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Abstract
Ovarian cancer (OvCa) causes the highest mortality among all gynaecologic cancers. 
A large number of mRNA- or miRNA-based signatures were identified for OvCa pa-
tient prognosis. However, the comprehensive analysis of function-level prognostic 
signatures is currently not considered in OvCa. In the present study, we respectively 
inferred subpathway activities from mRNA and miRNA levels based on high-through-
put expression profiles and reconstructed subpathways. Firstly, the activities of two 
tumour pathways were calculated and the difference between normal and tumour 
samples were analysed using multiple tumour types. Then, we calculated subpathway 
activities for OvCa based on the expression profiles from both mRNA and miRNA lev-
els. Furthermore, based on these subpathway activity matrices, we performed boot-
strap analysis to obtain sub-training sets and utilized univariate method to identify 
robust OvCa prognostic subpathways. A comprehensive comparison of subpathway 
results between these two levels was performed. As a result, we observed subpath-
way mutual exclusion trend between the levels of mRNA and miRNA, which indicated 
the necessary of combining mRNA-miRNA levels. Finally, by using ICGC data as test-
ing sets, we utilized two strategies to verify survival predictive power of the mRNA-
miRNA combined subpathway signatures and performed comparisons with results 
from individual levels. It was confirmed that our framework displayed application to 
identify robust and efficient prognostic signatures for OvCa, and the combined signa-
tures indeed exhibited advantages over individual ones. In the study, we took a step 
forward in relevant novel integrated functional signatures for OvCa prognosis.
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1  | INTRODUC TION

Ovarian cancer (OvCa) is a widespread cancer that causes the 
highest mortality among all the gynaecologic cancers. And epi-
thelial OvCa is the most common type accounting for about 90% 
of all cases.1 OvCa patients generally do not have symptoms or 
mild symptoms in their early stages. However, the patients in ad-
vanced stages will suffer from pelvic mass, abdominal distension, 
ascites and so on. Although advanced-stage patients have initial 
responses to treatment, most of them will relapse, become resis-
tant and even die. According to the International Federation of 
Gynecology and Obstetrics (FIGO) staging system and BRCA1/2 
mutation status, clinical treatments for OvCa patients usually con-
sist of surgery, chemotherapy and targeted therapy. However, cur-
rent pre-treatment evaluation methods are not adequate because 
of OvCa molecular heterogeneity. For the patients who belong to 
the same FIGO stage and BRCA1/2 status, extremely different 
clinical outcomes are often observed.2,3 Therefore, gynaecologists 
need more specific and robust biological markers for prognosis 
analysis of OvCa patients.

MicroRNAs (miRNAs) are the most common non-coding RNAs. 
Through binding to 3'-untranslated regions of messenger RNAs 
(mRNAs) or other RNAs, miRNAs display crucial regulatory roles 
at the post-transcriptional level.4 MiRNA-related pathways play 
an important role in reprogramming mRNA expression in OvCa.5 
Givel et al verified that the regulatory function of miR-200 on 
CXCL12β could affect immuno-suppression and fibroblast hetero-
geneity in OvCa.6 Bagnoli et al identified a miRNA-based signature 
(MiROvaR) to successfully predict early relapse and progression 
of epithelial OvCa.7 Wu et al confirmed that the miR-192-EGR1-
HOXB9 regulatory axis was involved in the angiogenesis in OvCa.8 
Furthermore, Au Yeung et al proved exosomal transfer of stro-
ma-derived miR-21 could confer paclitaxel resistance of OvCa 
cells.9

To further deeply explore functional effects of miRNAs on 
malignant tumour development and progression, researchers have 
performed different kinds of integrated analyses at the miRNA 
and mRNA levels. In 2014, Calura et al developed an approach to 
wire miRNAs into pathways, dissecting the complex tumour reg-
ulatory networks through analysing high-throughput miRNA and 
mRNA expression profiles.10 Roy et al performed an integrated 
analysis based on miRNA and mRNA expression levels in mouse 
and human hepatocellular carcinoma tissues. Through a series of 
experiments, these researchers confirmed that miR-193a-5p reg-
ulated the expression levels of NUSAP1 and further suppress he-
patocarcinogenesis.11 Frampton et al combined miRNA and mRNA 
expression profiles of pancreatic ductal adenocarcinoma and 
normal samples to construct a miRNA-mRNA regulatory network 
and identify some key miRNAs involved in pancreatic ductal ade-
nocarcinoma.12 Tasena et al established a complex miRNA-mRNA 
network for chronic mucus hypersecretion and identified sev-
eral pivotal miRNAs and their potential target mRNAs as disease 
bio-markers.13

In 2017, our group performed an integrated analysis of 
high-throughput miRNAs’ and mRNAs’ expression to discern core 
OvCa prognostic subpathways using The Cancer Genome Atlas 
(TCGA) data set.14 Based on these prognostic subpathways, we 
further utilized random walk algorithm to assign a risking score to 
each miRNA and mRNA component, and final subpathway signa-
tures were identified by ranking the overall score of both miRNA 
and mRNA components involved in this subpathway. Finally, we 
verified the predictive power of subpathway signatures for OvCa 
prognosis by using independent data sets from Gene Expression 
Omnibus (GEO) and International Cancer Genome Consortium 
(ICGC) databases. In this paper, we considered two different ex-
pression data sets and subpathway concept to identify functional 
signatures, and the identified subpathways which contained less 
gene components displayed more detailed functional description. 
Although this research displayed good performance, two issues 
are needed to be resolved for OvCa analysis. The first matter is 
that the training samples are randomly selected only once from 
TCGA, which is not beneficial to the reliability of signatures. The 
robustness of the signature should further be validated. Secondly, 
we treated the miRNA molecule as an independent component of 
the subpathway and did not consider its negative regulation on 
mRNA functions.

As is known, mRNA overexpression results in high activity level 
of the pathway in which these mRNAs are located. On the contrary, 
miRNAs’ overexpression results in the suppression of expression 
levels of corresponding target mRNAs, which lead to lower activ-
ity levels of corresponding pathway in which the target mRNAs are 
located. Therefore, systematic analyses and comparisons of sub-
pathway functional conditions between mRNA level and miRNA 
level are urgently needed for OvCa prognosis. To improve these is-
sues and increase reliability of prognostic signatures, we designed 
this project. We first utilized mRNA expression levels to calculate 
subpathway activity at the mRNA level (mRNA-level subpathway 
activity) using the FAIME strategy15 in which mRNA expression 
rank in descending order. Owing to negative regulation of miR-
NAs, we used the FAIME method to calculate activity for the same 
subpathway from miRNA level (miRNA-level subpathway activity) 
by considering a different direction, in which miRNA expression 
rank in ascending order. So, for mRNA and miRNA level, the sub-
pathway activity matrix was respectively formed with subpath-
ways as rows and tumour samples as columns. Secondly, we made 
disturbances of TCGA OvCa samples to obtain 1000 sub-training 
sets, and further identified robust subpathways with high counts 
in all sub-training sets from both mRNA level and miRNA level. On 
these grounds, we classified all prognostic subpathways into risk 
subpathways and protective subpathways. A kind of mutually ex-
clusive trend of subpathway results was observed between mRNA 
level and miRNA level. Finally, using ICGC data as an indepen-
dent validation set, we found that the combination of robust sub-
pathway signatures from mRNA level and miRNA level displayed 
stronger predictive effect than mRNA-level and miRNA-level sig-
natures, respectively.
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2  | MATERIAL AND METHOD

2.1 | Training data set from TCGA

We obtained OvCa data set from TCGA as a training set which in-
cluded molecular (miRNAs and mRNAs) expression profiles and pa-
tient clinical information. With regard to the molecular expression 
data, the miRNA expression was generated by BCGSC miRNA pro-
filing, and mRNA expression was generated by HTseq-FPKM. For 
reduplicative samples, we calculated average mRNA and miRNA 
expression values as final values. Furthermore, samples correspond-
ing to patients with survival time less than 30 days were eliminated, 
because these patients may have died due to other reasons.16 The 
molecular expression data and corresponding survival events of a 
total of 370 OvCa patients were used in the entire training set. In 
addition to that, in order to identify the most robust prognostic sig-
natures, we made 1000 disturbances to 370 OvCa samples and con-
structed 1000 sub-training sets, which had the same ratio of sample 
survival distribution as the whole training set taking the median sur-
vival time as the cut-off. For each sub-training set, we utilized FAIME 
and modified FAIME methods to respectively construct mRNA-level 
and miRNA-level subpathway activity matrix, in which subpathway 
as rows and OvCa samples as columns.

2.2 | Validation data set from ICGC

We obtained another available data set (OV-AU) from ICGC database 
to test the prognostic performance of only miRNA-level subpath-
ways, only mRNA-level subpathways as well as merged subpathways. 
From this independent data set, we also obtained miRNA, mRNA 
expression profiles and available clinical information of 93 OvCa 
samples. Performing the similar procedure with training set, we also 
formed an mRNA-level and miRNA-level subpathway matrix based 
on the sample-matched mRNA and miRNA expression profiles. In the 
validation part, we adopt two strategies (rank-based and threshold-
based) to verify prognostic reliability of the results obtained from the 
training set. We obtained the count value from training set from the 
1000 random analysis, and a number from 1 to 1000 was assigned to 
each signature. Then, all the signatures were ranked in a descending 
order. The first one is to set a number K from 2 to 8 to define signa-
tures that contained top K risk and protective subpathways. Another 
one is to set three different threshold numbers (450, 500 and 550) to 
define signatures. We tested the efficacy of all the selected subpath-
way signatures using the validation data set.

2.3 | Other data sets from TCGA

To test the reliability of FAIME method for OvCa prognosis analysis, 
we tried to compare the difference of subpathway activity between 
normal and tumour samples. Due to the absence of normal sample 
of OvCa in TCGA database, we further obtained high-throughput 

mRNA and miRNA expression profiles of seven other tumour types 
from TCGA, including bladder urothelial carcinoma (BLCA), breast 
invasive carcinoma (BRCA), colon adenocarcinoma (COAD), lung ad-
enocarcinoma (LUAD), lung squamous cell carcinoma (LUSC), pros-
tate adenocarcinoma (PRAD) and thyroid cancer (THCA). The mRNA 
and miRNA expression level from both tumour and normal samples 
were obtained and utilized in the method comparison. The subpath-
way activity was calculated for both tumour and normal samples, 
and the comparison was performed.

2.4 | Subpathway data

We directly obtained subpathway data from R package 
SubpathwayMiner, in which researchers located subpathway regions 
from total pathways by using the distance similarity method.17 We 
also embedded miRNA molecules into the subpathways by consid-
ering experimentally validated miRNA-target relationship, which 
were obtained from four common databases: miRTarBase,18 mir2D-
isease,19 miRecords20 and TarBase.21 The strategies of embedding 
miRNAs in subpathways have been utilized many times in our previ-
ous studies.22,23 Moreover, the subpathways with less than 4 mRNAs 
and 3 miRNAs were removed. Finally, a total of 1602 subpathways, 
with an average of 20.8 mRNAs and 24.0 miRNAs, were taken into 
consideration for further analyses.

2.5 | Calculating mRNA-level and miRNA-level 
subpathway activities

For mRNA-level calculation, we computed the subpathway activity 
for each tumour sample based on high-throughput mRNA expres-
sion using the FAMIE method.15 The major theory of FAIME is that a 
higher expression level of mRNA reflects a higher subpathway activity 
in which these mRNAs are involved. The detailed FAIME procedure to 
calculate mRNA-level subpathway activity is showed as follows:

Step1: for each tumour sample, all expressed mRNAs were 
sorted in ascending order. A score based on the sorted order was 
assigned to each expressed mRNA. Step2: for each subpathway, 
we utilized the mRNA score from Step 1 to calculate a subpath-
way score, which was average mRNA score within this subpath-
way minus average score of all other mRNAs. Step3: considering 
the subpathway activity across all tumour samples, we further 
calculated the normalized activity of subpathways for all analysed 
samples. The detailed procedures and codes are derived from the 
study by Yang et al.[14]

In terms of miRNA-level calculation, negative regulatory roles of 
miRNAs on target mRNAs were the most important things consid-
ered. The higher the expression levels of miRNA, the lower the sub-
pathway activity in which the specific targeted mRNA was involved. 
Therefore, we revised the first step and ranked all expressed miR-
NAs in decreasing order. FAIME Step2 and Step3 procedures were 
the same as the mRNA-level procedures. Finally, we also calculated 
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the normalized subpathway activity at the level of miRNA for all an-
alysed samples.

2.6 | Survival analysis method

For single subpathway signatures, we performed Cox univariate 
analysis to calculate the prognostic significance and hazard ratio 
(HR) value. The significant signatures with HR > 1 denote risky fac-
tors, and the significant signatures with HR < 1 denote protective 
factors. For multiple subpathways, we clustered the tumour sam-
ples into two high-risk and low-risk groups based on risking score 
method. In detailed, for each sample from validation data set, we 
calculated risking score according to a linear combination of the sub-
pathway activities weighted by the regression coefficients of cor-
responding subpathways. The coefficient and median risk score, as 
a threshold value derived from the training data set, were directly 
applied to validation data set to divide the samples into high-risk and 
low-risk groups. For the two risk groups, we further performed the 
Kaplan-Meier (K-M) analyses to compute the survival difference. 
Further, a log-rank test was used to evaluate the prognostic signifi-
cance of differences between groups. In all survival analyses, a P-
value < .05 was considered significant.

3  | RESULTS

3.1 | The overall analytical framework

In this study, we obtained sample-matched mRNA and miRNA ex-
pression profiles of OvCa from TCGA database, as a training set, and 
ICGC database, as a validation set. The complete analysis was per-
formed in three steps:

Step1: we utilized reconstructed subpathway and modified 
FAIME method to respectively calculate mRNA-level and miR-
NA-level subpathway activity for OvCa sample and formed corre-
sponding subpathway activity matrix. Step2: randomly selecting 
half samples from training set for 1000 times, we utilized univariate 
Cox method to calculate prognostic significance and further ob-
tained robust subpathway by counting the significant times in 1000. 
Meanwhile, we performed comprehensive analyses of OvCa prog-
nostic subpathways between mRNA level and miRNA-level. Step3: 
using the validation data set, we finally verified the predictive power 
of robust subpathway signatures and made a comparison among 
mRNA-level results, miRNA-level results and merged results. The 
overall framework is shown in Figure S1.

3.2 | The analysis of method reliability

Before applying the modified FAIME method on OvCa prognosis, 
we performed an analysis to test the method reliability. Firstly, we 
obtained two specific pathways as golden cancer pathways: Path: 

05200, which contained key cancer genes, and Path: 05206, which 
contained key cancer miRNAs. The difference of these two golden 
pathways between tumour and normal samples could reflect the ef-
fective performance of our method strategy. Owing to the absent 
of ovarian normal samples for comparison, we then downloaded 
and obtained sample-matched mRNA and miRNA expression pro-
files from other seven tumour types (see Materials and Methods). 
Based on the high-throughput expression profiles, we calculated the 
Path: 05200 activities for tumour and normal samples at the mRNA 
level using the FAIME method, and calculated the Path: 05206 ac-
tivities at the miRNA level using the modified FAIME method (see 
Materials and Methods). For both Path: 05200 and Path: 05206, we 
observed the significant difference of pathway activities between 
tumour and normal samples in most tumour types (see Figure 1), 
which indicated the reliability of FAIME and modified FAIME meth-
ods for inferring mRNA-level and miRNA-level functional activity 
in following analysis.AUTHOR: Please suggest whether the term 
&#x2018;Path&#x2019; can be changed to &#x2018;path&#x2019; 
throughout the article.yes, the term "Path" can be changed to "path".

3.3 | The comprehensive analyses of OvCa mRNA-
level and miRNA-level prognostic subpathways

Using the reconstructed subpathways and the mRNA/miRNA high-
throughput expression profiles of OvCa, we respectively formed 
mRNA-level and miRNA-level subpathway activity matrix. To obtain 
the most robust prognostic signatures, we performed 1000 sub-
training sets and assign each significant subpathway a number from 
1 to 1000 (see Materials and Methods). Furthermore, two types 
of prognostic subpathways, risky and protective, were considered. 
The top 15 ranked risk and protective subpathways are shown in 
Figure 2A-D. Overall, the mRNA-level results displayed more robust 
trend than miRNA-level results. For example, there were many more 
high robust subpathways (with counting number > 800) found on the 
mRNA level than the miRNA level. For mRNA-level results, the risk 
subpathways displayed more robust trends. However, the miRNA-
level risk subpathways displayed opposite trends. There is only one 
subpathway's counting number greater than 400. So, the rank-based 
and threshold-based strategies should be both considered to de-
fine subpathway signatures for different distribution of mRNA and 
miRNA levels. The detailed results from two levels were provided as 
Tables S1-S4.

For the prognostic subpathways with the same risk directions, 
we further performed a systematic comparison between mRNA 
level and miRNA level. As shown in Figure 2E, for protective sub-
pathways with numbers greater than 200, six overlapping sub-
pathways were shared by 61 subpathways from the mRNA level 
and 108 subpathways from the miRNA level with hypergeometric 
P-value = .16. Similar results were observed for risk subpathways. 
Only 1 subpathway was shared by 131 subpathways from mRNA 
level and four subpathways from miRNA level with hypergeomet-
ric P-value  =  .26. Furthermore, we transferred the subpathway 
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results into pathway results, and the different subpathways de-
rived from the same whole pathway were regarded as the same 
pathway results. At the pathway level, the 31 mRNA-level path-
ways and 62 miRNA-level pathways shared significant 11 over-
lapping pathways (hypergeometric P-value = .03). Some pathways 
including path: 04782, path: 04610, path: 05164, path: 05210, 
path: 04110 and path: 05416 were recognized from pathway level, 
but not from subpathway level. For risk pathways, we also ob-
served the consistent results: three pathways including two new 
pathways (path: 04725 and path: 05168) were significantly shared 
with hypergeometric P-value =  .02. Therefore, we conclude that 
the mRNA-level and miRNA-level prognostic subpathways tend to 
be located in the different regions of the same pathways, which 
reflecting the function-level mutual exclusion from two different 
levels. From a biological point of view, it is unlikely to destroy the 
detailed subpathway region twice, from mRNA level and miRNA 
level. For detailed comparison of each prognostic subpathway re-
sult between mRNA level and miRNA level, we also observed the 
mRNA- and miRNA-level mutual exclusion for prognostic subpath-
ways (see Figure S2).

For some specific pathways, we respectively made statistics on 
the proportion of risk subpathways, protective subpathways and 
others (see Figure 2F-G). For example, most subpathways of Path: 
05200 (Pathways in cancer) were risk subpathways at mRNA level 
whereas most subpathways of this pathway were protective ones 
at miRNA level. Again, we observed the opposite trends between 

mRNA-level and miRNA-level subpathway results. At the mRNA 
level, there were no risk subpathways between path: 04104 and 
path: 03008. All the subpathways in path: 04060 were related 
with the OvCa prognosis. Moreover, there are more protective 
subpathways than risk ones. In this part, it is also confirmed that 
the subpathway scale displayed more sensitive than pathway scale.

3.4 | The first verification: rank-based 
subpathway signatures

The OvCa prognostic subpathways shared few overlaps between 
mRNA-level and miRNA-level results, as previously stated. Thus, we 
tested the predictive performance of the combined signatures from 
top-ranked strategy using an independent validation set from ICGC 
database (see Materials and Methods). Utilizing the same method 
as training set, we also formed mRNA-level subpathway matrix and 
miRNA-level subpathway matrix for ICGC data set. Next, top-ranked 
risk and protective subpathways from both mRNA-level and miRNA-
level results were considered as combined signatures, and risking 
score method was applied based on these subpathways to form two 
different sample clusters, low-risk and high-risk. Finally, a log-rank 
test was used to evaluate the survival difference between two sam-
ple clusters and P-value significance was calculated. Take the top 5 as 
an example; we obtained a total of 20 subpathways as the combined 
prognostic signatures with 5 from risk mRNA-level results, 5 from 

F I G U R E  1   The tumour pathway activities between normal and tumour samples on seven tumour types. Based on the mRNA and miRNA 
expression profiles of seven TCGA tumour types, we utilized FAIME method to calculate the activity for Path: 05200 (A) and utilized the 
modified FAIME method to calculate the activity for Path: 05206 (B). For each tumour type, the difference of pathway activities between 
tumour and normal samples were compared and the significance value was calculated using Wilcoxon rank sum test
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protective mRNA-level results, 5 from risk miRNA-level results and 
5 from protective miRNA-level results. As shown in Figure 3A,D, the 
top 20-subpathway combined signature displayed significant predic-
tive performance in the validation set with P-value = .0018. Notably, 
the mRNA-level and miRNA-level risk subpathway displayed higher 
activities in the high-risk samples than low-risk samples, especially 
the mRNA-level results. Comparatively, protective subpathways 
from two levels displayed higher activities in the low-risk samples 
than high-risk samples. All these evidences were displayed in the 
ICGC validation data set and showed the consistent prognostic 
trends with results from training set. Taking the Pathway in cancer 
(Path: 05200) as an example, two mRNA-level subpathways (Path: 
05200_35 and _36) were identified as protective factors, as well as 
another miRNA-level subpathway (Path: 05200_24) was also identi-
fied (see Figure 3E). And it was also consistent with previous conclu-
sions that mutual exclusion of mRNA-level and miRNA-level results.

To test whether the combined signatures displayed advantages 
over individual signatures from only mRNA-level or miRNA-level, 
we performed a systematical comparison. For the subpathway sig-
natures identified only from mRNA-level or miRNA-level, we also 
utilized the same methods to evaluate the predictive performance of 
corresponding subpathway signatures. Take also top 5 as an exam-
ple, the 10 subpathways from mRNA level and 10 subpathways from 
miRNA level were obtained and compared with combined results. As 
shown in Figure 3B,C, the observed mRNA-level signatures (n = 10) 
were not related with the OvCa prognosis (P-value =  .1139), while 
the miRNA-level signatures (n = 10) were related with OvCa prog-
nosis (P-value =  .0156), which did not reach the significance value 
of combined 20-subpathway signatures. To show the robustness of 
prognostic performance, we further performed a series of analyses 
by defining different top number from 2 to 8. At the different thresh-
old of top number, we respectively obtained combined signatures 

F I G U R E  2   The comprehensive analyses of OvCa robust prognostic subpathways from mRNA level and miRNA level. The robust (top 15) 
protective subpathways (A) and risk subpathways (B) from mRNA level, and robust (top 15) protective subpathways (C) and risk subpathways 
(D) from miRNA level. (E) The subpathway and corresponding pathway comparison between mRNA level and miRNA level. The P-values 
were calculated by hypergeometric test. Risk and protective subpathway distributions within some specific pathways from the mRNA level 
(F) and miRNA level (G)
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and individual ones and performed the survival analysis. As shown 
in top-right inner figures of Figure 3A-C, the combined signatures 
displayed more prognostic significance results than individual ones, 
further confirming the necessary of integrating mRNA and miRNA 
levels.

3.5 | The second verification: threshold-based 
subpathway signatures

The mRNA-level and miRNA-level results displayed different distri-
bution in 1000 sub-training analysis (see Figure 2). Therefore, we 
performed another verification, threshold-based strategy, to de-
fine prognostic subpathways and test the predictive performance. 
Considering the suitable number of signatures for prognostic re-
search, we totally selected three thresholds, 450, 500 and 550, in 
this verification. The detailed number of subpathway signatures 
of mRNA-level and miRNA-level based on these three cut-offs are 
shown in Figure S3. Utilizing the same methods as mentioned above, 
we obtained the prognostic subpathways and calculated the predic-
tive significance of these signatures. Also, the comparison between 
combined signatures and individual signatures was performed. As 
shown in Figure 4, the combined subpathway signatures displayed 

significant predictive power at three cut-offs (P-value  =  .0435 in 
threshold 450, P-value = .0235 in threshold 500 and P-value = .0308 
in threshold 550). However, the mRNA-level signatures displayed 
significant predictive power only in one condition (P-value = .0462 
in threshold 450), and miRNA-level signatures displayed no signifi-
cant predictive power in all thresholds. All these evidences further 
confirmed the stronger predictive performance of combined mRNA-
miRNA signatures than individual ones and the effective ability to 
identify prognostic signatures by our novel integrated strategy.

To test the predictive robustness of combined signatures, we 
further performed a comparison with random signatures. In detailed, 
we randomly obtained signatures from risk and protective subpath-
way results from both gene-level and miRNA-level, and the random 
subpathway number was the same as combined signatures. The ran-
dom process was performed in 1000 times. Take the top 5 signatures 
as an example, we respectively obtained 5 random subpathways 
from all gene-level risk results, 5 from gene-level protective results, 
5 from miRNA-level risk results and 5 from miRNA-level protective 
results. Then, a total of 20 random subpathways were obtained and 
the predictive significance was calculated using the validation set 
for each random in 1000 times. In the meanwhile, the random re-
sults based on threshold strategy were also performed. As shown in 
Figure S4, the combined signatures displayed more predictive power 

F I G U R E  3   The rank-based verification in the validation set. The K-M curves of the combined 20-subpathway signatures with top 5 risk 
and protective subpathways from mRNA and miRNA levels in (A). The corresponding mRNA-level results in (B). The corresponding miRNA-
level results in (C). The different top rank results from top 2 to 8 were shown in top-right of Figure 3A-C. (D) The heatmap of top 5 risk and 
protective subpathways from each level. Red indicates the high subpathway activity, and green indicates the low subpathway activity. (E) 
Take two specific pathways as examples to show prognostic subpathway relationships within the same pathway
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than random signatures in both rank-based and threshold-based 
strategies.

4  | DISCUSSION

In this research, we respectively inferred subpathway activity from 
mRNA and miRNA expression levels and performed a bootstrap 
analysis to identify the most robust subpathway signatures for OvCa 
prognosis. Because of the different roles of mRNA and miRNA mol-
ecules, we utilized different methods to infer the functional activity, 
and confirmed the effectiveness of these methods. For OvCa appli-
cation, we observed the mutually exclusion evidence of subpathway 
dysregulation between mRNA and miRNA levels, which indicated the 
necessary of combination of results from multiple levels. Finally, we 
validated the predictive performance of combined subpathway signa-
tures using two strategies using the independent ICGC data sets. The 

survival comparison was performed between combined signatures and 
individual signatures only from mRNA level and miRNA level.

Based on high-throughput mRNA and miRNA expression pro-
files, the subpathway activity was calculated for each tumour sample 
using the previous FAIME method.15 This method was developed to 
infer activity for functional sets including biological pathways or GO 
terms. The genes within functional set were considered as a whole, 
and the overall expression condition compared to genome-wide ex-
pression level was calculated. It was confirmed that FAIME method 
analysis was more effective than other methods. Recently, the sub-
pathway concept was derived and defined in the study of Li et al.17 
Compared to the whole pathway, subpathways were located in de-
tailed regions involved in the pathway and contained smaller sets of 
genes. The pathway usually contained many subpathways, and the 
different subpathways within the same pathway often exhibited to-
tally different biological meanings.17,24 Genes within the same sub-
pathway usually displayed the more consistent expression pattern 

F I G U R E  4   The threshold-based verification in the validation set. The K-M curves of the combined signatures with three cut-offs (450, 
500 and 550) from each mRNA or miRNA level. (A) combined 70 signatures, (B) mRNA-level 54 signatures, (C) miRNA-level 16 signatures in 
threshold 450, (D) combined 54 signatures, (E) mRNA-level 45 signatures, (F) miRNA-level 9 signatures in threshold 500, (G) combined 39 
signatures, (H) mRNA-level 35 signatures and (I) miRNA-level 4 signatures in threshold 550
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than pathway level. Moreover, the subpathway concept was applied 
into many aspects of researches, including miRNA regulation and 
disease,25 and tumour prognosis analysis.22,26 Concurrently, in this 
study, FAIME method took less genes within subpathway set to infer 
more detailed activity value for subpathway. Therefore, the applica-
tion of FAIME method on biological subpathway should be the more 
proper strategy to infer functional activity for clinical use.

For identifying the most robust prognostic signatures, we per-
formed the bootstrap to form 1000 sub-training sets based on 
the TCGA training set. For each sub-training set, we performed 
univariate Cox analysis to identify prognostic subpathways with P-
value < .05. A counting number from 1 to 1000 was assigned to each 
prognostic subpathway by integrating all 1000 bootstrap results. In 
detail, we further considered the impact of prognostic signatures 
and defined risk or protective signatures according to the HR value. 
Therefore, a count value was assigned to each risk and protective 
subpathways for results from both mRNA and miRNA levels, and all 
these subpathways were also ranked in a descending order. Owing 
to the difference of mRNA- and miRNA-level result distribution, 
we performed two different strategies (rank-based and thresh-
old-based) to obtain the final prognostic subpathways. For the rank-
based strategy, the 20-subpathway signatures were obtained from 
mRNA and miRNA levels at the top 5 rank. For the threshold-based 
strategy, the 70-subpathway signature was obtained at the thresh-
old 450. Considering all these strategies, we confirmed the perfor-
mance of mRNA-miRNA combined signatures and the advantage 
over results from individual mRNA or miRNA levels.

For both mRNA and miRNA levels, these top-ranked sub-
pathways contained some tumour-related pathways (pathways 
in cancer, RNA transport) and specific pathways, most of which 
displayed close relationship with OvCa prognosis and biological 
mechanism. For path: 00380_5 (Tryptophan, top 1 in mRNA pro-
tective results), it was observed that patients with OvCa have in-
creased tryptophan degradation compared to controls resulting in 
higher serum kynurenine concentrations,27 and elevated Kyn/Trp 
levels were shown to be associated with OvCa poor response to 
therapy and worse outcome.28 For path: 04810_3 (Regulation of 
actin cytoskeleton, top 6), study had reported the dysregulation 
of the cytoskeleton during OvCa progression in a mouse model.29 
Moreover, the abnormal expression of Beta-actin (ACTB) and the 
resulting changes to the cytoskeleton were associated with tumour 
invasiveness and metastasis.30 In another study, the cytokine-cy-
tokine receptor interaction, in which the path: 04060_33 (top 7) 
was involved, was also enriched in the OvCa long survival event.31 
For mRNA-level risk results, the overexpression of retinol binding 
protein 4 (RBP4) in OvCa cells promoted cancer cell migration and 
proliferation,32 and an adipokine secreted by adipose tissue also 
induced cell invasion and metastasis,33 which showed the potential 
risk roles of path: 04920_2 (Adipocykine signalling pathway, top 
1). For path: 04360_5 (Axon guidance, top 2), a previous transcrip-
tome-based study also revealed the axon guidance molecules were 
related with OvCa clinical prognosis.34 Furthermore, CaMKK2 
(one key kinase in calcium signalling) knockdown potentiated the 

effects of the chemotherapeutic drugs carboplatin and PX-866 to 
reduce OvCa survival.35 Although miRNA-level subpathway re-
sults displayed lower rank than mRNA level, most top-ranked sub-
pathways were also associated OvCa clinical mechanism. Among 
the miRNA-level protective results, we identified path: 04950_2 
(Maturity onset of diabetes of the young, top 7). Recently, it 
has been shown that the expression of hepatocyte nuclear fac-
tor-1beta (HNF1β) was associated with OvCa risk.36 Another im-
portant pathway, mTOR signalling pathway (top 9) was considered 
as a promising therapeutic target in OvCa treatment in the recent 
study.37 Among the miRNA-level risk results, Hepatitis C (top 1) 
and Herpes simplex infection (top 3) were both identified, and 
many evidences revealed the association between infectious dis-
eases and OvCa or other tumours.38-40 In addition, two integrative 
analyses both showed that oocyte meiosis (path: 04114_9, top 6) 
was significantly enriched in the OvCa differentially expressed 
genes.41,42

We developed a novel mRNA-miRNA integrated framework to 
identify robust prognostic signatures for OvCa based on the TCGA 
data set, and further verified the survival predictive performance 
of combined signatures using independent ICGC data set. The sur-
vival verification was performed based on the high-throughput 
sample-matched mRNA and miRNA expression profiles, which are 
limited and recently increasing. With more available data sets, the 
framework of our integrated framework will gain more confirma-
tion. In future research, we will further consider multiple levels of 
information to optimize core mRNA or miRNA molecules within key 
subpathway signatures.
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