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Abstract

Meta-analysis of functional magnetic resonance imaging (fMRI) data is an effective method for capturing the distributed patterns of
brain activity supporting discrete cognitive and affective processes. One opportunity presented by the resulting meta-analysis maps
(MAMs) is as a reference for better understanding the nature of individual contrast maps (ICMs) derived from specific task fMRI data.
Here, we compared MAMs from 148 neuroimaging studies representing emotion categories of fear, anger, disgust, happiness and sad-
ness with ICMs from fearful >neutral and angry>neutral faces from an independent dataset of task fMRI (n=1263). Analyses revealed
that both fear and anger ICMs exhibited the greatest pattern similarity to fear MAMs. As the number of voxels included for the compu-
tation of pattern similarity became more selective, the specificity of MAM–ICM correspondence decreased. Notably, amygdala activity
long considered critical for processing threat-related facial expressions was neither sufficient nor necessary for detecting MAM–ICM
pattern similarity effects. Our analyses suggest that both fearful and angry facial expressions are best captured by distributed patterns
of brain activity, a putative neural correlate of threat. More generally, our analyses demonstrate how MAMs can be leveraged to better
understand affective processes captured by ICMs in task fMRI data.
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Introduction
Understanding how emotions map onto human brain function
is a long-standing aim of affective neuroscience. To achieve this
goal, affective neuroscientists have heavily employed functional
magnetic resonance imaging (fMRI) to examine whether differ-
ent properties of emotion based on existing theories—such as a
valence/arousal dimension (Russell, 1980) or basic emotion cat-
egories (Ekman, 1992)—may be reflected in patterns of brain
activity. Early fMRI studies that aimed to elucidate the neural
representations of categorical emotions focused on the amyg-
dala because of its demonstrated importance in aversive learn-
ing as exemplified through the acquisition of a conditioned fear
response (LeDoux, 1993; Maren, 2001). However, fMRI studies
have yielded mixed results wherein amygdala activity may be
elicited by not only threat-related emotions (e.g. fear and anger)
but also other categories of emotion (e.g. happiness and sadness)
(Davis and Whalen, 2001).

In fact, it has been suggested that amygdala activity alone
does not provide a sufficient level of specificity in distinguishing

emotion categories (Fitzgerald et al., 2006). More generally, fMRI
studies examining discrete emotion categories have not revealed
correspondingly discrete brain regions (Lindquist et al., 2012). In
contrast, recent research employing multivoxel pattern analy-
sis (MVPA) offers evidence that discrete emotion categories may
be best represented by distributed patterns of activity across the
brain (Kassam et al., 2013; Kragel and LaBar, 2015; Kragel et al.,
2019; Peelen et al., 2010; Saarimäki et al., 2016; but see Barrett and
Satpute, 2019).

A rapidly expanding portfolio of fMRI studies has allowed for a
series of computational methods designed to generate voxel-wise
meta-analysis maps (MAMs) of brain activity associated with spe-
cific cognitive and affective processes (Eickoff et al., 2009; Kober
and Wager, 2010; Yarkoni et al., 2011). MAMs typically share
the same coordinate or stereotaxic space [e.g. Montreal Neuro-
logical Institute (MNI) or Talairach] as individual contrast maps
(ICMs), which represent subject-level brain activity associated
with a study-specific contrast of interest. As such, MAMs could
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provide a reference map for a given mental process or behavior.
For example, ICMs of a typical emotion category, such as fear,
should show patterns of brain activity more similar to MAMs
of the corresponding category (i.e. fear) than other categories
(e.g. disgust or sadness). In other words, if affective information
for fear is indeed represented in brain activity for fear ICMs, they
should correspond to the associated MAMs for fear. This not only
presents a testable prediction but also an opportunity to refine
ICMs (through pattern similarity analysis withMAMs) in a fashion
that maximizes their ability to capture brain activity supporting
a specific mental process.

In this study, we aimed to test a simple idea: would an ICM of a
given emotion category show greater similarity to the MAM of the
same category over others? There are at least three conditions
that serve as a prerequisite for such an examination: (i) MAMs
from voxel-wise meta-analyses of fMRI data, (ii) category-specific
ICMs from a study with a sufficiently large sample size and (iii)
independence between the MAMs and ICMs—that is, the ICMs
selected for testing should not have been used in the generation of
the MAMs. Here, we take advantage of datasets that satisfy these
conditions. First, Wager et al. (2015) have conducted a computa-
tional meta-analysis of 148 functional neuroimaging studies to
generate MAMs for five emotion categories: fear, anger, disgust,
happiness and sadness. Second, the Duke Neurogenetics Study
(DNS) offers a large independent dataset (n=1263) of ICMs for
fear, anger, surprise and neutral emotions from a widely utilized
face-matching task. Importantly, none of the ICMs from the DNS
were included in the generation of MAMs.

Also of importance is considering neural representations of
emotion in the context of experience vs perception. Measuring
brain activity when a person is experiencing (i.e. feeling) anger
may not necessarily be the same as when they are perceiving
(i.e. looking at) angry facial expressions of others. Affective neu-
roscience suggests the experience and perception of emotions
yield both shared and distinct neural correlates (see Kober et al.,
2008; Lindquist et al., 2012 for meta-analysis and review). It is
worth noting then that the ICMs we use in the present anal-
yses represent correlates of the perception of emotional facial
expressions, whereas the MAMs were computed from fMRI data
derived from both the experience and perception of emotions (see
Supplementary Figure S1 of Wager et al. 2015 for details). Taking
these differences into account may be key to understanding the
present MAM–ICM associations.

Based on the existing literature, we hypothesized that ICMs
for fear and anger would show the greatest pattern similarity to
MAMs for fear and anger, respectively. Moreover, we sought to
examine the possibility that affective information pertaining to
emotion categories is distributed across the whole brain by sys-
tematically varying the number of voxels submitted for pattern
similarity analysis. Finally, given the prominence of the amyg-
dala in the affective neuroscience literature (Adolphs et al., 1995;
Phelps and LeDoux, 2005; Costafreda et al., 2008; Kim et al., 2011),
we tested whether amygdala activity specifically was either suf-
ficient or necessary to produce the MAM–ICM pattern similarity
observed in whole-brain analyses.

Methods
Participants
One thousand two-hundred and sixty-three participants (717
women, 19.7±1.3 years of age) successfully completed the DNS
between January 2010 and November 2016, including an fMRI

task eliciting threat-related brain activity. All participants pro-
vided written informed consent according to the Duke University
Medical Center Institutional Review Board. To be eligible for the
DNS, participants were required to be free of the following condi-
tions: (i) medical diagnoses of cancer, stroke, head injury with
loss of consciousness, untreated migraine headaches, diabetes
requiring insulin treatment, or chronic kidney or liver disease; (ii)
use of psychotropic, glucocorticoid or hypolipidemic medication
and (iii) conditions affecting cerebral blood flow and metabolism
(e.g. hypertension). As DNS followed a standardized procedure,
we note that the following description of the methods is also
described elsewhere (e.g. Kim et al., 2018).

Face-matching task
The face-matching task used in the DNS consisted of four task
blocks interleaved with five control blocks. A total of four emo-
tion categories were used for each task block: fear (F), anger (A),
surprise (S) and neutral (N), taken from a standardized facial
expression set (Ekman and Friesen, 1976). Participants viewed the
task blocks in one of four randomly assigned orders as determined
by a Latin Square (i.e. FNAS, NFSA, ASFN and SANF). During task
blocks, participants viewed a trio of faces that belonged to the
same emotional category (e.g. all three faces displayed fearful
expressions in fear blocks) and matched one of two faces identi-
cal to a target face. Each trial in the task blocks lasted for 4 s with
a variable interstimulus interval of 2–6 s (mean=4 s), for a total
block length of 48 s. The control blocks consisted of six geometric
shape trios, which were presented for 4 s with a fixed interstimu-
lus interval of 2 s for a total block length of 36 s. Each block was
preceded by a brief instruction (‘Match faces’ or ‘Match shapes’)
lasting 2 s. Total task time was 390 s.

fMRI data acquisition
Each participant was scanned using one of the two identi-
cal research-dedicated GE MR750 3T scanner equipped with
high-power high-duty-cycle 50-mT/m gradients at 200T/m/s
slew rate and an eight-channel head coil for parallel imag-
ing at high bandwidth up to 1MHz at the Duke-UNC Brain
Imaging and Analysis Center. A semi-automated high-order
shimming program was used to ensure global field homogene-
ity. A series of 34 interleaved axial functional slices aligned
with the anterior commissure-posterior commissure plane were
acquired for full-brain coverage using an inverse-spiral pulse
sequence to reduce susceptibility artifacts (repetition time
(TR), echo time (TE)/flip angle=2000ms/30ms/60; field of view
(FOV)=240mm; 3.75×3.75×4mm voxels; interslice skip=0).
Four initial radiofrequency excitations were performed (and dis-
carded) to achieve steady-state equilibrium. To allow for spatial
registration of each participant’s data to a standard coordinate
system, high-resolution three-dimensional T1-weighted struc-
tural images were obtained in 162 axial slices using a 3DAx FSPGR
BRAVO sequence (TR/TE/flip angle=8.148ms/3.22ms/12◦; voxel
size=0.9375x0.9375x1mm; FOV=240mm; interslice skip=0;
total scan time=4min and 13 s). In addition, high-resolution
structural images were acquired in 34 axial slices coplanar with
the functional scans and used for spatial registration for partic-
ipants without Ax FSPGR BRAVO images (TR/TE/flip angle=7.7
s/3.0ms/12; voxel size=0.9 × 0.9 × 4mm; FOV=240mm, inter-
slice skip=0).

fMRI data preprocessing
Anatomical images for each subject were skull-stripped,
intensity-normalized and non-linearly warped to a study-specific
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average template in the standard stereotactic space of the MNI
template using Advanced Normalization Tools (ANTs) (Klein et al.,
2009). BOLD time series for each subject were processed in AFNI
(Cox, 1996). Images for each subject were despiked, slice time-
corrected, realigned to the first volume in the time series to
correct for head motion, coregistered to the anatomical image
using FSL’s Boundary Based Registration (Greve and Fischl, 2009),
spatially normalized into MNI space using the non-linear warp
from the anatomical image, resampled to 2mm isotropic vox-
els, and smoothed to minimize noise and residual difference in
gyral anatomy with a Gaussian filter, set at 6mm full-width at
half-maximum. All transformations were concatenated so that
a single interpolation was performed. Voxel-wise signal intensi-
ties were scaled to yield a time series mean of 100 for each voxel.
Volumes exceeding 0.5mm framewise displacement (FD) or 2.5
standardized temporal derivative of root mean square (RMS) vari-
ance over voxels (DVARS) (Power et al., 2014; Nichols, 2017) were
censored.

Individual contrast maps
The AFNI program 3dREMLfit (http://afni.nimh.nih.gov/) was used
to fit a general linear model for first-level fMRI data analy-
ses. To obtain emotion-specific parameter estimates, we explic-
itly modeled each respective task block (convolved with the
canonical hemodynamic response function) along with the adja-
cent half of the preceding and following control blocks and a
first-order polynomial regressor to account for low-frequency
noise. This allowed for the estimation of the individual task
block parameters while minimizing the influence of adjacent
task blocks as well as low-frequency noise across the entire
run. The resulting parameter estimates for the fear and anger
task blocks and the neutral task blocks were then subtracted
to obtain the fearful >neutral and angry>neutral faces ICMs
(henceforth referred to as ICM-F and ICM-A, respectively), and
these ICMs were used to compute pattern similarity with the
MAMs. The contrast surprise >neutral was omitted from the
present study, because a corresponding surprise MAM does not
exist. ICMswere then used in second-level random-effectsmodels
in SPM12 (http://www.fil.ion.ucl.ac.uk/spm) accounting for scan-
to-scan and participant-to-participant variability to determine
mean emotion-specific activity using one-sample t-tests. A sta-
tistical threshold of P<0.05, family-wise error (FWE)-corrected
across the whole brain was applied to the fearful >neutral and
angry>neutral contrasts, respectively. The ICMs are available
by reasonable request, following the data-sharing procedures
through our website (https://www.haririlab.com/projects/
procedures.html).

fMRI quality assurance criteria
Quality control criteria for inclusion of a participant’s imaging
data were as follows: >5 volumes for each condition of interest
retained after censoring for FD andDVARS and sufficient temporal
signal-to-noise ratio (SNR) within the bilateral amygdala, defined
as no greater than 3 s.d. below the mean of this value across
participants. The amygdala was defined using a high-resolution
template generated from the 168 Human Connectome Project
datasets (Tyszka and Pauli, 2016). Additionally, data were only
included in further analyses if the participant demonstrated suffi-
cient engagement with the task, defined as achieving at least 75%
accuracy during the task blocks.

Meta-analysis maps
The MAMs utilized in the present study are based on a meta-
analysis of 148 fMRI studies of emotional categories (Wager et al.,
2015). The MAMs were generously made available by these study
authors on their website (https://canlabweb.colorado.edu/fmri-
resources.html). In brief, the original meta-analysis consisted of
five distinct emotion categories (fear, anger, disgust, sadness
and happiness), and MAMs for each category were generated in
standard MNI space using a hierarchical Bayesian model that
summarizes the expected frequency of activation for a given emo-
tion category. The values that each voxel of the MAMs assumes
are reflective of this information, such that taking the integral
over any area of the brain represents the expected number of
activation centers for all studies of a given emotion category
(Wager et al., 2015). The overall findings indicated that brain activ-
ity patterns that are diagnostic of distinct categories of emotion
are characterized as widespread (i.e. distributed across not only
multiple brain regions but also many neural systems that span
cognitive, perceptual and motor functions). For the purposes of
the present study, higher-intensity voxel values of the MAMs indi-
cate a greater likelihood with which the MAMs correspond to a
given emotion category. Detailed characteristics of the MAMs are
described in the original study (Wager et al., 2015). In brief, the
148 studies included 377 unique study activation maps; out of
those, 97 and 69 maps were used to generate MAMs for fear and
anger, respectively. The study activation maps were contrast-
ing an emotion-related condition to a less intense or affectively
neutral comparison condition. The majority of the individual
studies presented the experimental stimuli visually. For fear and
anger MAMs, over half of the studies used faces/facial expres-
sions in some capacity, followed by pictures, film and words (see
Supplementary Figure S1 of Wager et al. 2015 for details). Impor-
tantly, none of the 148 studies that were included in this meta-
analysis overlapped with the DNS, ensuring independence across
MAMs and ICMs (the MAMs included studies published from
1993 to 2011; the first study using the ICMs from the emotional
face-matching task in the DNS was published in 2012).

MAM–ICM pattern similarity computation
For quantifying MAM–ICM pattern similarity, we adopted a mod-
ified version of an approach described by Shahane et al. (2019).
First, prior to each analysis, ICMs were masked with the tar-
get MAMs, to match the number of non-zero voxels. Then, for
each MAM–ICM pair, all non-zero voxels were vectorized and
demeaned in order to compute their correlation coefficients,
which were subsequently converted to z scores using Fisher’s
r-to-z transformation (Figure 1). Computation of correlation coef-
ficients across vectorized voxels was achieved with 3ddot imple-
mented within AFNI (Cox, 1996). Higher z scores indicated greater
pattern similarity between a given MAM–ICM pair. Since there
were five MAMs, a total of 5 z scores were computed for each of
two ICMs for each participant. As we were primarily interested in
how well a given ICM (e.g. ICM-F) aligned with its corresponding
MAM (e.g. MAM-F) above and beyond other MAMs, the z scores
were compared across the MAMs. Two models were generated to
test this: (i) a one-way repeated-measures analysis of variance
(ANOVA) where z scores for a given ICM and MAMs for each of
the five emotion categories were compared and (ii) a paired t-test
where z scores for a given ICM and MAMs for fear and anger,
specifically, were compared. The latter model was used to specif-
ically focus on the two emotion categories that were available as
both ICMs and MAMs. Analyses were done separately for ICM-F

http://afni.nimh.nih.gov/
http://www.fil.ion.ucl.ac.uk/spm
https://www.haririlab.com/projects/procedures.html
https://www.haririlab.com/projects/procedures.html
https://canlabweb.colorado.edu/fmri-resources.html
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Fig. 1. Summary of data analysis procedures used for assessing MAM–ICM pattern similarity. ICMs for fearful >neutral and angry>neutral derived
from 1263 participants performing an emotional face-matching task were compared with five MAMs corresponding to different categories of emotion
from Wager et al. (2015). For each MAM–ICM pair, all non-zero voxels were vectorized in order to compute their correlation coefficient, which was
subsequently converted to z scores using Fisher’s r-to-z transformation.

and ICM-A. In this way, we could confirm the a priori predic-
tion that ICM-F would correspond better to the MAM-F, above
and beyond the MAMs of other emotion categories; then, the
same procedure was applied to test whether ICM-A would show
increased pattern similarity to the MAM-A compared to other
MAMs.

To test whether the number of voxels included in the analy-
ses impacted the results, MAM–ICM pattern similarity measures
were computed repeatedly using MAMs at different thresholds.
The threshold was systematically varied, ranging from unthresh-
olded to 0.1 intensity values, which represents the expected
frequency of activation centers for an emotion category, with
each step increasing the threshold by 2-fold (i.e. unthresholded–
0.001–0.005–0.01–0.05–0.1). It is notable that there was a general
tendency for cortical areas to become reduced as a function of
increased MAM threshold, while the amygdala was among the
last regions to remain, regardless of emotion category (Figure 2).
Effect sizes from the analyses that compared a given ICM across
different MAMs (partial η2 for ANOVA, Cohen’s d for t-test) were
used to describe the effect of applying different thresholds on the
pattern similarity metrics.

Finally, to test the contribution of amygdala activity specif-
ically on the pattern similarity results from the main analy-
ses, two sets of subsequent analyses were performed on the
data. First, each MAM–ICM pair was masked with an anatomi-
cal region of interest (ROI) of the amygdala, divided into baso-
lateral and centromedial subregions (Tyszka and Pauli, 2016),
which then underwent the same procedure described above using
only the amygdala voxels (here, only unthresholded MAM vox-
els were used). In a separate set of analyses, each MAM–ICM

pair was masked with a reversed mask of the anatomical
ROI, such that all amygdala voxels were removed from fur-
ther analysis. Then, the same procedure as the main analy-
ses was repeated for the amygdala-excluded MAM–ICM pairs.
The latter analysis tested the prediction that if the amygdala
voxels contain important information about distinct emotion cat-
egories, then it would yield decreased pattern similarity metrics
for corresponding MAM–ICM pairs. To supplement the MAM–
ICM findings, the aforementioned analyses were repeated by
replacing ICMs with group contrast maps (fearful >neutral and
angry>neutral) derived from second-level random-effects mod-
els (see supplementary data).

Results
ICMs: fearful >neutral and angry>neutral
Across the entire brain, both ICMs yielded significant activity
in the amygdala, supramarginal gyrus/angular gyrus extend-
ing to the superior temporal sulcus (STS), and inferior frontal
gyrus (IFG). The fearful >neutral ICMs also revealed significantly
increased activity in the occipital pole and the inferior temporal
gyrus (ITG). Significantly activated amygdala voxel clusters were
isolated within the amygdala proper and not a part of a larger
cluster that extends to other brain regions (Figure 3, Table 1).

Whole-brain MAM–ICM pattern similarity for fear
Overall, there was significant pattern similarity between ICM-
F and MAM-F (M=0.0065, s.d.=0.03, [min, max]= [−0.11, 0.11];
one-sample t-test: t(1262) =7.57, P<0.000001, d=0.21). This effect
remained significant when theMAMswere thresholded at varying
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Fig. 2. Five emotion-specific MAMs at systematically varied thresholds. Voxels that survived increasingly stringent thresholds (i.e. the higher intensity
values noted on the left-hand side) are depicted by hotter colors. Intensity values indicate the expected frequency of activation centers for an emotion
category (see Wager et al., 2015 for details).

Fig. 3. Group-level whole-brain responses from 1263 participants performing an emotional face-matching task (P<0.05, FWE-corrected for the whole
brain; k≥30 are visualized). (A) Brain regions that showed significantly increased activity to fearful >neutral included the amygdala, supramarginal
gyrus/angular gyrus/STS, IFG, inferior temporal gyrus (ITG) and the occipital pole. (B) Similar brain regions showed significantly increased activity to
angry>neutral.

levels (all Ps < 0.002), except for one instance (ICM-F and MAM-F
pair thesholded at 0.1; P=0.16).

Repeated-measures ANOVA showed significant differences
of MAM–ICM pattern similarity for ICM-F across the five
MAMs (F(45 048) =17.27, P<0.000001; ηp

2 =0.014). Post hoc analy-
sis revealed that pattern similarity for MAM-F was significantly

greater than the other four MAMs (all Ps < 0.002). This finding
remained when the threshold was increased to 0.01 (i.e. less
voxels were selected); however, this effect was no longer observ-
able when the threshold was further increased. Paired t-tests
showed similar findings as the ANOVA, such that pattern simi-
larity between ICM-F and MAM-F was significantly greater than
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Table 1. Brain regions showing significant activation for the contrasts of fearful >neutral and angry>neutral (P<0.05, FWE-corrected
for the whole brain)

Brain region Side t x y z No. of voxels

Fearful >neutral
Supramarginal gyrus/STS R 8.1 47 −41 11 1034
Supramarginal gyrus/angular gyrus L 7.6 −57 −53 −7 537
Occipital pole L 6.9 −27 −95 7 186
Occipital pole R 6.1 31 −93 −3 119
Amygdala R 6.6 25 −3 −19 106
Amygdala L 5.4 −25 −3 −19 32
ITG L 6 −43 −51 −17 66
IFG R 5.5 55 27 −1 49
Angry>neutral
Supramarginal gyrus/STS R 8.8 49 −37 5 710
Supramarginal gyrus/angular gyrus L 6.2 −55 −49 13 173
IFG R 5.9 53 27 −1 87
IFG L 6.3 −51 29 −1 79
Amygdala R 6.6 25 −5 −17 65
Amygdala L 5.6 −27 −3 −21 30

Fig. 4. Whole-brain MAM–ICM pattern similarity for fear and anger. (A) Pattern similarity measures of ICM-F (blue) and ICM-A (red) to each of the five
MAMs, summarized by varying threshold levels. Overall, both fear ICMs showed greater pattern similarity with the fear MAM, but this effect
disappeared when the threshold was sufficiently high (e.g. 0.1). (B) Plotting the effect sizes from repeated-measures ANOVA showed a gradually
declining trend as a function of increased threshold levels. (C) A similar trend was found when the effect sizes from paired t-tests were plotted.

MAM-A (t(1262) =3.3, P=0.001; d=0.09). Again, this effect was
observable until the threshold was increased to 0.01. When the
threshold was set to the highest level (0.1), an unexpected oppo-
site effect was found such that pattern similarity between ICM-F
and MAM-F was significantly less than for ICM-F and MAM-A
(t(1262) =−2.65, P=0.008; d=0.1).

Effect sizes of the ANOVA and t-test results gradually
decreased as a function of increased threshold levels. As ICM-F
showed the highest level of pattern similarity toMAM-F over other
MAMs, diminishing effect sizes suggest a relative decrease in the

specificity of ICM-F to MAM-F. These findings are summarized in
Figure 4 (white bars and circles).

Whole-brain MAM–ICM pattern similarity for
anger
Again, there was significant pattern similarity between ICM-A
and MAM-A (M=0.0036, s.d.=0.02, [min, max]= [−0.06, 0.06];
one-sample t-test: t(1262) =6.71, P<0.000001, d=0.19). This effect
persisted regardless of differences in the thresholds applied to the
MAMs.
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Fig. 5. MAM–ICM pattern similarity for amygdala activity. (A) Anatomical definitions of the amygdala, basolateral amygdala and centromedial
amygdala used to select the voxels for ICM analysis (Tyszka and Pauli, 2016). (B) Pattern similarity measures for ICM-F (blue) and ICM-A (red) and each
of the five MAMs, summarized by the ROIs used to define the amygdala and its subregions. Overall, neither ICM-F nor ICM-A exhibited pattern
similarity with either MAM-F or MAM-A. (C) Plotting the effect sizes from repeated-measures ANOVA showed a very small overall effect, regardless of
activation locus (i.e. whole amygdala or subregion). The line graphs on the left represent the findings from the whole-brain pattern similarity analysis
(i.e. same as Figure 4B). (D) Similar findings were observed with the very small effect size for the paired t-tests.

Repeated-measures ANOVA showed significant differences of
MAM–ICM pattern similarity for ICM-A across the five MAMs
(F(45 048) =11.46, P<0.000001; ηp

2 =0.009). Post hoc analysis
revealed, however, that ICM-A showed greatest pattern simi-
larity to MAM-F compared to the other four MAMs, including
anger (all Ps < 0.03). This finding remained when the threshold
was increased to 0.05 (i.e. less voxels were selected); however, this
effect was no longer observablewhen the thresholdwas increased
to 0.1. Paired t-tests showed similar findings as the ANOVA, such
that pattern similarity between ICM-A and MAM-A was signif-
icantly less than for ICM-A and MAM-F (t(1262) =−2.2, P=0.028,
d=0.06). Again, this effect was observable up until the threshold
was increased to 0.05. When the threshold was set to the highest
level (0.1), this effect was no longer present.

Effect sizes of the ANOVA results gradually decreased as a
function of increased threshold levels. Effect sizes of the t-tests
showed a less clear but consistent pattern where the highest
threshold (0.1) yielded the smallest effect size. However, as ICM-A
showed the highest pattern similarity to MAM-F and not MAM-
A, diminishing effect sizes indicate a relative decrease in the
specificity of ICM-A to MAM-F. These findings are summarized in
Figure 4 (gray bars and circles).

Amygdala MAM–ICM pattern similarity for fear
and anger
Repeated-measures ANOVA showed significant differences in
pattern similarity in amygdala activity between ICM-F and all
five MAMs (F(45 048) =2.86, P=0.022; ηp

2 =0.002). However, post

hoc analysis showed that this effect was driven by an unex-
pected pattern similarity between ICM-F and the MAM for hap-
piness. This finding remained the same when the analysis was
restricted to basolateral or centromedial subregions of the amyg-
dala. Paired t-tests showed similar findings as the ANOVA, such
that the pattern similarity between ICM-F and MAM-F was no
different from those for MAM-A. Again, this effect remained
the same for basolateral or centromedial subregions of the
amygdala.

Similarly, amygdala activity from ICM-A significantly differed
from all five MAMs (F(45 048) =4.07, P=0.003; ηp

2 =0.003), but the
happiness MAM showed the greatest degree of pattern similarity
to ICM-A. This effect remained when only the basolateral or cen-
tromedial amygdala voxels were considered in the analysis. Once
again, pairwise comparison between MAM-F and MAM-A yielded
no significant differences in overall or subregional amygdala
activity.

The very small effect sizes of the ANOVA and t-test results of
the amygdala analyses showed that they were comparable to the
whole-brain analyses using the highest threshold levels and not
useful in parsing the distinct emotion categories. These findings
are summarized in Figure 5.

Non-amygdala MAM–ICM pattern similarity for
fear and anger
Nearly identical results as the whole-brain MAM–ICM pattern
similarity analysis were observed when the main analyses were
repeated after excluding amygdala voxels (Figure 6).
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Fig. 6. Non-amygdala MAM–ICM pattern similarity. (A) Pattern similarity measures for ICM-F (blue) and ICM-A (red) and each of the five MAMs,
summarized by varying threshold levels. Overall, both ICM-F and ICM-A showed nearly identical results as the whole-brain MAM–ICM pattern
similarity analysis that included the amygdala. (B) Plotting the effect sizes from repeated-measures ANOVA showed a gradually declining trend as a
function of increased threshold levels. The line graphs on the left depict the results using whole-brain voxels (i.e. amygdala included), and the line
graphs on the right show the results using all non-amygdala voxels. (C) A similar trend was found when the effect sizes from paired t-tests were
plotted.

Discussion
Here, we compared reference MAMs generated for five distinct
categories of emotion with fear and anger ICMs from a large study
sample. Contrary to our hypothesis, we found that both ICMs
exhibited the greatest pattern similarity to fear MAMs relative to
all other MAMs including anger, which may be explained by con-
sidering that the ICMs reflect emotion perception, whereas the
MAMs represent both emotion perception and expression. The
degree of pattern similarity decreased as the number of voxels
included in the computation of the MAMs became more selec-
tive (i.e. decreased), suggesting that more distributed patterns
of brain activity are better reflective of a specific emotion cate-
gory. Furthermore, amygdala activity associated with either ICM
was neither sufficient nor necessary for determining the overall
pattern similarity between the ICMs and MAMs.

As predicted, MAM–ICM pattern similarity for fear and anger
was significantly greater than zero but generally weak. This may
reflect the heterogeneity inherent to the MAMs in comparison
with the ICMs. The MAMs were generated from multiple stud-
ies that have used heterogeneous stimuli (e.g. faces, pictures,
words, films and sounds) that would enable the extraction of
a latent neural pattern for a given emotion, whereas the ICMs
were strictly based on facial expressions and thus study-specific
by nature. Moreover, it is again worth noting that the MAMs
include studies that involve different psychological processes
with regard to emotion—for example, watching an emotion-
ally charged video clip would likely evoke subjective feelings of
such emotion, whereas evaluating still photos of emotional facial
expressions rarely would. Thus, the significant yet weak overall

correlation between a given MAM–ICM pair is not surprising,

as it may be partly attributable to this qualitative difference

across the maps; another plausible reason is the inclusion of

likely non-informative, noisy voxels present in the initial anal-

ysis with unthresholded MAM–ICM pairs. Yet another possibil-

ity is the effect of idiosyncratic brain responses across ICMs,

which was supported by a boost in overall pattern similarity with

MAMs when aggregated group maps of ICMs (second-level ran-

dom effects models) were used (see supplementary data). Regard-

less, ICM-F did exhibit the greatest pattern similarity with MAM-F

as expected. This implies that ICM-F does capture a putative neu-
ral correlate of ‘fear’ embedded within distributed brain activity
and provides support for the research strategy employed in the
present study. In other words, these neural activity patterns indi-
cate responses embedded within brain voxels to the emotion of
fear. These could range from a subjective feeling of fear or being in
a fearful state (i.e. being afraid) to recognizing fear from another
person’s face (i.e. cognitive processing of fear information).

However, ICM-A did not exhibit the greatest pattern similarity
with MAM-A. In fact, ICM-A exhibited the greatest pattern simi-
larity to MAM-F. This suggests that the distributed brain activity
associated with ICM-A is more similar to neural activity patterns
representing fear than anger. While this would appear to be para-
doxical, a plausible explanation can be offered by considering
the potential differences in the perception vs experience of emo-
tions (Lindquist et al., 2012). The key here is the use of angry
facial expressions with directed eye-gaze in our emotional face-
matching task. Angry faces with eye-gaze oriented toward the
perceiver by default signal an impending aggression on the part
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of the expressor (Adams et al., 2003; Marsh et al., 2005), which
is reflected as differential patterns of brain activity to angry faces
with direct gaze vs. averted gaze (Adams et al., 2003; N’Diyae et al.,
2009; Ewbank et al., 2010; Ziaei et al., 2016). From the perspec-
tive of the perceiver, the primary signal being communicated via
anger faces is an increase in the probability of impending threat,
not unlike fear faces (Whalen et al., 2001). It follows then that
the perceiver’s typical response to such angry faces would bet-
ter align with a threat-related response that is reminiscent of
fear more so than anger. Since the MAM-A was generated from
individual studies employing not just facial expressions but also
other anger-‘inducing’ stimuli, it can be understood as repre-
senting the feeling of anger per se, not the response to someone
else’s anger directed at the perceiver. Thus, the present results
showing that ICM-A is more similar to neural activity patterns
representing fear than anger could be consistent with brain activ-
ity in response to interpersonal threat (i.e. angry faces with gaze
directed toward the perceiver). However, an alternative expla-
nation is possible via differences in the decoding performance
between MAM-F (86% accuracy) and MAM-A (43% accuracy) doc-
umented in the original study (Wager et al., 2015). These authors
suggested that this performance difference might be an artifact
of relatively greater methodological heterogeneity in research on
anger compared to fear (see Supplementary Figure S1 of Wager
et al. (2015) for details). Thus, it is possible that this perfor-
mance discrepancy may be driving the higher pattern similarities
between ICM-A and MAM-F in our analyses (i.e. MAM-A might
simply be a poorer map). That said, control analyses showed
little evidence that surprise ICMs are strongly associated with
MAM-F, providing support to the possibility that ICM-F and ICM-A
might be converging on a commonneural representation of threat
embedded within MAM-F (see supplementary data).

These MAM–ICM pattern similarity results were dependent
on the number of voxels that were included in the analysis. By
systematically manipulating the number of selected voxels, we
found that, in general, more voxels yielded better outcomes.
Another outcome associated with voxel selection via threshold
manipulation is that the range of values that the voxels can
assume becomes restricted, which may also have contributed
to the smaller effect sizes observed at more stringent threshold
levels. However, since the inclusion of all voxels in the brain
would necessarily contain those without any informational value
(reflected as weak overall MAM–ICM correlations in the unthresh-
olded analysis), additional considerations were warranted. An
initial survey of the effect sizes as well as the size of the pattern
similarity metrics suggested that a light threshold (0.001–0.005)
provides the optimal solution, which still covers a wide range of
cortical and subcortical brain regions. The distributed nature of
these most informative voxels is consistent with the predictions
of the original meta-analysis study (Wager et al., 2015) and gen-
erally in line with the constructionist view of emotion (Lindquist
et al., 2012; Barrett and Russell, 2015), as well as findings from
MVPA research on distinct emotion categories (Peelen et al., 2010;
Kassam et al., 2013; Kragel and LaBar, 2015; Saarimäki et al., 2016).
Our data offer another piece of evidence that information about
emotion categories are distributed, not localized in brain activity.

This interpretation of the present findings is furthered by the
amygdala ROI analyses. If we suppose that all of the important
information regarding emotion categories was being represented
within the amygdala, then restricting the analysis only to the
amygdala voxels should have yielded the same MAM–ICM pat-
tern similarity outcomes from the whole-brain analyses. Our data
did not support this supposition, further reinforcing the main

result that the inclusion of more voxels across the brain was gen-
erally beneficial in matching ICMs with MAMs. Relatedly, it is
noteworthy that both MAM-F and MAM-A are characterized by
similar patterns of amygdala activity (Wager et al., 2015), which
was corroborated by our findings that MAM-F and MAM-A exhib-
ited the greatest similarity over and beyond other MAM pairs
(see supplementary data). This suggests the possibility that this
shared feature of the MAM-F and MAM-A may drive the pattern
similarity with the corresponding ICMs, as both ICM-F and ICM-A
are also characterized by increased amygdala activity. Our data
rejected this possibility, as excluding the amygdala voxels from
the analyses did not change the overall results. In fact, the find-
ings remained remarkably similar to the whole-brain MAM–ICM
pattern similarity findings, with minimal changes in z scores and
effect sizes. This illustrates that the amygdala voxels did not
contribute to distinguishing discrete emotion categories in a sig-
nificant way, and thus, the informational value of the amygdala,
at least by itself, was negligible.

Finally, we note that the overall degree of pattern similarity
with MAMs increased when using group contrast maps instead
of ICMs (see supplementary data). Conceptually, this observation
is consistent with the fact that group contrast maps are aggre-
gations of multiple ICMs, which offer a distilled representation
of a given brain state similar to MAMs. This intermediate posi-
tion of the group contrast maps (i.e. averages) between MAMs
(i.e. averages of averages) and ICMs (i.e. individuals) could account
for the boost in pattern similarity metrics with MAMs. An impor-
tant issue to consider further is the possibility that group con-
trast maps—which are designed to remove noise from individual
data and provide generalizable brain maps—may also eliminate
meaningful individual differences reflected in distributed activity
patterns, and if so, to what extent.

The present study is not without limitations. The experimen-
tal task from which the ICMs were derived exclusively used facial
expressions as the emotional stimuli. While facial expressions
are widely used in the literature to examine brain responses to
emotion (Costafreda et al., 2008), affective information is rep-
resented in the brain in both a modality-specific and modality-
general manner (Chikazoe et al., 2014; Shinkareva et al., 2014;
Kim et al., 2017); thus, testing the generalizability of the present
findings using ICMs derived from other modalities is warranted.
It is worth noting yet again that the MAMs used in the present
study were generated using individual studies employing hetero-
geneous stimuli to represent or elicit emotions (e.g. faces, pic-
tures, films and words). Thus, the resulting MAMs may be captur-
ing modality-general neural activity patterns of emotions in the
brain. Also, we were only able to focus on the two threat-related
emotions (fear and anger), as our emotional face-matching task
did not include the three other emotion categories for which
there are MAMs. As such, it remains to be seen whether ICMs
of other emotions (disgust, happiness and sadness) would show
similar mappings onto corresponding MAMs. Next, we observed
an unexpected pattern similarity between both ICM-F and ICM-A
with MAM-H when the analysis was restricted to amygdala vox-
els. As there are no known psychological processes that would
support this, it is likely that this may simply reflect an artifact
stemming from the analyses relying on far fewer voxels with
a more restricted range of values. Thus, we are cautious not
to overinterpret this observation. We also acknowledge that the
effect sizes of the overall pattern similarity between ICMs and
the corresponding MAMs are small. A MAM would ideally rep-
resent a distilled brain map for a given emotion, whereas an
ICM would represent a specific type of affective signal (e.g. fear
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information processing from the facial expressions of others) plus
the overall brain state that is specific to the task used in our
study. The inherent study-specific nature of ICMs may contribute
to the small shared variance with MAMs. In our analyses, we
tested for linear associations between the voxel values that the
MAMs and ICMs assume. While this decision reflects, in part, the
proof-of-concept nature of the initial analysis (e.g. fear MAM–ICM
pair showing the greatest pattern similarity) as well as previous
instances of employing similar approaches and achieving useful
findings (e.g. Shahane et al., 2019), we acknowledge the possi-
bility that assuming a linear relationship could be suboptimal,
and further investigation on this matter is warranted. Finally,
findings from meta-analyses (i.e. MAMs) are inherently bound by
the quality of the individual data (Wager et al., 2015). As techni-
cal advances in fMRI data acquisition and processing have been
made in recent years, it would be worthwhile revisiting the cur-
rent research topic when updated MAMs that include post-2011
studies become available.

These limitations notwithstanding, our current findings high-
light that widely distributed patterns of brain activity from
ICMs of threat-related emotion perception, across multiple brain
regions and systems, may be best suited for capturing emotion
categories identified by MAMs. In contrast, the amygdala was
neither sufficient nor necessary for observing suchMAM–ICMpat-
tern similarity effects across discrete emotion categories. More
generally, the present study offers a strategy that could further
boost the utility of MAMs, whose importance has become increas-
ingly recognized in neuroimaging research. For example, MAMs
may be used as a guide to chart individual brain states and offer a
principled framework for reverse inference from functional neu-
roimaging data (Poldrack and Yarkoni, 2016). If we have MAMs
for fear that tap into different aspects of fear processing, future
research can offer a way to harness them and predict what type
of psychological state (e.g. feeling afraid vs remembering being
afraid) an individual was experiencing during scanning. As such,
MAMs may be able to further shed light on the underlying men-
tal processes captured by ICMs, which can contribute to better
interpretations of findings using contrast-based task fMRI.
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