallmark
hypoxia gene set of the GSEA database. Next, we used qPCR to
confirm whether three hub genes were highly expressed in the

FIGURE 10 |Multiple immunohistochemistry staining of tissue samples from 35 colon cancer patients. (A) Typical figures of the expression of three hub hypoxia-
related genes, including PPFIA4, SERPINE1, and STC2, in NS and HS. According to themedian of expression, we divided 35CC patients into NS andHS. The histogram
showed that the expression of three genes was significantly different, and three genes were positively related. (B) Compared with NS, HS had smaller colonization of
CD8+ T cells and higher expression of PD-L1. But the number of Treg cells (FOXP3) had no statistical differences between subgroups. (C) The colonization of M1
macrophages was larger andM2macrophageswas smaller in NS, compared with that in HS. (D) The survival plot of K-M analysis of the 35 colon cancer patients. (E) The
differences of the pathological features, including pathological stage (Stage), invasion depth (T), lymphocytic metastasis (N), and distant metastasis (M), of the 35 colon
cancer patients. * represents p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001.
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hypoxic conditions. We used five types of colon cell lines,
including 1 colon epithelial cell line (FHC) and 4 CRC cell
lines (HCT-8, RKO, SW480, and SW620). Among them,
HCT-8 and RKO were dMMR/MSI cell lines, while SW480
and SW620 were pMMR/MSS. For the hypoxic conditions, cell
lines were cultivated in a hypoxia incubator with 1% O2 and 5%
CO2 for 24 h. The result showed that all three hub genes were
statistically highly expressed in the hypoxic conditions
(Figure 9H).

Analysis of Each Hub Gene
All previous analyses were about the risk score model that was
constructed with hub genes and related coefficients. We then
analyzed the correlation of the expression of single hub gene with
clinicopathological features and immune infiltration
(Supplementary Figures S3–5).

The results suggested that a higher level of expression of all
three hub genes was found in the tumor samples and was
associated with a poorer prognosis for CC patients.
Meanwhile, all three genes were positively related to the
infiltration of macrophages, neutrophils, and NK cells.
However, PPFIA4 and STC2 were negatively associated with
CD8+ T cells, T cells, and cytotoxic cells, which were following
the previous results of TIME in different subgroups that CC
patients with higher risk scores had a lower level of infiltration of
CD8+ T cells (Figure 7).

Multiple Immunohistochemistry Staining
Finally, we wanted to validate the results of the CIBERSORT
analysis, which suggested that the expression of hub hypoxia-
related genes (PPFIA4, SERPINE1, and STC2) was associated
with the infiltration of some immune cells. We collected 35 colon
cancer tissue samples from the Department of General Surgery,
Changzhou Wujin Hospital. All the samples were fixed by
formalin and embedded in paraffin.

The results showed that the expression of three hub genes was
positively related (Figure 10A). NS had a relatively lower
expression of hypoxia-related genes. We divided 35 samples
into a lower expression subgroup (NS: 18) and a higher
expression subgroup (HS: 17), according to the median of the
number of positively expressed cells. Then, we checked their
immune status, including CD8+ T cells, Treg cells, the expression
of PD-L1, M1, and M2 macrophages. In Figures 10B,C, the
results suggested that the NS had larger colonization of CD8+

T cells and M1 macrophages (CD80) than HS, which was
insistence with our previous results in Figures 7A,B.
Meanwhile, similar to the results shown in Figures 7B,E, M2
macrophages (CD163) and PD-L1 were statistically less in NS,
compared with those in HS. Moreover, we also compared the
pathological feature between NS and HS of the 35 colon cancer
patients. The results showed that the OS and pathological
variates, including pathological stage, invasion depth, and
lymphocytic metastasis, were significantly better than those of
the HS (Figures 10D,E).

Combined with these results, we identified that NS, which
represented normoxia TIME, had relatively “hot” TIME. It had
enriched colonization of pro-inflammation immune cells (CD8+

T cells, M1 macrophages), less population of anti-inflammation
immune cells (M2 macrophages), and higher expression of
immune checkpoint molecules (PD-L1). Compared with HS,
the TIME of NS would be more suitable for TILs to survive
and exhibit their tumor-killing function. On the other hand, the
results of mIHC were similar to those analyzed by CIBERSORT,
indicating its stable performance.

DISCUSSION

In the present study, we have identified a hypoxia-related gene
signature, which contained three hub genes, to classify CC
patients into NS and HS, and subsequently predicted the
different TIME and prognosis between different subgroups.
Based on this signature, a risk score model was constructed
and proven to be a valuable and stable prognostic tool for CC
patients. Moreover, we identified that the TIME and the gene
expression were quite different, which might induce distinct drug
responses between NS and HS. Based on ImmuCellAI and
pRRophetic package, we found that patients in NS were more
sensitive to ICB and targeted therapies. Finally, three hub genes
(PPFIA4, SERPINE1, and STC2) were confirmed to be highly
expressed in the hypoxic conditions by qPCR. Also, the
infiltrations of CD8+ T cells and M1 macrophages were
proven to be negatively related to the expression of these
genes by mIHC.

Our present work identified that hypoxia-related genes and
the risk score model built on them were significantly correlated
with the prognosis of CC patients. Similar results were found in
ovarian cancer (Chen et al., 2021), triple-negative breast cancer
(Yang et al., 2021a), osteosarcoma in children (Jiang et al., 2021a),
acute myeloid leukemia (Jiang et al., 2021b), and so on. It
indicated that along with other factors, hypoxia might play an
important role in the development and progression of cancer.

In our risk score model, three hub genes, including PPFIA4,
SERPINE1, and STC2, were all identified to be differentially
expressed between normal and tumor tissues and be closely
associated with the prognosis and infiltration of immune cells
in CC patients. PPFIA4, belonging to the PPFIA family of
kinesin-cargo linkers, was first identified and characterized
in silico in 2003 (Katoh and Katoh, 2003). Recently, it has
been proved to be related to CC cell proliferation and
migration by enhancing tumor glycolysis (Huang et al., 2021).
Besides, previous studies suggested that PPFIA4 was also the key
prognostic gene in thyroid and prostate cancer (Xu et al., 2021a;
Xu et al., 2021b). Compared with PPFIA4, the role of SERPINE1
in CC had been more deeply investigated. Some studies found
that the expression of SERPINE1 was negatively associated with
tumor grade and response to adjuvant therapy of CC patients
(Halamkova et al., 2011; Cheng et al., 2018). Meanwhile,
SERPINE1 has also been proven to play an important role in
remodeling TME and enhancing tumor progression in CC (Wang
et al., 2021). For STC2, it was recognized as a regulator in CC cell
biological processes, and silencing STC2 could effectively
suppress cancer cell proliferation, survival, and migration (Li
et al., 2019). Moreover, higher expression of STC2 mRNA in
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tumor tissues was correlated with larger tumor size, presence of
venous invasion, lymphatic invasion, distant metastasis, and
poorer prognosis of CC patients (Watanabe et al., 2021).
However, many studies we mentioned above were only based
on the bioinformatics analyses, which were not stable and
persuasive enough. Therefore, besides bioinformatics analyses,
we also used cell lines and tumor tissues to perform qPCR and
mIHC for validation.

The limit of nutrients and oxygen, which also restrains the
proliferation of tumor cells, stimulates tumors to enhance the
growth of new vasculatures. However, these newly formed vessels
are leaky for their discontinuous endothelium, which will induce
high permeability and permeation (Majidpoor and Mortezaee,
2021). The disorganized vasculatures, along with the high level of
metabolic rate and the low efficiency of ATP producing method
of tumor cells, cause a severe hypoxic condition in TME (Bertout
et al., 2008). In addition, the hypoxia TME simultaneously
promotes the famous “Warburg effect,” enhancing glycolysis
and lactic acid production catalyzed by the lactate
dehydrogenase A (LDH-A) (Harris, 2002). Subsequently, it
will result in acidic pH, which impairs cytotoxicity and
proliferation of types of immune cells by reducing their
chemotaxis, respiratory activity, and bactericidal ability (Jing
et al., 2019). Taken together, the hypoxia and acidic TME
greatly suppress the antitumor immune function and thus
induce tumor survival and metastasis. Among numerous
immune cells infiltrating in TME, macrophages are the
principal component, which can differentiate into the tumor-
associated macrophages (TAMs) that have been identified to be
preferentially located in almost all tumor hypoxic regions (Hegde
et al., 2021). Different from M1 TAMs, M2 TAMs play an anti-
inflammatory role in the TME by secreting immunosuppressive
molecules, including IL-10, human leukocyte antigen G (HLA-
G), TGF-β (Komohara et al., 2016). They directly with MDSCs
restrain the infiltration of antitumor T cells and their secretion of
IFN-γ. In the present study, less infiltration of CD8+ T cells and
more infiltration of M2 macrophages were found in the high-risk
group in both bioinformatics and mIHC analyses. Meanwhile,
M2 TAMs were proven to express increased programmed cell
death ligand 1 (PD-L1). It has been established that increased
expression of PD-L1 was related to poor prognosis in numerous
malignancies (Pérez-Ruiz et al., 2020). Accordant with the
previous study, we also found that the expression of immune
checkpoint molecules was higher in the high-risk group, which
indicated that they might be associated with hypoxia condition. A
recent study proved that tumor cells might escape immune
attacks from both innate and adaptive immune systems by
secreting hypoxia-inducible factor 1 (HIF-1) (You et al., 2021).
Since suppressive TAMs, immune checkpoint molecules, and
HIF-1 were all important negative factors, blocking them has
predictably received promising results in enhancing the
infiltration of tumor-infiltrating lymphocytes (TILs), thus
improving their tumor-killing effect (Yang et al., 2021b;
Caushi et al., 2021; Yap et al., 2021; You et al., 2021).

Based on the knowledge that hypoxia was a key barrier to
antitumor immunity, studies have focused on how to target the
hypoxic metabolic production or reverse the hypoxic condition in

TME. First, enhancing tumor oxygenation is an option, which
could be applied by carbogen breathing and intervention to
reduce O2 consumption by the tumor (Kheir et al., 2012; Zou
et al., 2018). Second, hypoxia-activated prodrugs (HAPs) were
designed to specifically target those hypoxic tumor cells. These
HAPs could bring both genotoxic agents and non-genotoxic
effectors (Penketh et al., 2012; Skwarska et al., 2021). Third,
targeting acidosis or hypoxia-acidosis-related pathways in TME is
another choice (Singleton et al., 2021). Moreover, the
combination therapy could also enhance the antitumor
immunity and reduce drug toxicity and resistance. For
instance, the objective response rates (ORR) of monotherapy
of PD-1 and CTLA-4 blockers were 10%–16% for ipilimumab
and 10%–40% for nivolumab and pembrolizumab (Robert et al.,
2011; Ribas et al., 2015; Robert et al., 2015). While the
combination of them could significantly increase the ORR to
61% and reduce the incidence of grade 3–4 adverse events to 46%
(Long et al., 2017). The combination of ICBs with chemotherapy,
targeted therapy, radiation, or intratumoral therapy also showed
gratifying therapeutic results in treating different types of
malignancies (Meric-Bernstam et al., 2021). The reason is
these therapeutic methods could enhance the activation and
infiltration of TILs by inhibiting angiogenesis, normalizing
vasculature, reconstructing immunosupportive TME,
increasing antigen presentation, co-stimulating molecules, and
so on.

Recently, thanks to the advance in bioinformatics, we have
deeper insight into the genomics of human beings. The function
of more gene signatures has been identified. Using the existing
gene signature, scientists can filter out hub genes and build risk
models that have prognostic power and can depict different
tumor microenvironments of different cancer patients.

These risk models were built using different statistical
methods. For instance, Guan et al. (2020) established a
prediction model that could separate gastric cancer patients
into two different subgroups using the immune-related gene
signature (Guan et al., 2020). They used the ssGSEA score and
the hierarchical clustering algorithm. One subgroup had a higher
expression of the immune-related score and better prognosis and
another had a lower score and poorer prognosis. They
successfully associated the tumor immune microenvironment
with the prognosis in the population of gastric cancer patients.
Based on the immune checkpoint-related gene signature, another
study built a risk model to predict the prognosis of hepatocellular
carcinoma patients using Lasso and Cox regression analyses
(Zhao et al., 2020). Their model could also divide liver cancer
patients into 2 subgroups, which had different prognosis and
tumor immune microenvironments. The third example is that
Bagaev et al. (2021) built a model, which had 29 knowledge-based
functional gene signatures, to separate cancer patients into 4
subtypes, including immune-enriches (fibrotic), immune-
enriched (non-fibrotic), fibrotic, and depleted (Bagaev et al.,
2021). They used the ssGSEA score and the Louvain clustering
method. These subtypes had a quite different infiltration of
immune cells and prognosis. The most important thing is that
this model is pan-cancer conserved, which means that it can be
used in most types of cancer and has great clinical application
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potential. Like the previous studies, we also used Lasso and Cox
regression analyses to identify hub genes and built a risk model
subsequently. We believe that along with the advance in
bioinformatics and statistics, more powerful prediction models
will be developed.

There are several limitations in the present study. First, all
analyses were based on retrospective data from public databases,
which will induce recall and selection biases. Second, although
related work to eliminate the batch effect has been done, the
potential risk still exists when analyses are based on data from two
different databases. Finally, our biomolecular experiments were
just to verify the results of bioinformatics analyses. They have not
deeply uncovered the bio- and molecular mechanism of hypoxia
involved in the development and progression of CC. However,
our further work will continuously focus on this field.

CONCLUSION

In summary, based on the hypoxia-related genes, we constructed
a risk score model to predict the prognosis of colon cancer
patients. Moreover, we deeply analyzed the differences,
including functional enrichment, infiltration of immune cells,
expression of different genes (immune checkpoint genes, human
leukocyte antigen, CXCL, and CCL chemokines), and the
therapeutic responses, between high-risk and low-risk
subgroups. Finally, we performed qPCR and multiple
immunohistochemistry (mIHC) for validation. This stud
might provide new insights into the association among
hypoxia, clinical prognosis, TIME, and therapy.
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Supplementary Figure S1 | (A) The calibration analysis suggested that the
prognostic performance of the risk score model was stable in the validation set.
(B) The DCA analysis showed that the prognostic ability of the risk score model plus
clinical factors was best, followed by the risk score model alone and clinical factors
alone. (C) The nomogram was built based on the risk score model and several
clinical variates. (D) The ROC analysis of nomogram in the validation set.

Supplementary Figure S2 | Analyses of TIME were also applied in the validation
set. The stacked bar chart (A) and the grouped bar chart of CIBERSORT analysis (B)
showed that a higher level of anti-inflammation M0 macrophages and neutrophils
and a lower level of CD8+ T cell and CD4 memory resting cells were in the HS. (C)
The heatmap displayed the expression of negatively regulatory genes in different
subgroups. The immune checkpoint genes were marked in red font. The immune
checkpoint genes, including PD-L1, HAVCR2, PD-1, CTLA4, and TGF-β1, were
statistically higher expressed in HS. * represents p < 0.05, ** represents p < 0.01, ***
represents p < 0.001, **** represents p < 0.0001.

Supplementary Figure S3 | The correlation among the expression of PPFIA4,
clinical prognosis, and infiltration of immune cells. In the TCGA database, the results
in the paired (A) and non-paired (B) tissue samples showed that the expression of
PPFIA4 was statistically higher in the tumor samples. The results of K-M analyses of
overall (C) and disease-specific (D) suggested that the expression of PPFIA4 and
clinical prognosis were statistically negatively correlated. (E) The Lollipop chart
revealed that the expression of PPFIA4 was positively related to the infiltration of
macrophages, and negatively related to the infiltration of most types of T cells. (F)
The results of the Pearson Correlation Coefficient suggested that the expression of
PPFIA4 was significantly associated with the infiltration of immune cells. * represents
p < 0.05, ** represents p < 0.01, *** represents p < 0.001, **** represents p < 0.0001.

Supplementary Figure S4 | The correlation among SERPINE1, clinical prognosis,
and infiltration of immune cells. In the TCGA database, the results of the PCR tests in
the paired (A) and nonpaired (B) tissue samples showed that the expression of
SERPINE1 was statistically higher in the tumor samples. The results of K-M analyses
of overall (C) and disease-specific (D) suggested that the expression of SERPINE1
and clinical prognosis were statistically negatively correlated. (E) The Lollipop chart
revealed that the expression of SERPINE1 was positively related to the infiltration of
macrophages and most types of T cells. (F) The results of the Pearson Correlation
Coefficient suggested that the expression of SERPINE1 was significantly associated
with the infiltration of immune cells. * represents p < 0.05, ** represents p < 0.01, ***
represents p < 0.001, **** represents p < 0.0001.

Supplementary Figure S5 | The correlation among STC2, clinical prognosis,
and infiltration of immune cells. In the TCGA database, the results of PCR tests
in the paired (A) and nonpaired (B) tissue samples showed that the expression
of STC2 was statistically higher in the tumor samples. The results of K-M
analyses of overall (C) and disease-specific (D) suggested that the expression
of STC2 and clinical prognosis were statistically negatively correlated. (E) The
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Lollipop chart revealed that the expression of STC2 was positively related to the
infiltration of macrophages, and negatively related to the infiltration of most
types of T cells. (F) The results of the Pearson Correlation Coefficient suggested

that the expression of STC2 was significantly associated with the infiltration of
immune cells. * represents p < 0.05, ** represents p < 0.01, *** represents p <
0.001, **** represents p < 0.0001.
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