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Abstract: The use of multiple spatially distributed microphones allows performing spatial filtering
along with conventional temporal filtering, which can better reject the interference signals, leading to
an overall improvement of the speech quality. In this paper, we propose a novel dual-microphone
generalized sidelobe canceller (GSC) algorithm assisted by a bone-conduction (BC) sensor for speech
enhancement, which is named BC-assisted GSC (BCA-GSC) algorithm. The BC sensor is relatively
insensitive to the ambient noise compared to the conventional air-conduction (AC) microphone.
Hence, BC speech can be analyzed to generate very accurate voice activity detection (VAD), even in a
high noise environment. The proposed algorithm incorporates the VAD information obtained by
the BC speech into the adaptive blocking matrix (ABM) and adaptive noise canceller (ANC) in GSC.
By using VAD to control ABM and combining VAD with signal-to-interference ratio (SIR) to control
ANC, the proposed method could suppress interferences and improve the overall performance of
GSC significantly. It is verified by experiments that the proposed GSC system not only improves
speech quality remarkably but also boosts speech intelligibility.

Keywords: generalized sidelobe canceller; speech enhancement; bone-conduction sensor; voice
activity detection

1. Introduction

Speech technology plays an important role in speech communication and human-
computer interaction. Microphone arrays have been widely studied in speech enhancement
because of their great performance in enhancing the quality and intelligibility of the
received speech signal [1]. They are capable of sound source localization [2], which is
essential for beamformers and indoor location [3,4]. The generalized sidelobe canceller
(GSC) is an effective technique for an adaptive microphone array, which is commonly
used in speech enhancement applications. The conventional GSC contains three parts: the
fixed beamformer (FBF), the blocking matrix (BM), and the adaptive noise canceller (ANC).
The issue is that the conventional BM does not retain noise well and even suffers from
desired signal leakage, which limits the noise reduction performance of the GSC. Usually,
the adaptive blocking matrix (ABM) is preferred to extract noise and reject desired signals.
The control of coefficients update for ABM and ANC is crucial to the final performance,
which has been studied by many researchers. In [5], a control method was designed by
utilizing signal-to-interference ratio (SIR) estimation obtained with the output powers
of FBF and ABM. Hoshuyama et al. proposed a GSC with a new ABM using coefficient-
constrained adaptive filter and an ANC with norm-constrained adaptive filter [6]. Herbordt
and Kellermann [7] implemented a similar GSC in the frequency domain. Later, Yoon,
Tashev, and Malvar [8] incorporated the sound-source presence probability estimated from
the instantaneous direction of arrival of the input signals and voice activity detection
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(VAD) into the ABM. Khayer et al. proposed replacing the blocking matrix in GSC with a
linear constrained minimum variance (LCMV) beamformer to alleviate the leakage of the
desired signal and effectively reduce the noise [9]. Li et al. extended the direction of arrival
(DOA) estimation to the traditional GSC module, which enhanced the blocking effect of
the blocking matrix and reduced the leakage of the desired signal [10].

Despite the effectiveness of the various proposed methods, the accurate control of
the ABM and ANC, especially under highly non-stationary noise and low signal-to-noise
ratio (SNR) conditions, is still very challenging. To improve the control accuracy, other
information offered by new types of sensors can be a complement to the microphone
signals. Various sensors have been widely used, especially in the Internet of Things [11,12].
Among them, the non-acoustic, bone-conduction (BC) sensor is a promising selection for
speech enhancement applications. Unlike the air-conduction (AC) microphone, the BC
sensor is comparatively less sensitive to the environmental acoustic noise since it senses the
vibration of sounds through bones of the skull [13]. Figure 1 illustrates the spectrograms
of the AC and BC speech signals that were recorded simultaneously in the same noisy
environment. It can be observed the BC speech signal is much less deteriorated by the
ambient acoustic noise, but its high frequency spectrum (>800 Hz) is seriously attenuated
due to the low-pass nature of the human body. This leads to the poor intelligibility of the
BC speech signal, which hinders its direct use.

Figure 1. Spectrograms of (a) the AC and (b) the BC speech signals.

There are two categories of approaches employing BC speech signals for speech
enhancement. The first one is to explore the non-linear mapping of BC speech signals to
AC speech signals [14–17]. Recently, a deep neural network was used to map the spectral
coefficients of the linear prediction coding of BC speech to the coefficients of AC speech [18].
Liu et al. utilized a deep noise reduction autoencoder to achieve the abovementioned
mapping [19]. The second is to utilize the characteristics of BC speech signal to assist the
AC speech enhancement, for example, those based on the VAD estimation [20], on the low
frequency substitution [21], and on the a priori SNR estimation [22].

The dual-microphone array has advantages of low cost, small size, and ultra-low
power consumption and has been widely used in wearable devices such as hearing aids,
earphones, and smart glasses, in which BC sensors are suitably embedded. Therefore, this
paper focuses on the dual-microphone array framework, where we propose a novel robust
dual-microphone GSC assisted by BC sensor. With the accurate VAD consistently obtained
through the BC signal even in low SNR environments, the successful control of the ABM
can be achieved.

By further incorporating the VAD information together with the SIR information
into the control of ANC, a satisfactory result can also be obtained. The effectiveness of
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the proposed GSC algorithm is then confirmed by experiments in the presence of the
non-stationary and diffuse noises.

The rest of the paper is organized as follows: Section 2 introduces the conventional
GSC structure. Section 3 elaborates the details of the proposed algorithm. Simulation
experiments and results are presented and discussed in Section 4. Conclusions are given
in Section 5.

2. Previous Work

The work in this paper is based on the GSC structure with ABM that was proposed
in [5]. As shown in Figure 2, for a dual-microphone array, the GSC is composed of a FBF,
an adaptation-mode controller (AMC), an ABM, and a multiple-input canceller (MC). Let k
and ` denote the frequency bin and the frame indices, respectively.

Figure 2. Structure of the conventional GSC proposed in [5].

First, the two microphone inputs Xi(k, `) (i = 1, 2) enter the FBF that can steer the main
beam to the direction of desired signal. Yf(k, `) is the output of the FBF and is used as the
reference signal for the ABM. The ABM subtracts the desired signal from each channel
input Xi(k, `) to produce the reference noise signal Ybi

(k, `) for the MC. Ybi
(k, `) ideally

contains only the noise components. On the contrary, MC adaptively subtracts the noise
signal from Yf(k, `) to obtain the desired signal. The coefficients in the ABM and the MC
are updated by the normalized least mean square (NLMS) algorithm that is controlled by
AMC. The AMC consists of two power estimators, one divider, and two comparators [5].
In Figure 2, s(k, `) is the smoothed power ratio of the FBF output signal Yf(k, `) to an ABM
output signal Ybi

(k, `). The coefficients of the ABM are updated when s(k, `) is larger than
the threshold θb, while the adaptation of the MC is performed when s(k, `) is smaller than
threshold θc. The adaptive filtering algorithm for the ABM is implemented as follows:

Ybi
(k, `) = Xi(k, `)−Wbi

(k, `)Yf(k, `), (1)

Wbi
(k, `+ 1) = Wbi

(k, `) + α(k, `)µb(k, `)Yf
∗(k, `)Ybi

(k, `) (2)
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where * denotes just the complex conjugate, Wbi
(k, `) is the coefficients of the ABM, and

the adaptation switch α(k, `) for the ABM is controlled as follows:

α(k, `) =
{

1 if s(k, `) > θb
0 otherwise

, (3)

s(k, `) =
pf(k, `)
pb(k, `)

, (4)

pf(k, `) = γpf(k, `− 1) + (1− γ)|Yf(k, `)|2, (5)

pb(k, `) = γpb(k, `− 1) + (1− γ)
∣∣Ybi

(k, `)
∣∣2, (6)

where pf(k, `) is a power estimate of Yf(k, `), pb(k, `) is a power estimate of Ybi
(k, `), and γ

is a smoothing factor satisfying 0 ≤ γ ≤ 1. The normalized step size µb(k, `) at the `− th
frame is:

µb(k, `) = µ1[θb + S̃f(k, `)]
−1

(7)

where µ1 is a fixed step size, θb is a small number to avoid µb(k, `) from becoming too large,
and S̃f(k, `) is the smoothed power estimation of the FBF output, given by:

S̃f(k, `) = ϕbS̃f(k, `− 1) + (1− ϕb)|Yf(k, `)|2 (8)

where ϕb is a parameter that is used to control the update speed.
The adaptation of the MC is obtained as:

Yoi (k, `) = Yf(k, `)−Wai (k, `)Ybi
(k, `), (9)

Wai (k, `+ 1) = Wai (k, `) + β(k, `)µa(k, `)Ybi
∗(k, `)Yoi (k, `) (10)

where Wai (k, `) is the coefficients of the MC, µa(k, `) is the step size that is similar to µb(k, `),
and the adaptation switch β(k, `) for the MC is controlled by:

β(k, `) =
{

0 if s(k, `) > θc
1 otherwise

. (11)

The index s(k, `) is treated as an estimate of the SIR in that the main component at
the FBF output is the desired signal and the main component at the ABM output is the
interference. In that sense, s(k, `) is explored to distinguish between desired signal and
interference with the purpose of correct coefficients update in the ABM and MC.

Although the idea of the above GSC algorithm is very practical, it still has some
drawbacks. First, if the performance of ABM in a certain frame is unsatisfactory, the
coefficient update decision of all future frames of ABM and MC will probably be inaccurate,
which leads to an overall poor performance. In addition, the estimation of the SIR is
inaccurate in a strong noise environment. These problems are addressed using BC speech
to control ABM and MC in the next section.

3. Proposed Robust GSC
3.1. System Overview

The structure of the proposed robust GSC is depicted in Figure 3, where the AJC
means the adaptive joint controller. The crucial part of the algorithm is to obtain the VAD
information by estimating the speech presence probability (SPP) of the BC speech signal.
The first microphone is designated as the reference microphone and the well-known robust
super-directive beamformer [23] is used as the FBF. The output of the FBF and the first
microphone signal are used for ABM, which is controlled by the VAD information obtained
through the BC speech signal. Then the outputs of the FBF and ABM are sent to ANC,
which is jointly controlled by the VAD information and the SIR acquired by the output
powers of the FBF and ABM. The adaptations in the ABM and ANC need classification, due
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to the contrary relationships between the desired signal and the noise for the adaptation
algorithm. For the adaptation algorithm in the ABM, the noises are the reserved objects and
the desired signal is the object of blocking. In the ANC, however, the desired signal is the
retained object and the noises are the objects to be eliminated. Therefore, the coefficients
in the ABM should be updated in the speech presence components, while the coefficients
update should be performed in the speech absence components in the ANC. To further
improve the performance, the final output of the GSC is fed into the ABM as the reference
signal, and the outputs of the FBF and ABM are sent back to ANC. This iteration is
performed only once to obtain the final enhanced speech.

Figure 3. Schematic diagram of the proposed BCA-GSC algorithm.

3.2. VAD Based on BC Sensor

In the proposed algorithm, the VAD information is obtained via the BC speech signal.
The primary task is to estimate the SPP in each frame of the BC speech signal. In [24], the a
posteriori SPP based on minimum mean square error (MMSE) criterion is given by:

p(k, `) = [1 + (1 + ξ)e
− |Y(k,`)|2

σ̂v2(k,`−1)
ξ

1+ξ ]−1 (12)

where ξ denotes the a priori SNR and is a fixed value of 10 log10(ξ) = 15 dB [24] for reducing
the overestimated spectral noise power and computational complexity, |Y(k, `)|2 denotes
the power of the BC speech signal, and σ̂2

v(k, `− 1) denotes the noise power estimate of the
previous frame signal.

The noise power estimation is updated with the SPP-based noise estimation algorithm,
as follows:

σ̂v
2(k, `) = αv(k, `)σ̂v

2(k, `− 1) + (1− αv(k, `))|Y(k, `)|2 (13)

where the time-frequency dependent smoothing factor:

αv(k, `) = αmin + (1− αmin)p(k, `) (14)
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is utilized to control the update rate. αmin is a constant satisfying 0 ≤ αmin ≤ 1. If the noise
power estimate σ̂2

v(k, `) underestimates the true noise power σ2
v(k, `), the a posteriori SPP

in (12) will be overestimated. It follows that then the noise power will not be tracked as
quickly as expected. In the extreme case, when σ̂2

v(k, `) seriously underestimates the true
noise power σ2

v(k, `), the a posteriori SPP is close to 1, p(k, `) = 1. Then the noise power
will no longer be updated, even though |Y(k, `)|2 may be small with respect to the true
noise power σ2

v(k, `).
To avoid a stagnation of the noise power update owing to an underestimated noise

power, additional mechanisms are further employed. First, the inter-frame smoothing on
p(k, `) is performed, as:

p̃(k, `) = αp p̃(k, `− 1) + (1− αp)p(k, `) (15)

where αp is a smoothing factor satisfying 0 ≤ αp ≤ 1, and the initial value of p̃(k, `) is set
to 0.5. Then, if the smoothed a posteriori SPP p̃(k, `) is larger than 0.99, it can be considered
that the update may have stagnated, and the current a posteriori SPP estimate p(k, `) will
be forced to be less than 0.99, as:

p(k, `) =
{

min(0.99, p(k, `)), if p̃(k, `) > 0.99
p(k, `), otherwise

. (16)

In the proposed algorithm, only the specific part of the BC speech signal whose
frequency spectrum lies between 70 Hz and 800 Hz is used for VAD because no human
voice is below 70 Hz and the power of BC speech is attenuated significantly above 800 Hz.
Note that for female voices or general higher pitch voices, the upper limit of the applicable
BC speech frequency can be up to 1.5 kHz, and setting the upper frequency limit to 800 Hz
can also obtain accurate VAD information. Let pm(`) represent the average of the smoothed
a posteriori SPP p̃(k, `) in those frequency bins that satisfy the above conditions in the `−th
frame. The decision criterion of VAD now is:

I(`) =
{

1, if pm(`) > η
0, otherwise

(17)

where I(`) = 1 represents the speech presence, and I(`) = 0 represents speech absence. η
is a threshold satisfying 0 < η < 1.

Note that VADs for the ABM and ANC are different. This is because the VAD in the
ABM should make all the speech presence frames be detected at the expense of some speech
absence frames being misjudged. However, the speech absence frames need be detected as
much as possible in the ANC. Therefore, a smoothing operation is performed when using
VAD to control the ABM. Specifically, I(`) jumps from 0 to 1 only if t1 speech presence
frames appear successively; while I(`) switches from 1 to 0 once t2 speech absence frames
appear successively. This paper employs Is(`) to denote the smoothed I(`). However,
VAD for the ANC does not need to be smoothed. Experimental results showed that this
approach outperforms the method where both the ABM and the ANC use the smoothed
VAD. Figure 4 shows the spectrogram of a BC speech and the VAD result obtained. In
Figure 4b, the shade of yellow represents the a posteriori SPP p̃(k, `), and the red rectangles
denote the result of the VAD. Note that the VAD result is originally 0 or 1, and for the
convenience of observation, the amplitude of VAD is matched with SPP graph and then
plotted with SPP in a graph. It can be seen that the estimation of the SPP is not delayed,
and the result of the VAD is accurate.
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Figure 4. (a) Spectrogram of BC speech and (b) SPP of BC speech and smoothed VAD.

3.3. Improved ABM

The ABM is a spatial rejection filter, where it rejects the desired signal and passes
the noise. The FBF output Yf(k, `) is sent to the ABM as a reference signal for the latter.
The received signal X1(k, `) from the first microphone is used as the input signal of the
ABM. The ABM adaptively subtracts the components from the X1(k, `) that are correlated
to Yf(k, `). That is:

Yb(k, `) = X1(k, `)−Wb(k, `)Yf(k, `) (18)

where Yb(k, `) is the ABM output, and ideally it contains only the interference signals.
Wb(k, `) is the coefficients of the ABM.

The proposed algorithm utilizes the VAD information Is(`) obtained from the BC
speech signal to control the update of the adaptive filter Wb(k, `) of length L. In this
paper, the recursive least squares (RLS) algorithm [25] is employed to update the adaptive
coefficients due to the efficiency in terms of convergence speed. These coefficients can be
calculated by solving the following linear problem in a recursive way:

(R f (k, `) + κI)Wb(k, `+ 1) = Pf (k, `) (19)
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where the covariance matrix at the `−th frame R f (k, `), estimated by using the forgetting
factor (FF) λ as well as the recursive weight λ`−i(`) = λλ`−i−1(`− 1) with λ0(`) = 1, is:

R f (k, `) =
`

∑
i=L

λ`−i(`)Yf(k, `)YT
f (k, `) (20)

and the cross-correlation vector is:

Pf (k, `) =
`

∑
i=L

λ`−i(`)X1(k, `)Yf(k, `). (21)

I and κ in (19) are, respectively, the identity matrix of size L and a positive parameter
that prevent the RLS algorithm from divergence when the covariance matrix is ill condi-
tioned. Equation (19) can be updated using the QR decomposition technique, when and
only when the time dependent control factor, as shown below, is 1:

ξb(`) =

{
1, if Is(`) == 1
0, otherwise

. (22)

The QRD implementation can be found in Table 1 [25,26], where the input signal is
replaced by Yf(k, `) while the desired signal is replaced by X1(k, `). Under these settings,
the value of w(n) gives the ABM coefficients Wb(k, `).

Table 1. QRRLS implementation.

Initialization for node k:
R(0) = δI, with δ a small positive constant; u(0) = 0 and w(0) = 0 are null vectors.

Update:
Given R(n− 1), u(n− 1), w(n− 1), the input x(n) and the desired signal d(n), we compute

w(n) when the control factor is positive:
(i). The first update:[
R(1)(n) u(1)(n)

0T c(1)(n)

]
= Q(1)(n)

[ √
λ(n)R(n− 1)

√
λ(n)u(n− 1)

xT(n) d(n)

]
The second update for m = (n mod L) +1:[

R(n) u(n)
0T c(n)

]
= Q(n)

[
R(1)(n) u(1)(n)√

κLzm 0

]
where Q(1)(n) and Q(n) are calculated by Givens rotation to obtain the left hand side of each

equation above, zm is the m-th row of the identity matrix I.
(ii). w(n) = R−1(n)u(n) (back-substitution).

From Table 1, it can be seen that the rank-one update of the covariance matrix R f (k, `)
can be implemented by updating the Cholesky factor R(1)(n) of R f (k, `) recursively (1st
QRD in recursion (i), Table 1). Note, the FF λ can be made variable to better track the pa-
rameters in a time-varying environment. The QRD is executed once for the data vector and
once for the regularization [

√
κzm, 0] at each time instant, where zm is the m-th row of the

identity matrix I of size L. The computational complexity of solving (19) is identical to that
of the conventional QRRLS algorithms, which is o(L2). Note, we have used italic and bold
letters to denote matrices and vectors in Table 1 to show that the QRRLS implementation
can be applied to both ABM and ANC. The iteration number n updates only when the
switch (22) (or (27) in the next subsection) is on.

3.4. Improved ANC

The goal of the ANC is to reject the noise and extract the desired signal. It eliminates
the portions in the FBF output Yf(k, `) that are correlated to the ABM output Yb(k, `).
That is:

Yo(k, `) = Yf(k, `)−Wa(k, `)Yb(k, `) (23)
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where Yo(k, `) is the ANC output and Wa(k, `) is the weight coefficients of the ANC. In the
proposed algorithm, the update of Wa(k, `) is jointly controlled by the SIR and the VAD
information I(`). The method of obtaining the SIR s(k, `) is the same as (4), whereas the
proposed algorithm does not compare the obtained SIR with a threshold to obtain a binary
result like (11), but rather maps the SIR to 0-1 using the tanh function as:

C0(k, `) = tanh(s(k, `)) =
es(k,`) − e−s(k,`)

es(k,`) + e−s(k,`)
, (24)

C(k, `) =


1, if C0(k, `) > λ1
0, if C0(k, `) < λ0

C0(k, `), otherwise
(25)

where C(k, `) is a parameter to control the coefficients update of the ANC, λ1 and λ0 are
two thresholds.

The strategy of AJC is that Wa(k, `) is also updated by RLS when the VAD result
indicates non-speech frame, otherwise C(k, `) is utilized to control the update speed of RLS
for better removing noise that leaked into speech frames. In particular:

(Rb(k, `) + κI)Wa(k, `+ 1) = Pb(k, `) (26)

where Rb(k, `) and Pb(k, `) are, respectively, the covariance matrix of the input Yb(k, `) and
cross-correlation vector between Yf(k, `) and Yo(k, `) as defined in (20) and (21). The FF,
however, is variable according to the parameter ξa(k, `) that controls the update speed,
given by:

ξa(k, `) =

{
1− C(k, `), if I(`) == 1

1, otherwise
. (27)

The variable FF can be computed from:

λ(k, `) = 1− µa(k, `) (28)

where:
µa(k, `) = ξa(k, `)µ2, (29)

and µ2 is a small positive constant that acts as a fixed step-size.
Equation (26) with a variable FF can also be implemented by using the QR decom-

position as shown in Table 1. The input is replaced by Yb(k, `) while the desired signal
is replaced by Yo(k, `). Under these settings, the adaptive filter w(n) gives the value of
Wa(k, `).

The tanh function in (24) is a monotonically increasing function. When current frame
is detected as the speech presence frame, it can be seen from (24) and (27) that the larger
s(k, `) and the smaller ξa(k, `) are produced, which leads to slower update of Wa(k, `), and
vice versa. The role of (25) is to stop parameter updating at strong SIR values and to speed
up parameter updating at weak SIR values.

3.5. Iteration

The output of the ANC should contain less noise than the output of the FBF. Theoreti-
cally, letting ANC output Yo(k, `) instead of the FBF output Yf(k, `) be the reference signal
of ABM can reserve more noise in the output of ABM, which leads to improved noise
reduction performance of ANC. In this case, the ABM adaptively subtracts the components
from the X1(k, `) that are correlated to Yo(k, `), as:

Yb(k, `) = X1(k, `)−Wb(k, `)Yo(k, `). (30)

The outputs of the FBF and ABM are still sent to the ANC as same as (23). The control
method of coefficients update of the ABM and ANC is the same as above. The experimental
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results show that iterating only once can lead to a better performance than no iteration
while iterating multiple times produces no further performance improvements. In this
work, only one iteration is adopted.

4. Experimental Results

To validate the usefulness of the proposed BCA-GSC algorithm, we compare its
performance with the conventional GSC algorithm [5] in various noise environments. The
performance evaluation includes objective quality and intelligibility measures. Sensors
are usually used as terminal equipment to acquire information [27,28]. In this paper, the
STM32F407ZET6 development board (STMicroelectronics, Geneva, Switzerland) equipped
with two AC microphones and a LIS25BA bone vibration sensor (STMicroelectronics,
Geneva, Switzerland) was employed to collect speech signals, as shown in Figure 5. The
AC microphones used are InvenSense T3902 (TDK InvenSense, Sunnyvale, CA, USA). Their
package size is 3.5 × 2.65 × 0.98 mm, the SNR is 64.5 dB, and the power consumption
in the ultra-low power mode is as low as 185 µA. The LIS25BA enjoys the advantages of
low cost, low power consumption and high sensitivity and so on. Note that the device
that can collect BC speech is not the only one. To simulate a wearable device application,
the distance between the two AC microphones was set to 3 cm. The sampling frequencies
of the AC speech and the BC speech were 16 kHz and 8 kHz, respectively. A Hanning
window with 50% overlap was used for AC speech (512 samples) and for BC speech (256
samples). The 512-point and 256-point FFT were performed on the AC speech and the
BC speech, respectively, which ensures the same frame number. Due to the conjugate
symmetry of the Fourier transform, only 257 frequency bins and 129 frequency bins were
used per frame for AC and BC speech respectively, which include both the direct current
(DC) frequency component and the Nyquist frequency component. Other parameters used
in the algorithm were as follows: VAD: αmin = 0.8, αp = 0.8, η = 0.3, t1 = 3, and t2 = 5.
ANC: λ1 = 0.8, λ0 = 0.1, and µ2 = 0.08.

Figure 5. Collection equipment of AC and BC speech signals.

The noisy AC speech signals were generated by corrupting the clean AC speech with
noise under various SNRs (0, 5 and 15 dB). The BC speech signals and clean AC speech
signals were recorded simultaneously in the absence of background noise (indoor, silent
environment). The clean AC speech signals were at 0◦. To demonstrate the robustness
of the proposed BCA-GSC algorithm, four types of noise including directional noise and
diffuse noise were used, and these noises were recorded indoors separately. Specifically,
directional noise was obtained by a loudspeaker playing noise in a certain direction, and
diffuse noise was obtained by simultaneously playing noises from four loudspeakers
placed respectively in the four corners of the room. Figure 6 depicts the spectrograms of
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clean AC speech, noisy signal, ABM output of the conventional GSC, signal enhanced
by the conventional GSC algorithm, ABM output of the proposed BCA-GSC, and signal
enhanced by the proposed BCA-GSC algorithm in the case of the speech signal with 5
dB SNR and music noise at 90◦. It can be seen that some harmonics of the desired signal
remain in Figure 6c, while Figure 6e nearly does not contain the desired signal, such as the
circled area. The residual noise in Figure 6f is also obviously less than that in Figure 6d. It
means that the proposed BCA-GSC algorithm not only suppresses noise better, but also
prevents the desired signal cancellation.

To further verify the advantage of the proposed algorithm, the objective test percep-
tual evaluation of speech quality (PESQ) [29], which is highly correlated with subjective
listening test, was conducted. Figure 7 shows the PESQ values at three background noise
levels. GSC 1 denotes the conventional GSC algorithm [5], and BCA-GSC 1 and BCA-GSC
2 denote the BCA-GSC algorithm without iteration and one iterative BCA-GSC algorithm
respectively. It can be seen that both BCA-GSC algorithms achieved an obvious improve-
ment on PESQ scores in various noise environments, especially in the case of directional
noise. Compared with the BCA-GSC algorithm, the conventional GSC algorithm improves
PESQ scores less, and it occasionally leads to a drop in PESQ scores. In addition, the lower
the SNR is, the more obvious the effect of iteration will be.

Figure 6. Speech spectrograms. (a) Clean AC speech; (b) Noisy signal at a single microphone; (c)
ABM output of the conventional GSC; (d) Signal enhanced by the conventional GSC; (e) ABM output
of the proposed BCA-GSC; (f) Signal enhanced by the proposed BCA-GSC.

The frequency domain segment SNR (FsegSNR) [30] measure was also conducted
for evaluations, which has been shown relatively reliable for assessing speech quality.
As shown in Figure 8, the proposed BCA-GSC algorithm improves the FsegSNR in each
background noise situation. Likewise, iteration improves the performance of the BCA-GSC
algorithm. The conventional GSC algorithm has a limited improvement and decreases
the FsegSNR in high SNR case, which can be attributed to the inevitable elimination of
the desired signal and the incomplete suppression of the noise. PESQ and FsegSNR are



Sensors 2021, 21, 1878 12 of 15

objective measure of the speech quality. For evaluating speech intelligibility performance,
short time objective intelligibility (STOI) measure was performed. Table 2 shows the scores
of the STOI measure. A similar result can be observed. After being processed by the BCA-
GSC algorithm, the STOI scores have been enhanced. Although the effect of iteration is
insignificant, it brings no negative optimization. However, the conventional GSC algorithm
often reduces the STOI scores, especially in high SNR conditions. This illustrates that the
traditional GSC algorithm is not as good as the proposed BCA-GSC algorithm for desired
signal protection.

Figure 7. Quality in terms of PESQ of the objective test under different noise environments. (a) 90◦ music noise; (b) 90◦

crosstalk noise; (c) diffuse car noise; (d) diffuse babble noise.

Table 2. Intelligibility in terms of STOI (%) of the objective test.

Noise Type SNR (dB) Noisy GSC 1 BCA-GSC 1 BCA-GSC 2

90o music
0 72.05 90.58 91.13 92.11
5 83.34 92.86 95.43 95.80

15 95.19 94.12 97.66 97.68

90o crosstalk
0 73.75 89.79 91.69 92.32
5 83.69 92.35 95.44 95.61

15 95.16 93.89 97.56 97.61

diffuse car
0 79.18 80.58 82.42 82.52
5 87.80 87.05 89.72 89.75

15 96.64 93.43 96.87 96.93

diffuse babble
0 62.19 71.61 71.81 72.02
5 75.65 82.21 83.67 83.96

15 93.70 92.14 95.47 95.51
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Figure 8. Quality in terms of FsegSNR of the objective test under different noise environments. (a) 90◦ music noise; (b) 90◦

crosstalk noise; (c) diffuse car noise; (d) diffuse babble noise.

5. Conclusions

In this paper, an improved robust GSC algorithm using two AC microphones and a BC
sensor is proposed. The special characteristics of the BC sensor are exploited to obtain accu-
rate VAD to control coefficients update of the ABM and ANC. The recursive least squares
algorithm is employed to update the adaptive coefficients due to the efficiency in terms of
convergence speed. The proposed BCA-GSC algorithm enjoys robustness under various
background noise conditions, and provides a good noise suppression while protecting
desired signal. The experiments demonstrated the proposed BCA-GSC algorithm improves
both speech quality and intelligibility significantly, compared with the traditional GSC.
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