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Abstract
Objective
To identify genetic variation influencing late-onset Alzheimer disease (LOAD), we used a large
data set of non-Hispanic white (NHW) extended families multiply-affected by LOAD by
performing whole genome sequencing (WGS).

Methods
As part of the Alzheimer Disease Sequencing Project, WGS data were generated for 197 NHW
participants from 42 families (affected individuals and unaffected, elderly relatives). A two-
pronged approach was taken. First, variants were prioritized using heterogeneity logarithm of
the odds (HLOD) and family-specific LOD scores as well as annotations based on function,
frequency, and segregation with disease. Second, known Alzheimer disease (AD) candidate
genes were assessed for rare variation using a family-based association test.

Results
We identified 41 rare, predicted-damaging variants that segregated with disease in the families
that contributed to the HLOD or family-specific LOD regions. These included a variant in
nitric oxide synthase 1 adaptor protein that segregates with disease in a family with 7 individuals
with AD, as well as variants in RP11-433J8, ABCA1, and FISP2. Rare-variant association
identified 2 LOAD candidate genes associated with disease in these families: FERMT2 (p-values
= 0.001) and SLC24A4 (p-value = 0.009). These genes still showed association while con-
trolling for common index variants, indicating the rare-variant signal is distinct from common
variation that initially identified the genes as candidates.

Conclusions
We identified multiple genes with putative damaging rare variants that segregate with disease in
multiplex AD families and showed that rare variation may influence AD risk at AD candidate
genes. These results identify novel AD candidate genes and show a role for rare variation in
LOAD etiology, even at genes previously identified by common variation.
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Late-onset Alzheimer disease (LOAD) is a neurodegenerative
disease, characterized by progressive dementia, and pathologic
changes include neuronal loss, neurofibrillary tangles, and
amyloid-beta deposits.1 LOAD is highly heritable (60%–80%),
but most of this heritability remains unexplained, despite the
identification of genetic factors that influence LOAD.2 These
factors include the APOE gene, as well as other genes identified
through genome-wide association studies (GWAS) and a lim-
ited number of studies of rare genetic variation.3–9 While these
factors have replicable association with LOAD, few of the un-
derlying causal variants have been definitively identified.

To identify additional genes influencing LOAD and to better
understand known LOAD genes, the Alzheimer Disease Se-
quencing Project (ADSP) was established.10 A key component
of the ADSP is inclusion of whole genome sequencing (WGS) in
large, multiply-affected LOAD families of non-Hispanic white
(NHW) and Caribbean Hispanic (CH) ancestry. This family-
based design enriches the study for risk variation, making it ideal
to identify novel risk variants.11 Family structure facilitates the
prioritization of risk variation through linkage and segregation-
based approaches. In this study, we report on analyses of the
NHW families. Two primary approaches were taken: examina-
tion of linkage regions segregating with disease in these families
to identify novel genes and a gene-based association analysis to
rare variation at knownAlzheimer disease (AD) candidate genes.
Results indicate that rare variants play a role in LOADmultiplex
families, both at novel genes identified through linkage and
through rare variation at AD candidate genes.

Methods
The Alzheimer Disease Sequencing Project
Families were assembled as part of the ADSP. The ADSP is
a collaboration of the LOAD genetics research community, the
National Institutes on Aging, and the National Human Genome
Research Institute (NHGRI). The full design is described else-
where.11 The ADSP includes contributors from the Alzheimer
Disease Genetics Consortium, the neurology working group of
the Cohorts for Heart and Aging Research in Genomic Epide-
miology (CHARGE), as well as 3 NHGRI sequencing centers at
Baylor University, the Broad Institute, and Washington Uni-
versity. Data are available through dbGaP (phs000572).

Family selection and design
Approximately 1,400 multiplex LOAD families were reviewed
for inclusion. Families were derived from the National

Institute on Aging Late Onset of Alzheimer’s Disease family
study, the National Cell Repository for Alzheimer’s Disease,
and families contributed by investigators from Columbia
University, University of Miami, University of Washington,
University of Pennsylvania, Case Western Reserve University,
and Erasmus University. Families analyzed here were of
NHW (CH descent families analyzed elsewhere)12 and were
required to have multiple members with LOAD, available
genomic DNA, and available APOE genotypes. We excluded
families known to carry mendelian AD mutations or were
pathologically confirmed non-Alzheimer dementia.

Families meeting initial criteria were prioritized and chosen
based on the number of affected individuals, number of
generations affected, age at onset of clinical symptoms, and
presence of APOE e4 risk alleles (table 1). Details of criteria
and selection process are described elsewhere.10 No e4/e4
individuals were included. Cognitively intact participants were
selected if available and informative for phasing.

All cases met National Institute of Neurological Diseases-
Alzheimer’s NINCDS-ADRDA criteria for possible, probable
or definite AD.13 Unaffected individuals were free of clinical
AD at themost recent cognitive assessment. In total, 42 NHW
families were included. These families included 208 affected
individuals and 185 unaffected individuals with array data
available, of which 164 affected individuals and 33 unaffected
individuals were included in the sequencing experiment.

Standard protocol approvals, registrations,
and patient consents
All individuals (or caregivers) provided written informed
consent for genomic studies, including broad data sharing,
and were assessed with the approval of the relevant in-
stitutional review boards.

NGS sequencing
WGS was performed at the NHGRI sequencing centers at the
Broad Institute (Boston, MA), Baylor College of Medicine
(Houston, TX), and Washington University (St. Louis, MS).
Samples were sequenced using Illumina instruments to
a minimum average 30× depth. Details of the sequencing
experiments are described elsewhere.14

NGS calling and quality control
Raw NGS data were aligned to hg19 using BWA.15 Genotype
calling was performed using Atlas (v2).16 Extensive variant-
level quality control (QC) was performed (appendix e-1,

Glossary
ADSP = Alzheimer Disease Sequencing Project; CH = Caribbean Hispanic; HLOD = heterogeneity logarithm of the odds;
LOAD = late-onset Alzheimer disease; LOD = logarithm of the odds; LRP1 = LDL-receptor-related protein 1;MAF = Minor
allele frequency;NHGRI =National Human Genome Research Institute;NHW = non-Hispanic white;NOS1AP = nitric oxide
synthase 1 adaptor protein; QC = quality control; SNP = single nucleotide polymorphism; WES = whole exome sequencing;
WGS = whole genome sequencing.
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links.lww.com/NXG/A117). Principal components analysis
was used to assess population substructure, using the
EIGENSTRAT.17 Array data were compared with WGS data
to assess and confirm the pedigree structure for all individuals.
Additional details of QC are reported elsewhere.14

Linkage analyses
MERLIN v1.1.2 software18 was used to perform parametric
and nonparametric multipoint linkage analyses on the array
data available for the entire family. Nonparametric analyses
are described in detail elsewhere.19 For parametric multipoint

Table 1 Priority variants from consensus linkage regions

Chrm Position RS ID Family Gene Alleles Consequence CADD MAF (1kGP)

1 162,167,769 LD0254F NOS1AP C/T Intron variant 1.2 NA

1 162,207,390 LD0254F NOS1AP A/T Intron variant 0.2 NA

1 162,223,640 LD0254F NOS1AP A/G Intron variant 13.6 NA

1 162,479,200 UM0464F UHMK1 T/G Intron variant 0.4 0

1 162,564,187 LD1223F UAP1 A/G Intron variant 8.7 0.008

1 162,564,187 LD1223F UAP1 A/G Intron variant 8.7 0.008

1 162,700,025 UM0464F DDR2 A/C Intron variant 0.5 0.009

1 162,735,057 UM0464F DDR2 G/A Intron variant 0.7 0.009

1 162,739,064 UM0464F DDR2 G/A Intron variant 5.4 0.009

1 162,742,651 LD0254F DDR2 G/A Intron variant 0.1 0.001

1 162,751,967 LD0254F DDR2 T/A 3ʹ UTR variant 6.6 0.009

1 162,757,273 LD1223F DDR2 T/C Upstream gene variant 2.2 0.009

1 162,928,238 UM0464F G/A Intergenic variant 0.9 0.002

1 163,032,461 LD0254F T/A Intergenic variant 1.9 0.002

1 163,202,875 UM0464F RGS5 G/A Intron variant 8.3 0.002

1 163,578,427 UM0464F C/A Intergenic variant 4.7 0.003

1 163,749,571 LD0949F A/G Intergenic variant 7.2 0.002

1 163,841,625 UM0464F C/T Intergenic variant 7.1 0.010

1 164,034,469 rs187504850 UM0464F A/G Intergenic variant 19.6 NA

1 164,448,463 UM0464F G/A Intergenic variant 3.2 0.003

1 164,622,647 LD0949F PBX1 G/A Intron variant 1.2 0.006

1 164,887,661 UM0464F C/T Downstream gene variant 8.2 0.005

1 165,253,949 LD0254F LMX1A C/T Intron variant 14.7 0.002

1 165,342,593 UM0464F G/A Intergenic variant 5.9 0.010

1 165,532,785 LD1223F LRRC52 G/A Synonymous variant 18.3 0.004

14 95,913,507 rs191535004 LD0949F SYNE3 G/A Intron variant 0.7 0.008

14 95,923,822 UM0464F SYNE3 C/T Intron variant 3.5 0.008

14 96,449,175 UM0464F C/A Intergenic variant 0.8 NA

14 96,568,984 UM0464F C/A Regulatory region variant 1.5 NA

14 96,923,339 LD0254F AK7 C/T Noncoding transcript exon variant 0.1 0.008

14 97,029,358 UM0464F PAPOLA C/G Intron variant 10.4 NA

14 97,228,875 LD0949F RP11-433J8.2 A/G Intron variant 12.3 0.003

Abbreviations: CADD = Combined Annotation Dependent Depletion score; Chrm = chromosome; MAF (1kGP) = Minor Allele Frequency among the European
samples in the 1,000 Genomes Project data; UTR = untranslated region.
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analyses, we first pruned markers to minimize linkage dis-
equilibrium (r2 < 0.01) using PLINK v1.07 software.20 Using
this pruned grid of markers, parametric multipoint linkage
analyses were performed using a rare disease allele frequency
(0.0001) and a dominant model with incomplete penetrance
(noncarrier 0.01 and carrier 0.90). Consensus linkage regions
(i.e., consistent across multiple families) were defined as peak
HLOD ≥ 3.3 per Lander and Kruglyak.21 Any family with
peak family-specific LOD >0.58 in the consensus region was
considered a contributor to the consensus signal. Family-
specific linkage regions were defined as regions with a para-
metric family-specific LOD >2.

Annotations
Variants were annotated for location, gene (if applicable), pu-
tative function (missense, nonsense, splice site, etc.), combined
annotation dependent depletion (CADD) score (a quantitative
summary of putative function and conservation),22 contextual
analysis of transcription factor occupancy (CATO) scores23 for
intergenic variation, and allele frequency in the NHW families
and in the 1,000 Genomes Project European-ancestry pop-
ulations.24 As aQCmeasure, we used BLAST to interrogate the
genome for similar sequence as the high-priority variants, to
ensure uniqueness of the relevant sequence.25

Variant filtering and prioritization
Variants were filtered based on complete segregation among
affected individuals (and absent from unaffected individuals)
and rarity (minor allele frequency [MAF] < 0.05 in our data
set, <0.01 in 1,000 Genomes Project data). Additional pri-
oritization was applied to variants with high CADD scores,
were observed in multiple families, had CATO predictions,
had multiple filtered variants in the same gene, or showed
nominal association in the ADSP case-control analyses.

Validation genotyping
High-priority genotypes were validated using Sanger sequencing
of whole genome sequenced family members to confirm carrier/
noncarrier status. Sequencing was performed using standard
protocol on genomic DNA (;50 ng). Details of validation
typing are in appendix e-1 (links.lww.com/NXG/A117).

Gene-based association tests
Gene-based association tests were performed using the FSKAT
v1 software.26 A cutoff of MAF <0.02 was used among the non-
Finnish European ancestry populations in the 1,000 Genomes
Project data (1kGP)24. Variants were analyzed in 2 sets: (1)
damaging rare variants (loss-of-function variants, nonsense,
stop-loss, etc and those predicted to be damaging) and (2)
damaging variants plus all nonsynonymous variants. Genes
with only a single variant were excluded. FSKATwas applied to
the remaining genes using 2 models: one adjusted for age, sex,
and the top 10 principal components and the other unadjusted.

Candidate gene list
Candidate genes (appendix e-1, links.lww.com/NXG/A117)
were selected from replicable population and family AD

genetics studies, mostly from GWAS of LOAD or known
early-onset AD genes.4–9

Data availability
Anonymized data are available by request from qualified
investigators through dbGaP (phs000572.v1.p1) and through
the National Institute on Aging Genetics of Alzheimer Dis-
ease Data Storage Site (www.niagads.org).

Results
Consensus linkage regions
Linkage scans identified 2 primary “consensus” linkage regions
(peak HLOD ≥ 3.3)21: a parametric multipoint peak on chro-
mosome 1q23 (peakHLOD= 3.58; 162.2–165.8Mb; figure 1A)
and a nonparametric multipoint peak on chromosome 14q32
(LOD = 4.18; 98.9–99.6 Mb; figure 1B). The 1q23 region was
supported (LOD > 0.58) by 8 families (LD0241F, LD0254F,
LD0856F, LD1223F, LD1260F, UM0196F, UM0463F, and
UM0464F), while the 14q32 region was supported by 4 families
(LD0223F, LD0949F, LD1223F, and UP0004F).19

In total, there were 86 rare (MAF <0.01 1kGP) variants that
segregated with disease in sequenced affected individuals in at
least 1 of the 8 families that supported the chromosome 1 peak.
Of the 86 variants, 43 were genic (50%) and 43 were intergenic
(50%). This initial set of 86 segregating variants was further
refined by requiring variants to also be absent from unaffected
individuals in the family (if available), have moderate-to-high

Figure Summary of consensus linkage regions on chro-
mosomes 1 and 14

(A) Peak LOD region on chromosome 1. X-axis denotes positions in centi-
morgans. Y-axis denotes the LOD score at the corresponding position. (B) Peak
LODregiononchromosome14.X-axisdenotespositions in centimorgans. Y-axis
denotes the LOD score at the corresponding position.
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CADD (CADD > 10), CATO predictions, or be seen in
multiple families. Of the 86 variants, 24 matched these criteria
and were considered “high priority.” At the 14q32 locus, we
identified 23 rare variants segregating with disease among af-
fected individuals in at least 1 of the 4 families supported the
linkage signal. Of this set, there were 7 variants absent from the
unaffected individuals, had high CADD predictions, or were
seen in multiple families. In total, 31 variants in the consensus
linkage regions were prioritized; of these, 29 variants were
validated using Sanger sequencing, 1 was a false positive, and 1
could not have a reliable assay developed.

A number of interesting results come out of this set of 29 con-
firmed variants (table 1). In the 1q23 region, a variant (chr1:
162,223,640 A/G) in nitric oxide synthase 1 adaptor protein
(NOS1AP) segregates with disease in family UM0464F with 7
individuals with AD (family-specific LOD= 2.62; figure e-1, links.
lww.com/NXG/A119); while the variant is intronic, it has
a moderate CADD score (13.6) and is completely absent in the
1kGP reference data set. Other variants in NOS1AP (chr1:
162,167,769C/T; chr1:162,207,390 A/T) segregate with disease
in family LD0254F (figure e-2, links.lww.com/NXG/A120). In
the 14q32 region, an intronic variant in ncRNA RP11-433J8
segregates with disease in family LD1223F (6 AD family mem-
bers; family-specific LOD = 1.45); the variant was also present in
a second family (LD0307F) although it was not present in all AD
individuals. The variant is rare in 1kGP (MAF = 0.003) and has
a moderate CADD score (CADD = 12.2).

Family-specific linkage regions
In addition to the consensus linkage regions, there were 10
family-specific regions identified using parametric multipoint
linkage (table 2). These regions showed family-specific LOD
scores >2. Among the 10 regions, there were 647 variants that
were rare (MAF <0.01 1kGP) and segregated among the

affected individuals in family with the LOD score >2. The 647
variants were further prioritized based on absence in un-
affected family members with WGS, high CADD predictions,
as well as presence in multiple families, identifying 13 addi-
tional variants as high priority (table 3). Twelve of these 13
variants were validated using an orthogonal technology (the
last could not have a reliable assay developed).

Among the family-specific regions, a missense variant
(rs137854495) in the chromosome 9 ABCA1 (ATP binding
cassette subfamily A member 1) gene segregated with disease
in a family with 4 individuals affected with AD (family-specific
LOD = 2.04). The variant was absent in the 1kGP reference
data set and had a high CADD score (CADD = 34). Two
missense variants in FSIP2 (fibrous sheath interacting protein
2) segregates with disease in a single family with 7 AD family
members (family-specific LOD = 2.07). Both variants were
rare in 1kGP (MAF < 0.001) and had high CADD scores
(CADD = 25.2 and 22.6). This analysis also identified a mis-
sense variant with high CADD (CADD = 32) in TTC3, from
family UM0146F. This variant was previously identified
through whole exome sequencing (WES) in the same family
and is described elsewhere.27

Candidate genes
FSKAT, a family-based kernel test for association of sets of
variants, was used to perform gene-based association in the
families27 (Table 4). A list of 31 candidate genes (identified
from GWAS and studies of familial AD) was tested for associ-
ationwith LOAD. Two genes showed associationwith LOAD in
the unadjusted analysis that included nonsynonymous variants:
FERMT2 (p-value = 0.001) and SLC24A4 (p-value=0.009). The
association in FERMT2 survives a Bonferroni correction for 31
genes tested (p-value = 0.05/31 = 0.0016). Both genes still
showed association after adjusting for age, sex, and the top 10

Table 2 Family-specific linkage regions

Family ID Chrm cM (start) cM (end) BP (start) BP (end) Peak LOD

UM0458F 12 0.18 41.96 0.38 20.56 2.95

UM0458F 14 6.03 15.44 21.64 24.64 2.7

UM0146F 21 41.07 49 36.55 40.37 2.63

UM0146F 19 76.43 85.05 48.55 51.38 2.23

UP0005F 1 131.84 144.67 103.72 115.74 2.07

UP0005F 2 188.73 210.97 183.63 213.07 2.07

UP0005F 16 78.58 91.44 58.51 73.81 2.07

UM0463F 5 138.9 146.8 131.38 141.03 2.06

UP0001F 9 106.1 116.2 104.11 112.23 2.04

UP0001F 9 95.12 105.57 92.41 103.64 2.04

Abbreviations: BP (start) and BP (end) = position of the region in megabases; Chrm = Chromosome; cM (start) and cM (end) = position of the region in
centimorgans; LOD = logarithm of the odds.
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principal components (FERMT2 p-value = 0.002; SLC24A4
p-value = 0.023). The PICALM gene also showed nominal
association after adjusting for age, sex, and principal com-
ponents (p-value = 0.032; unadjusted p-value = 0.111).
SLC24A4 also showed nominal association in the damaging
variant–only analysis (p-value = 0.026). Because these 3 genes
were all initially identified using GWAS, we also performed the
association analysis with the genotyped GWAS index single
nucleotide polymorphisms (SNPs) as covariates in the FSKAT
model (rs17125944 for FERMT2, rs10498633 for SLC24A4,
and rs10792832 for PICALM). Each gene still showed evidence
of association after including index SNP genotypes as cova-
riates (FERMT2 p-value = 0.002, SLC24A4 p-value = 0.015,
PICALM p-value = 0.021).

Because the gene of interest for a particular associated locus
may not be the gene physically closest to the index SNP, as
a secondary analysis, we expanded the list of 31 candidate
genes to include genes near the GWAS index SNPs
(±1,000,000 bp). In this analysis, an additional 586 genes
were tested using FSKAT. Near the FERMT2 locus (within
100 kb downstream), the genes STYX, PSMC6, and
GNPNAT1 all showed association in the analysis including
nonsynonymous variants (p-values = 0.0011, 0.0012, and
0.0016, respectively). STYX, in particular, also showed nom-
inal association in a large case-control WES study conducted
by the ADSP (p-value = 0.00119).28 As with FERMT2, the
p-values did not appreciably change when adjusting for age,
sex, and principal components (p-values = 0.0013, 0.0016, and
0.0024, respectively). Additional genes showed association in
the nonsynonymous analysis include MGC45922 (p-value =
0.0030; near CD33), TAP2 (p-value = 0.0043; near HLA-

DRB1/DRB5; p-value = 0.0047 in the ADSP WES analysis),
and FAM210B (p-value = 0.0084; near CASS4), when
adjusting for age, sex, and principal components. In the
analysis of damaging variants, the CPSF2 gene was associated
in the adjusted analysis (p-value = 0.000498), which would
survive a Bonferroni multiple testing correction for 586 genes.
This gene is located near the SLC24A4 gene and was also
nominally associated in the ADSP WES analyses (p-value =
0.034). The FIS1 gene also showed evidence of association in
the unadjusted analysis (p-value = 0.00748, near ZCWPW1;
unadjusted analysis p-value = 0.0147) and was also nominally
associated in the ADSP WES analyses (p-value = 0.034).

Discussion
To identify rare variation influencing LOAD, we performed
analyses of WGS data in NHW families multiply affected for
LOAD. A two-pronged approach was taken: examination of
linkage regions identified through analysis of genome-wide
genotyping array data and a gene-based association analysis of
rare coding variants, focusing on AD candidate loci identified
in GWAS. These results indicate a potential role for rare
variants in LOAD etiology. Numerous rare, predicted dam-
aging rare variants were identified that segregate with disease
in multiplex LOAD families and were validated with in-
dependent technologies. Additionally, rare variation in LOAD
candidate genes was associated with AD in these multiplex
families. This association persisted even when the common
variant index SNPs were included in the models, indicating
the rare variant association is likely distinct from the common
variants that initially implicated the genes.

Table 3 Priority variants from family-specific linkage regions

Chrm Position Gene Alleles Family Consequence CADD MAF (1kGP)

2 186,611,520 FSIP2 C/T UP0005F Missense variant 25.2 0.001

2 186,611,521 FSIP2 G/T UP0005F Missense variant 22.6 0.001

2 199,347,563 PLCL1 A/G UP0005F Intron variant 17.7 0.010

2 208,614,446 CCNYL1 C/G UP0005F Intron variant 20.1 0.001

9 100,819,143 NANS C/T UP0001F Missense variant 22.5 0.001

9 107,584,795 ABCA1 G/A UP0001F Missense variant 34.0 NA

12 16,342,622 SLC15A5 G/A UM0458F Missense variant 24.0 0.008

12 17,149,860 T/A UM0458F Downstream gene variant 16.4 0.010

12 18,891,317 CAPZA3 C/T UM0458F Missense variant 21.4 0.005

16 61,999,830 CDH8 A/C UP0005F Intron variant 15.5 0.007

16 70,546,287 COG4 C/T UP0005F Missense variant 23.9 NA

16 73,127,644 HCCAT5 A/G UP0005F Noncoding transcript exon variant 16.3 0.002

21 38,534,308 TTC3 C/G UM0146F Missense variant 32.0 NA

Abbreviations: CADD = Combined Annotation Dependent Depletion score; Chrm = chromosome; MAF (1kGP) = minor allele frequency among European
samples in the 1,000 Genomes Project data.
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Rare variation in NOS1AP was identified. NOS1AP lies under
one of theHLOD linkage peaks, is expressed in the brain,29 and
is known to interact with the LDL-receptor-related protein 1
(LRP1). LRP1 is an APOE receptor that helps bring APOE
into neurons30,31 and APP. In addition, LRP has been associ-
ated with AD in the ADSP WES experiment (p = 0.00018).28

NOS1AP also interacts with nNOS,32 encoded byNOS1, which
has been linked to AD33 as well as other neurologic diseases.

A missense variant (rs137854495) in ATP binding cassette
subfamily A member 1 (ABCA1) was found to segregate with
disease in one family under a family-specific linkage peak on

Table 4 Gene-based association test results at known AD candidate genes

Gene

Putative damaging + nonsynonomous Putative damaging

p-Value (unadj) p-Value (adj) p-Value (unadj) p-Value (adj)

ABCA7 0.534 0.414 0.782 0.657

AKAP9 0.226 0.167 0.115 0.145

APOE 0.334 0.228 — —

APP 0.802 0.651 — —

BIN1 0.422 0.339 — —

CASS4 0.159 0.164 0.527 0.732

CD2AP 0.939 0.892 0.110 0.216

CD33 0.321 0.250 0.111 0.122

CELF1 0.353 0.223 — —

CLU 0.608 0.475 0.465 0.631

CR1 0.349 0.182 0.403 0.629

EPHA1 0.481 0.459 0.842 0.896

FERMT2 0.001 0.002 — —

GRN 0.310 0.453 — —

HLA-DRB1 0.262 0.166 — —

INPP5D 0.140 0.200 — —

MAPT 0.673 0.668 0.596 0.677

MEF2C 0.266 0.323 — —

MS4A6A 0.264 0.287 0.751 0.555

NME8 0.228 0.127 — —

PICALM 0.111 0.032 — —

PLD3 0.169 0.146 0.348 0.305

PSEN1 0.755 0.418 0.154 0.089

PSEN2 0.725 0.444 0.080 0.173

PTK2B 0.653 0.489 0.622 0.447

RIN3 0.419 0.341 0.935 0.958

SLC24A4 0.009 0.023 0.026 0.076

SORL1 0.642 0.438 0.263 0.172

TREM2 0.678 0.575 0.394 0.358

TREML2 0.381 0.300 0.208 0.143

ZCWPW1 0.560 0.478 — —

Bold indicates p-values < 0.05.
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chromosome 9. The variant was rare, with a very high CADD
score (CADD= 34).ABCA1 is expressed in brain (though not
exclusively; ABCA7 is expressed in many tissues) and is in-
volved in lipid removal pathways.29 Variants in ABCA1 have
been associated with HDL deficiency, familial hypercholes-
terolemia, and APOA deficiency.34–37 The rs137854495 var-
iant, in particular, has been noted in a family with Tangier
disease as part of a compound heterozygote.38 Dyslipidemias
and lipid pathways have long been linked to LOAD,39 starting
with the APOE gene,3 and more recently CLU, ABCA7,
etc,4,22 although exact mechanisms remain unclear. Tangier
disease, in particular, has also been proposed as having links to
AD, primarily through amyloid-β pathways, although evi-
dence supporting this is mixed.40–44 The ADSP WES project
identified nominal association with 2 additional apolipopro-
teins (APOA2, p = 0.000636; APOA5, p = 0.0413).28

Gene-based association tests implicated fermitin family
member 2 (FERMT2) and surrounding genes STYX, PSMC6,
and GNPNAT, all with similar levels of significance (p =
0.0010–0.0016). FERMT2 is involved in cell adhesion, is
expressed in brain, and is near an SNP with strong association
to AD.4 STYX is likely involved in phosphatase activity and
has been associated with diabetes mellitus type 1.45 PSMC6 is
likely involved in hydrolase activity; GNPNAT is involved in
sugar metabolism. SLC24A4 has been associated with AD
through a genome-widemeta-analysis,4 and brainmethylation
in SLC24A4 region has been associated with AD risk.46 Al-
though FERMT2 and SLC24A4 were initially identified using
common variant approaches, the association observed at these
2 genes was not greatly affected by including the GWAS index
SNPs as covariates in the model. If common variants were
solely responsible for the association, then we would expect to
fail to reject the null hypothesis at the rare variants. This
implies the rare variation associated with disease in these
families is distinct from the common variant index SNPs
initially used to identify the genes.

There are limitations to this study. The sample size was
modest relative to GWAS approaches. This of course limits
power, particularly for the association-based approaches.
However, the use of familial data and linkage and segregation-
based approaches mitigates some of these power concerns.
Increasing sample sizes and number of multiplex families is an
ongoing effort for future studies. Additional limitations in-
clude the use of in silico predictions of function (e.g., CADD).
While useful as a first pass, these predictions should be seen as
a putative,47 and function will need to be validated by func-
tional genetic approaches.

These results imply a role for rare variation in familial LOAD.
The linkage analysis identified 41 high-priority variants, including
variants inNOS1AP andABCA1, both with plausible roles in AD
and AD-related pathways. The analysis of LOAD candidate
genes identified several genes with rare variation associated with
AD. The tests were still significant while controlling for the
common index SNPs, implying a role for rare variation even at

GWAS-identified loci. Future directions include a thorough
analysis on noncoding variation, particularly the role of
enhancers and other regulatory elements in the etiology of AD.
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