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Abstract

INTRODUCTION: Identifying mild cognitive impairment (MCI) patients at risk for

dementia could facilitate early interventions. Using electronic health records (EHRs),

we developed a model to predict MCI to all-cause dementia (ACD) conversion at 5

years.

METHODS: Cox proportional hazards model was used to identify predictors of ACD

conversion from EHR data in veterans with MCI. Model performance (area under the

receiver operating characteristic curve [AUC] andBrier score)was evaluatedon aheld-

out data subset.

RESULTS:Of 59,782 MCI patients, 15,420 (25.8%) converted to ACD. The model had

good discriminative performance (AUC0.73 [95% confidence interval (CI) 0.72–0.74]),

and calibration (Brier score 0.18 [95%CI 0.17–0.18]). Age, stroke, cerebrovascular dis-

ease, myocardial infarction, hypertension, and diabetes were risk factors, while body

mass index, alcohol abuse, and sleep apnea were protective factors.

DISCUSSION: EHR-based prediction model had good performance in identifying

5-yearMCI to ACD conversion and has potential to assist triaging of at-risk patients.

KEYWORDS
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Highlights

∙ Of59,782veteranswithmild cognitive impairment (MCI), 15,420 (25.8%) converted

to all-cause dementia within 5 years.

∙ Electronic health record prediction models demonstrated good performance (area

under the receiver operating characteristic curve 0.73; Brier 0.18).

∙ Age and vascular-relatedmorbidities were predictors of dementia conversion.

∙ Synthetic datawas comparable to real data inmodelingMCI todementia conversion.
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Key Points

∙ An electronic health record–basedmodel using demographic and co-morbidity data

had good performance in identifying veterans who convert from mild cognitive

impairment (MCI) to all-cause dementia (ACD) within 5 years.

∙ Increased age, stroke, cerebrovascular disease, myocardial infarction, hypertension,

and diabetes were risk factors for 5-year conversion fromMCI to ACD.

∙ High body mass index, alcohol abuse, and sleep apnea were protective factors for

5-year conversion fromMCI to ACD.

∙ Models using synthetic data, analogs of real patient data that retain the distribu-

tion, density, and covariance between variables of real patient data but are not

attributable to any specific patient, performed just as well as models using real

patient data. This could have significant implications in facilitatingwidely distributed

computing of health-care data with minimized patient privacy concern that could

accelerate scientific discoveries.

1 BACKGROUND

Mild cognitive impairment (MCI) is a heterogenous syndrome charac-

terized by cognitive impairment that is more than normal aging and

could be an early manifestation of neurodegenerative diseases that

later progress to dementia.1 Prior autopsy studies show that the brain

pathology in MCI is intermediate in severity between cognitively nor-

mal controls and patients with more advanced Alzheimer’s disease

(AD), the most common neurodegenerative condition.2–4 However,

MCI could also be a precursor to other non-AD dementing conditions

such as cerebrovascular disease and Lewy body disease5,6. Identify-

ing MCI patients at risk of developing dementia could be helpful for

targeting candidates for early treatment especially as promising drugs

that slow the cognitive and pathologic decline, such as lecanemab7,

become increasingly available. It will also allow selection of patients

that are most at risk for participation in clinical trials of new candidate

therapeutics, potentially requiring smaller sample sizes to show ben-

efit, leading to reduced study cost and enhanced research participant

safety.

Existing models to predict dementia, mainly AD, have focused on

neuropsychologic test scores and biomarkers from cerebrospinal fluid

and brain imaging8–10. The generalizability of these models is limited

by the relatively small number of participants and the complex and

sometimes invasive nature of the input variables that are not widely

obtained in clinical practice. Electronic health record (EHR)–based

predictionmodels of dementia potentially have an advantage in gener-

alizability over existing models because of the large number of unique

patients involved and access to high-dimensional data that are col-

lected during routine clinical encounters11,12. The primary aim of the

study is to develop a generalizable EHR-basedmodel to predictMCI to

all-cause dementia (ACD) conversion at 5 years using the large multi-

center Veterans Affairs (VA) health-care database. While EHR-based

prediction models have advantages due to access to a large dataset,

creating and optimizing these models are constrained by limitation of

access to patient medical records due to privacy concerns. This prob-

lem could be partially addressed by providing wide access to and using

synthetic data to augment model building. Synthetic data are analogs

of original patient data that aim to retain the distribution, density, and

co-variance between variables within clusters of similar patients, but

are not attributable to the original patients13. However, the valida-

tion of model performance based on EHR synthetic data on various

disease models remains limited14. A secondary aim of the study is to

compare the performance of MCI to ACD prediction models based on

EHR-derived real patient versus synthetic data.

2 METHODS

2.1 Study population

We assembled a retrospective cohort of veterans who were seen Jan-

uary 1, 1999 to December 31, 2016 in the US VA Healthcare System

using an internal cloud analytics environment that hosts a copy of the

Corporate Data Warehouse (CDW), which is a consolidation of data

fromdisparate sourceswithin theVA into a single coherent datamodel.

The study protocol was reviewed and approved by the Institutional

Review Board of the Phoenix VA Health Care System with a waiver of

informed consent (ProtocolMigrino1593816).

Patients were eligible to enter if they were ≥ 50 years old and

were diagnosed with MCI (Figure 1). Diagnosis of MCI was based on

the patient having International Classification of Diseases Ninth or

Tenth revision (ICD-9 or -10) classification ofMCI (Table S1 in support-

ing information) made on two or more separate clinic visits, an entry

criterion based on MVP Cog Working Group validated to have 95%
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specificity based on rigorous chart review15. The date of initial diag-

nosis of MCI was used as date of diagnosis. Patients with diagnosis of

dementia (Table S1) prior to or up to 6 months after initial MCI diag-

nosis were excluded from analysis. Patients were classified into two

groups based on whether they were (1) diagnosed to have ACDwithin

5 years after MCI diagnosis (ACD converters) or (2) did not have ACD

diagnosis or were right censored (lost to follow-up or died) within 5

years afterMCI diagnosis (ACDnon-converters). The alive/dead status

of those lost to follow-up was not determined using separate non-EHR

datasets because the aim of the study was to evaluate the utility of

data derived only from the VA EHR. ACD was defined using the ICD-9

or ICD-10 codes (Table S1) from the VA Centralized Interactive Phe-

nomics Resource (CIPHER) Phenotype 00083 (https://www.research.

va.gov/programs/cipher.cfm)15 validated to have 82% specificity based

on rigorous chart review.

2.2 Demographic and co-morbid condition
variables

Demographic (age, sex, race, ethnicity, and bodymass index [BMI]) and

selected co-morbid conditions were extracted from EHR at the time

of MCI diagnosis and the dataset was locked prior to final analyses.

All race data are self-reported and we used the last self-designation

to group races into the following categories: White, Black or African

American, Asian/Pacific Islander/Native Hawaiian, American Indian or

Alaska Native, and Multiracial/Other (Declined to Answer/Unknown).

If a patient did not have any recorded BMImeasurement (2.43%), then

we imputed the mean. Co-morbid conditions were selected a priori

based on previous literature testing these conditions as potential risk

factors for dementia16–19 and identified using ICD-9 or ICD-10 codes

(Table S1) using criteria for the Charlson Comorbidity Index20. For

traumatic brain injury (TBI), we used ICD codes from a prior study on

veterans showing association between TBI and later development of

dementia21. If the condition is not included in theCharlson list, we used

Elixhauser Comorbidity Index22, CIPHER, or Saunders et al.’s23 study

(hearing loss).

2.3 Statistical methods

2.3.1 Descriptive statistics

We randomly partitioned our cohort into a training set (70%) and

test set (30%) for prediction modeling. Descriptive statistics were

stratifiedby conversion status and reportedas frequencies andpropor-

tions or medians and interquartile ranges (IQRs). Chi-square tests and

Wilcoxon rank-sum tests were used to evaluate differences between

strata.

2.3.2 Cox proportional hazards model

Patientswere followed fromMCIdiagnosis (entry age) until they devel-

oped ACD, they were lost to follow-up, died, or 5 years after MCI

RESEARCH INCONTEXT

1. Systematic review:Weperformedanextensive literature

review to identify predictors of dementia conversion and

current dementia prediction modeling approaches. We

also identified previous work done to validate the use of

synthetic data in statistical modeling.

2. Interpretation: Our findings show that routinely col-

lected demographic and co-morbidity data can be used

to predict 5-year conversion from mild cognitive impair-

ment (MCI) to dementia. We also demonstrate that the

predictive models using synthetic data derived from real

patient data perform as well as predictive models from

real patient data.

3. Future directions: TheMCI to dementia predictivemodel

derived from electronic health records could be used

to identify high-risk patients for consideration of non-

pharmacologic or new, expensive pharmacologic inter-

ventions. It could also be used to define an enriched

at-risk patient group to target for clinical trials of new

therapies. Importantly, validation of synthetically derived

predictivemodels could allowwidely distributed comput-

ing with minimal risk of privacy breach, reducing barriers

to entry and facilitating scientific discovery.

diagnosis. We used the Kaplan–Meier estimator to estimate the con-

version probability and corresponding 95% confidence interval (CI)

to ACD at 5 years for our full, real cohort. We used Cox propor-

tional hazards model to estimate the hazard ratio (HR), 95% CIs,

and corresponding P value for the risk of developing ACD for each

co-morbidity and demographic feature. We used backward stepwise

selection on co-morbid predictors to identify a parsimonious model

based on the Akaike information criterion (AIC)24. The proportional

hazards assumption of the fitted Cox proportional hazard model was

evaluated for each predictor by graphical methods and a formal score

test of B(t).

2.3.3 Model performance evaluation

We applied the trained Cox model to our held-out test set and esti-

mated the linear predictor score and expected conversion probability

for each observation in our test set. We reported the median and IQR

of the expected conversion probabilities of our test set. Next, we eval-

uated our models’ ability to predict patient ACD conversion at 5 years

through non-parametric inverse probability of censoring weighting

estimation of the time-dependent areas under the receiver operating

characteristic curve (AUCs) and time-dependent Brier scores25,26.

Time-dependent AUCs instead of C-index was used because previous

simulation studies demonstrated that theC-index is not an appropriate

https://www.research.va.gov/programs/cipher.cfm
https://www.research.va.gov/programs/cipher.cfm
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F IGURE 1 Flow chart of inclusion and exclusion criteria. ACD, all-cause dementia; CDW, Corporate DataWarehouse; MCI, mild cognitive
impairment; VA, Veterans Affairs

discriminatory measure for evaluating t-year predicted risks due to

biased estimates of mis-specifiedmodels26.

2.4 Synthetic data generation and model
performance

Weevaluated the utility of synthetically derived data for trainingmod-

els to predict MCI to ACD conversion by repeating our previously

outlined methodology on three synthetic training sets and comparing

the results to our real training set.

2.4.1 Synthetic patient data generation

We used commercial software (MDClone ADAMS Platform, MDClone

Ltd.) to derive synthetic patient data from CDW. The software is

designed to compute and preserve the original cohort’s statistical

properties and higher-order relationships and to create a synthetic

analog cohort without any one-to-one correspondence between the

original and synthetic patients13,14,27. To best mimic the real cohort,

the ADAMS Platform provides the ability to select only those vari-

ables that are relevant to the research question. These comprise input

to the synthetic data generator. The generator first derives a statisti-

cal model of the real patient cohort. The generator then creates new

fictitious (i.e., synthetic) records to fit that model while maintaining

the distribution, density, covariance, and other statistical measures

between similar patients. The outcome is a similar number of synthetic

patient records based on the variables of interest that maintain the

relationship between variables.

2.4.2 Synthetic versus real data comparisons

We reported the descriptive statistics, estimated Cox proportional

hazard model parameters, and prediction results of our three syn-

thetically derived training sets. The time-dependent AUCs and time-

dependent Brier scores for prediction of ACD conversion at 5 years for

synthetic training sets were compared to the prediction results of our

real training set. Tests of comparisons and estimated pointwise 95%

CIs were derived from the limiting Gaussian processes and estimated

asymptotic variances25,28. We evaluated the correlation between real

and synthetic expected conversion probabilities through R-squared

statistics.

All analyses were performed using R statistical software version

4.2.2 (https://www.R-project.org) with the gmodels, survival, stats,

StepReg, timeROC, and riskregression extension packages. All statis-

tical tests were two-sided; alpha level of 0.05 was used to determine

statistical significance.

https://www.R-project.org
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3 RESULTS

Outof 24,936,924unique patients from1999 to2016, 59,782patients

met inclusion criteria (Figure 1). Fifteen thousand four hundred twenty

(25.8%) converted to ACD within 5 years, while the rest either did not

have ACD diagnosis, died, or were lost to follow-up within 5 years. The

Kaplan–Meier estimate of 5-year conversion from MCI to ACD was

28.4% (95% CI 28.0%–28.8%). Median time to conversion was 1.94

(IQR 1.09–3.10) years. Excluding patients with MCI diagnosis before

age 50 years, the median age of MCI diagnosis in the VA cohort was

71.0 (IQR 63.7–80.7) years. MCI patients who converted to ACDwere

older than those who did not (Table 1A-B, Table S2 in supporting infor-

mation). The overall cohort was predominantly male and White; male

andWhite participants had greater representation in ACD converters

than non-converters. There were fewer obese MCI patients who con-

verted to ACD. On univariate analyses, all co-morbid conditions were

significantly different betweenACD converters versus non-converters

in the full cohort (Table S3 in supporting information), but in the train-

ing set, co-morbid diabetes showed no significant difference between

the groups (P= 0.09, Table 2A). Cox proportional hazards showed that

increasing age is the strongest independent risk factor for ACD con-

version, with HR of 1.53 (95%CI 1.26–1.85) in those 55 to 60 years old

(compared to 50–55 years old), going up to HR of 8.94 (95% CI 7.60–

10.53) in those > 85 years old (Table 3A; a comparison of Full versus

ReducedModel is shown in Table S4 in supporting information). Other

associated independent risk factors include cerebrovascular disease,

stroke, myocardial infarction, hypertension, and diabetes, with HRs

ranging from 1.06 to 1.09, which are less than that for age. Associated

protective factors included high BMI, alcohol abuse, and sleep apnea.

When the model was applied to the test set, the time-dependent AUC

was 0.73 (95% CI 0.72–0.74) and Brier score was 0.18 (95% CI 0.17–

0.18) suggesting good discriminative performance and calibration by

themodel (Table 4A, Figure 2).

Univariate analysis showed less TBI co-morbidity inACDconverters

versus non-converters (6.02 vs. 8.89%, P < 0.001; Table S5 in support-

ing information, Table 2A), butmultivariable analysis did not reveal TBI

to be an independent risk factor (Table 4A). To explore this further, we

compared the age of MCI patients with TBI versus those without TBI

in the full cohort and found MCI patients with co-morbid TBI were

younger (63.36 [IQR 56.43—70.86] versus 71.81 [IQR 64.53—81.11]

years, P< 0.001).We next performed a comparison betweenACD con-

verters and age-matched non-converters in our full cohort and showed

no significant difference in TBI co-morbidity (6.02 vs. 5.68%, P = 0.22;

Table S5).

Synthetic data performance

The demographic profiles of MCI ACD converters versus non-

converters were similar when each of the synthetic datasets was

compared to the real dataset (Table 1 and Table S6 in supporting

information). In similar fashion, the co-morbidity profiles of MCI ACD

converters versusnon-converterswere similar betweeneach synthetic

dataset compared to the real dataset (Table 2 and Table S7 in sup-

porting information). Cox proportional hazardsmodels of the synthetic

datasets showed similar risk and protective factors for ACD conver-

sion between real and synthetic patient data, with magnitude of HRs

in close approximation (Table 3).

Expected conversion probabilities of our real model were simi-

lar and highly correlated (R2 = 0.99) to all synthetic model values

(Table 4). The predictive models’ time-dependent AUCs (all 0.73) and

time-dependent Brier scores (all 0.18) of synthetic data were also

similar to real data (Table 4, Figure 2).

4 DISCUSSION

MCI represents the clinical and neuropathologic transition between

the cognitive changes in normal aging and early AD1,2 and non-AD

causes of dementia, such as cerebral infarction and neocortical Lewy

bodies6. A meta-analysis of cohort studies shows that ≈ 39% of MCI

patients convert to dementia with 34% and 6% converting to AD

and vascular dementia, respectively, with annual conversion rate of

9.6%29. This compares to our 5-year conversion rate to ACD esti-

mate of 28.4%, representing an important subset of MCI patients.

Early identification of MCI patients at risk for developing dementia

could be useful for closer disease surveillance and early initiation

of non-pharmacologic interventions, pharmacologic treatments for

symptomatic relief,30 or newer disease-modifying agents, such as

the recently US Food and Drug Administration–approved agent

lecanemab7.

There is consensus that for meaningful disease modification in

AD, treatment should be initiated very early in the preclinical stage,

requiring future clinical trials to have trial-ready cohorts enrichedwith

identified high-risk participants31. This could be enhanced by exploit-

ing the EHR with its expansive data obtained during routine clinical

care.Wepreviously demonstrated the utility of an EHR-basedmachine

learning model to predict AD onset from demographic, diagnostic, and

medication information from patient encounters collected from > 4

million patients, with themodel achieving good accuracy (AUC0.70)11.

In the current study, we focus on creating a model to predict ACD

conversion within 5 years of MCI diagnosis derived from VA EHR of

close to 25million patients. Results show that age is the overwhelming

risk factor for MCI to ACD conversion, with HRs of 1.53 from age 55

to 60 to 8.94 in those> 85 years, consistent with prior studies showing

that the greatest risk factor for AD is advanced age32, including data

from three large longitudinal studies33. Vascular disease–related

co-morbidities such as stroke, cerebrovascular disease, myocardial

infarction, hypertension, and diabetes are, comparatively, more mod-

est risk factors (HRs 1.06–1.09). Prior epidemiologic, preclinical, and

clinical data also show that vascular disease is strongly associated

with AD34,35. Unbiased data-driven analyses showed that vascular

dysfunction is the earliest brain pathology in AD36 and regional

blood flow differences were shown to discriminate between MCI
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TABLE 2 Co-morbidity data of real and synthetic training set #1.

A. Training set real (n= 41,817) B. Test set real (n= 17,965) C. Training set synthetic #1 (n= 41,709)

ACD

(n= 10,784)

NoACD

(n= 31,033) P value
ACD

(n= 4,636)

NoACD

(n= 13,329) P value
ACD

(n= 10,729)

NoACD

(n= 30,980) P value

Co-morbidities, no. (%)

Heart failure 1,689 (15.66) 4,636 (14.94) 0.07 750 (16.18) 1,967 (14.76) 0.02 1,678 (15.64) 4,628 (14.94) 0.08

Renal disease 1,860 (17.25) 4,863 (15.67) <0.001 865 (18.66) 2,031 (15.24) <0.001 1,849 (17.23) 4,852 (15.66) <0.001

Rheumatic disease 468 (4.34) 1,189 (3.83) 0.02 218 (4.70) 494 (3.71) 0.003 470 (4.38) 1,175 (3.79) 0.008

Hyperlipidemia 8,704 (80.71) 23,984 (77.29) <0.001 3,769 (81.30) 10,323 (77.45) <0.001 8,642 (80.54) 23,908 (77.17) <0.001

Sleep apnea 2,300 (21.33) 8,261 (26.62) <0.001 1,001 (21.59) 3,636 (27.28) <0.001 2,291 (21.35) 8,247 (26.62) <0.001

Peripheral vascular

disease

2,661 (24.68) 6,490 (20.91) <0.001 1,139 (24.57) 2,729 (20.47) <0.001 2,644 (24.64) 6,483 (20.93) <0.001

Peptic ulcer

disease

733 (6.80) 1,854 (5.97) <0.001 346 (7.46) 788 (5.91) <0.001 720 (6.71) 1,856 (5.99) 0.008

Atrial fibrillation 1,652 (15.32) 4,104 (13.23) <0.001 782 (16.87) 1,725 (12.94) <0.001 1,642 (15.30) 4,094 (13.22) <0.001

Myocardial

infarction

1,283 (11.90) 3,175 (10.23) <0.001 558 (12.04) 1,343 (10.08) <0.001 1,267 (11.81) 3,169 (10.23) <0.001

Hypertension 9,071 (84.12) 24,763 (79.80) <0.001 3,938 (84.94) 10,598 (79.51) <0.001 9,003 (83.91) 24,694 (79.71) <0.001

Cerebrovascular

disease no stroke

2,072 (19.21) 5,314 (17.12) <0.001 917 (19.78) 2,192 (16.45) <0.001 2,052 (19.13) 5,299 (17.12) <0.001

Stroke 1,057 (9.80) 2,810 (9.06) 0.02 454 (9.79) 1,172 (8.79) 0.04 1,049 (9.78) 2,807 (9.06) 0.03

Depression 5,702 (52.88) 19,260 (62.06) <0.001 2,470 (53.28) 8,324 (62.45) <0.001 5,630 (52.48) 19,194 (61.96) <0.001

Alcohol abuse 1,675 (15.53) 7,035 (22.67) <0.001 689 (14.86) 3,068 (23.02) <0.001 1,656 (15.44) 7,016 (22.65) <0.001

Liver disease 933 (8.65) 3,429 (11.05) <0.001 392 (8.46) 1,541 (11.56) <0.001 927 (8.64) 3,418 (11.03) <0.001

Diabetes 4,296 (39.84) 12,073 (38.90) 0.09 1,967 (42.43) 5,125 (38.45) <0.001 4,255 (39.66) 12,048 (38.89) 0.16

Hearing loss 6,160 (57.12) 16,071 (51.79) <0.001 2,639 (56.92) 6,864 (51.50) <0.001 6,112 (56.97) 16,035 (51.76) <0.001

Traumatic brain

injury

636 (5.90) 2,833 (9.13) <0.001 292 (6.30) 1,109 (8.32) <0.001 614 (5.72) 2,807 (9.06) <0.001

Abbreviation: ACD, all-cause dementia.

converters toADversus non-converters.37,38 Themodest contribution

of vascular-related co-morbidities vis-a-vis age highlights the need

to identify non-traditional novel mechanistic determinants by which

aging induces pathology39.On the other hand, highBMIwas protective

of ACD conversion. This is consistent with prior studies that in late

life, elevated BMI was found to be associated with lower AD risk40

and slower disease progression in MCI41. The biological mechanisms

underlying this observation remain unknown with some proposing

changes in behaviors such as eating, decreased energy metabolism

leading to decline in BMI and cognition, and changes in adipose tissue

hormone levels41. Our data show that alcohol abuse is associated with

≈ 6% lower ACD conversion risk. Prior epidemiologic data do not pro-

vide strong evidence that alcohol use affects AD development42 but

interestingly, consumption ofwine, but not liquor, beer, or total alcohol,

was associatedwith lower risk of dementia, although this was confined

to those without the apolipoprotein E ε4 allele43. The mechanistic

basis of our observation on alcohol abuse and ACD conversion should

be investigated further. Additionally, sleep apnea was found to be

protective against ACD conversion. In contrast, a meta-analysis of 14

studies showed that sleep-disordered breathing was associated with

increased risk of cognitive impairment44 although it did not address

the role of sleep-disordered breathing in MCI to ACD conversion. The

underlying bases of these discrepant observations need to be explored

further.

TBI is a known dementia risk factor to which veterans are dispro-

portionately exposed45. A prior study by Barnes et al.21 of US veterans

aged ≥ 55 years seen from 2000 to 2003 and followed until 2012

showed that TBI was associated with a 60% higher risk of develop-

ing dementia during the follow-up period compared to those without

TBI. On multivariable analyses, our data did not show that TBI was an

independent positive or negative predictor of MCI to ACD conversion,

although univariate analysis showed fewer TBI in non-converters ver-

susACDconverters. This discrepancy is likely explained by the younger

age of MCI patients with TBI versus those without, as age is the dom-

inant risk factor for MCI to ACD conversion. Indeed, ACD converters

age-matched with non-converters show no significant difference in

proportion of TBI co-morbidity. It is possible that temporal changes

in intensity of TBI screening and reporting within the VA health care

system (that may lead to underestimation of TBI diagnosis frequency

for older patients) could explain the difference in mean age of MCI

patientswith andwithoutTBI co-morbidity and shouldbeexplored fur-

therwhenevaluating themodulating role of TBI in dementia.Whenour



8 of 12 IRWIN ET AL.

TABLE 3 Cox proportional hazardmodel for real and synthetic data training sets (backward stepwise selection).

A. Training Set real B. Training set synthetic #1 C. Training set synthetic #2 D. Training set synthetic #3

Hazard ratio

(95%CI) P value
Hazard ratio

(95%CI) P value
Hazard ratio

(95%CI) P value
Hazard ratio

(95%CI) P value

AgeMCI DX, years <0.001 <0.001 <0.001 <0.001

50–55 Ref Ref Ref Ref

55–60 1.53 (1.26–1.85) 1.53 (1.26–1.85 1.51 (1.24–1.82) 1.53 (1.26–1.86)

60–65 2.77 (2.34–3.27)a 2.84 (2.39–3.36)a 2.82 (2.38–3.34)a 2.86 (2.41–3.39)a

65–70 4.16 (3.54–4.90) 4.28 (3.63–5.05) 4.21 (3.58–4.96) 4.31 (3.65–5.08)

70–75 5.99 (5.09– 7.05) 6.19 (5.25–7.31) 6.07 (5.15–7.15) 6.18 (5.23–7.29)

75–80 7.54 (6.41–8.87) 7.79 (6.61–9.19) 7.62 (6.47–8.98) 7.79 (6.60–9.19)

80–85 8.36 (7.11–9.84) 8.71 (7.39–10.27) 8.48 (7.20–9.99) 8.67 (7.35–10.23)

> 85 8.94 (7.60–10.53) 9.24 (7.83–10.90) 9.19 (7.78–10.86) 9.22 (7.80–10.88)

Race 0.28 0.24 0.27 0.27

Asian/Pacifica 0.86 (0.73–1.01) 0.86 (0.73–1.01) 0.86 (0.73–1.01) 0.86 (0.73–1.01)

Black 1.02 (0.96–1.08) 1.02 (0.96–1.08) 1.02 (0.96– 1.08) 1.02 (0.96– 1.08)

Native American 0.91 (0.70–1.18) 0.90 (0.69– 1.17) 0.90 (0.69–1.17) 0.90 (0.69– 1.18)

Otherb 1.03 (0.96–1.11) 1.03 (0.96–1.08) 1.03 (0.96–1.10) 1.03 (0.96–1.10)

White Ref Ref Ref Ref

Ethnicity 0.11 0.11 0.13 0.13

Not Hispanic or

Latino

Ref Ref Ref Ref

Hispanic or Latino 1.00 (0.93–1.09) 1.01 (0.93–1.09) 1.01 (0.93–1.09) 1.00 (0.93–1.09)

Otherc 0.91 (0.83–1.00) 0.91 (0.83–1.00) 0.91 (0.83–1.00) 0.91 (0.83–1.00)

Sex 0.85 0.95 0.90 0.90

Female 0.99 (0.89–1.10) 1.00 (0.90–1.11) 0.99 (0.89–1.11) 1.00 (0.89–1.11)

Male Ref Ref Ref Ref

BMI <0.001 <0.001 <0.001 <0.001

Underweight 0.87 (0.72–1.06) 0.87 (0.72–1.06) 0.87 (0.71–1.05) 0.86 (0.71–1.05)

Normal Ref Ref Ref Ref

Overweight 0.87 (0.83–0.91) 0.87 (0.83–0.91) 0.87 (0.83–0.91) 0.87 (0.83–0.91)

Obese 0.75 (0.71–0.79) 0.74 (0.70–0.78) 0.75 (0.71–0.80) 0.75 (0.71–0.79)

Co-morbidities

Cerebrovascular

disease (no stroke)

1.06 (1.01–1.12) 0.03 1.06 (1.00–1.11) 0.04 1.06 (1.00–1.12) 0.03 1.06 (1.00–1.12) 0.03

Stroke 1.07 (1.01–1.15) 0.05 1.07 (1.00–1.11) 0.05 1.08 (1.00–1.15) 0.04 1.07 (1.00–1.15) 0.04

Myocardial infarction 1.09 (1.03–1.16) 0.003 1.09 (1.02–1.15) 0.006 1.10 (1.03–1.17) 0.002 1.09 (1.03–1.16) 0.004

Hypertension 1.08 (1.02–1.14) 0.005 1.07 (1.02–1.13) 0.01 1.07 (1.02–1.13) 0.01 1.08 (1.02–1.14) 0.008

Diabetes 1.06 (1.02–1.10) 0.005 1.05 (1.01–1.10) 0.02 1.06 (1.01–1.10) 0.009 1.05 (1.01–1.10) 0.01

Alcohol abuse 0.94 (0.89–0.99) 0.02 0.93 (0.88–0.99) 0.01 0.93 (0.88–0.98) 0.007 0.94 (0.88–0.98) 0.01

Sleep apnea 0.95 (0.91–1.00) 0.06 d 0.95 (0.91–1.00) 0.05 0.95 (0.91–1.00) 0.06

Liver disease d d d d

Peripheral vascular

disease

d d d d

Heart failure d d d d

Renal disease d d d d

Rheumatic disease d d d d

Hyperlipidemia d d d d

(Continues)
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TABLE 3 (Continued)

A. Training Set real B. Training set synthetic #1 C. Training set synthetic #2 D. Training set synthetic #3

Hazard ratio

(95%CI)

P value Hazard ratio

(95%CI)

P value Hazard ratio

(95%CI)

P value Hazard ratio

(95%CI)

P value

Peptic ulcer disease d d d d

Atrial fibrillation d d d d

Depression d d d d

Hearing loss d d d d

Traumatic brain injury d d d d

Abbreviations: BMI, bodymass index; CI, confidence interval; DX, diagnosis; MCI, mild cognitive impairment.
aPatients who self-identified as Asian or Native Hawaiian or other Pacific Islander.
bPatients who self-identified as multiracial, declined to answer, unknown by patient, or missing.
cPatients who self-identified as declined to answer, unknown by patient, or missing.
dNot applicable due to variable being removed from final Cox proportional hazardsmodel by selection procedure.

TABLE 4 Performance in ACD prediction at 5 years on real data test set.

A. Training set real

B. Training set

synthetic #1

C. Training set

synthetic #2

D. Training set

synthetic #3

Time-dependent AUC (95%CI) 0.73 (0.72–0.74) 0.73 (0.72–0.74) 0.73 (0.72–0.74) 0.73 (0.72–0.74)

Time-dependent AUC comparisonsa,

(difference) [P-value]
Ref (< 0.001) [P= 0.79] (< 0.001) [P= 0.88] (< 0.001) [P= 0.83]

Time-dependent brier (95%CI) 0.18 (0.17–0.18) 0.18 (0.17–0.18) 0.18 (0.17–0.18) 0.18 (0.17–0.18)

Brier score comparisonsa, (difference)

[P-value]
Ref (< 0.001) [P= 0.68] (< 0.001) [P= 0.92] (< 0.001) [P= 0.73]

Prediction expected conversion

probability, median (IQR)

22.52% (27.61) 22.45% (27.74) 22.45% (27.86) 22.46% (27.72)

Correlation of expected conversion

probability

Ref 0.99 0.99 0.99

Abbreviations: ACD, all-cause dementia; AUC, area under the receiving operator characteristic; CI, confidence interval; IQR, interquartile range.
aAbsolute value of real minus synthetic.

findings are put in the context of the findings ofBarnes et al.,21 our data

suggest that once apatient hasMCI, TBI status is no longer amodulator

of conversion to ACDwithin 5 years.

Wepreviously showed thatEHR-deriveddiagnosis ofADperformed

well against rigorously adjudicated AD diagnosis from the Michigan

Alzheimer’s Disease Research Center11 and that EHR blood pressure

trajectory records from two large health-care systems could be used

to predict AD12. Using only demographic and co-morbidity conditions

based on ICD-9/10 codes, our model showed good predictive perfor-

mance for MCI to ACD conversion, demonstrating the feasibility of

computational analyses on large-scale datasetswithout need for labor-

intensive chart review. However, the utility of EHR datasets in disease

modeling remains limited as data access is restricted to local investi-

gators authorized by institutional regulatory bodies to ensure patient

privacy. This restricts access to the dataset by outside data scientists or

computational resources that could handle the complex analyses using

increasingly sophisticated machine learning approaches. Experience

in genomics research and large-scale clinical trials demonstrates the

advantages of sharing raw data for widely distributed analyses to

develop new models and statistical methods, test reproducibility, and

enhance rigor of scientific discoveries46. An “honest broker” system47

whereby protected health information and clinical data are stored

in separate storage systems to protect patient privacy is a potential

solution to this issue, but this does not eliminate privacy risk and is

associated with great logistical cost. Our results show for the first

time that the MCI to ACD predictive model using a synthetic dataset

derived from real patient data but not attributable to any specific

patient (hence removing data privacy concerns), performed just aswell

as the model from real patient data. The implication of this finding is

that EHR-based synthetic datasets can potentially be made available

for widely distributed computing to the scientific community, which

could accelerate scientific discoveries. Models from synthetic data

derived by outside scientists must then be validated using real patient

data by investigators with access to identified patient data to maintain

information security and, importantly, verify clinical validity. Using

synthetic data for model building could lower cost, reduce barriers to

entry, ease external validationusingdatasets frommultiple health-care

systems, and facilitate hypotheses generation of disease mechanisms.
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F IGURE 2 Real and synthetic datamodel performance. Area
under the receiver operating characteristic curve (AUC) for prediction
of ACD conversion within 5 years ofMCI diagnosis usingmodels
trained on real and synthetic data. P value is comparing to AUC of real
model. ACD, all-cause dementia; MCI, mild cognitive impairment

Various health systems are already using synthetic datasets for quality

improvement andmedical research.13,14,27,48

A study limitation is thepredominanceofmale andWhite subjects in

this cohort with potentially greater exposure to traumatic brain injury

and post-traumatic stress disorder in combat veterans and applicabil-

ity to a more diverse patient population or other health-care systems

needs empirical testing. Our prior study showed that the performance

of a machine learning model to predict AD onset using blood pressure

trajectories trained using VA EHR data was similar when applied to

University of Michigan EHR data even though the demographic com-

positions are different12. Although we used at least two encounters

with ICD codes forMCI that theMVPCogWorking Group validated to

have 95% specificity based on rigorous chart review15, a recent study

on VA patients showed that deriving MCI and AD diagnosis using clin-

ical notes captured more MCI and AD cases versus ICD-based codes

alone49 so the model should be validated in the future using clinics’

note-based diagnostic classification. The study is restricted to demo-

graphic and co-morbid conditions and adding data elements easily

extracted from EHR such as vital signs, medication history, procedures

codes, and others could further improve themodel. The risk/protective

factors identified represent associational and not necessarily causal

relationships with ACD conversion. Associational relationships may

contain spurious correlations, such as those from collider bias. Inves-

tigating whether EHR data have the potential to provide evidence for

causal relationships between features of interest and ACD conversion

is a topic for future work. We used a linear model and whether syn-

thetic datasets perform as well as real patient datasets in non-linear

models remains to be determined. In similar fashion, the associational

nature of our findings does not imply causation and whether syn-

thetic data can replicate real data in establishing causal relationships

requires future empiric testing and validation. The decision to model

ACD instead of specific type (such as AD) was made in light of the

known difficulty in distinguishing among various dementia syndromes

given the overlap of many common clinical features39,50,51, the het-

erogeneity of expertise among clinical providers in a large health-care

system making the ICD diagnosis decision, and the heterogeneity of

intensity of diagnostic workup leading to dementia diagnosis. As such,

identified at-risk individuals using the model will require further clini-

cal and laboratory phenotyping to assess candidacy for clinical trials or

specific interventions.

In conclusion, an EHR-derived model predicts MCI to ACD conver-

sion at 5 years with good discriminative performance and calibration.

The predictive model performance is similar when using real patient

data versus synthetic data derived from real patient data. EHR-based

prediction models could be used to identify high-risk MCI patients for

early treatment interventions or clinical trial participation.
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