
1Scientific RepoRts | 6:34481 | DOI: 10.1038/srep34481

www.nature.com/scientificreports

Nonlinear backbone torsional pair 
correlations in proteins
Shiyang Long1 & Pu Tian1,2

Protein allostery requires dynamical structural correlations. Physical origin of which, however, remain 
elusive despite intensive studies during last two and half decades. Based on analysis of molecular 
dynamics (MD) simulation trajectories for ten proteins with different sizes and folds, we found that 
nonlinear backbone torsional pair (BTP) correlations, which are mainly spatially long-ranged and are 
dominantly executed by loop residues, exist extensively in most analyzed proteins. Examination of 
torsional motion for correlated BTPs suggested that such nonlinear correlations are mainly associated 
aharmonic torsional state transitions and in some cases strongly anisotropic local torsional motion 
of participating torsions, and occur on widely different and relatively longer time scales. In contrast, 
correlations between backbone torsions in stable α helices and β strands are mainly linear and spatially 
short-ranged, and are more likely to associate with harmonic local torsional motion. Further analysis 
revealed that the direct cause of nonlinear contributions are heterogeneous linear correlations. These 
findings implicate a general search strategy for novel allosteric modulation sites of protein activities.

Allostery in protein molecules is defined by their response to external stimuli on distal site(s). Most biologi-
cally relevant allostery are spatially long-ranged (SLR)1–5. Therefore, understanding of structural correlations, 
especially SLR ones, are essential for elucidation and manipulation of protein allostery. Earlier computational 
characterization of dynamical correlations6–8 provided insightful information on the inherent correlated motion 
of proteins on nanoseconds and shorter time scales. Li et al.9 analyzed a 700-ns molecular dynamics (MD) simula-
tion trajectory of ubiquitin and concluded that SLR pair correlations are rather rare and network of short-ranged 
coherent motions likely contribute to transmission of information in allostery. By combining NMR and com-
putational ensemble, Fenwick et al.10 concluded that the observed SLR correlations in ubiquitin are likely to be 
transmitted by network of hydrogen bonds. Along the same line, Fenwick et al.11 provided evidence that hydrogen 
bonds across β-sheets mediate concerted motions, which are candidates for transfer of structural information 
over relatively long distances. Papaleo et al.12 combined dynamical cross-correlation and a description of the 
protein as a network of interacting residues to detect communication pathways from MD simulation trajecto-
ries of the E2 enzyme. In these studies, analyses were limited to linear correlations6–12. It was well-recognized 
that nonlinear correlations exist in protein dynamics and a generalized correlation measure was developed to 
be within the range of [0, 1] based on nonlinear transformation of mutual information (MI)13. A procedure of 
mutual information based correlation analysis was developed and utilized to identify SLR correlations in human 
interleukin-214. However, despite important insight revealed in these studies, the physical origin and underlying 
molecular motions of observed correlations remain elusive. In this study, we focus on molecular motions that 
underly backbone torsional pair (BTP) correlations. After calculating both mutual information and linear corre-
lations for BTPs in extensive MD simulation trajectories of ten proteins with different sizes and folds (Fig. 1), we 
analyzed variation of correlations as a function of sequential and spatial distances, of belonging secondary struc-
tures, and of torsional motions and time scales. It was found that linear correlations of BTPs are predominantly 
spatially short-ranged, mainly associate with harmonic/isotropic local torsional motions and occur on relatively 
short time scales. On the other hand, nonlinear correlations occur for both spatially short and long-ranged BTPs, 
they mainly associate with aharmonic torsional state transitions on widely different and relatively longer time 
scales, and are dominantly executed by loop residues. The direct cause of nonlinear BTP correlations are found to 
be heterogeneous linear correlations associated with different torsional states or strongly anisotropic local motion 
of participating torsions.
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Results
Mutual information and linear correlations of BTPs. Based on the full correlation expansion as 
derived by Matsuda15 (Equation (2.10) in the reference and shown below),
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(S represent informational entropy of a joint ensemble A1 through An, with I2 being the second order mutual infor-
mation and Ij being the general jth order mutual information), it is evident, and has been well recognized14,16,17, 
that mutual information is an inherent component of entropy, thus is intimately related to free energy at a given 
temperature. Therefore, utilization of mutual information to characterize dynamical correlations makes more 
energetic sense than both linear correlations or the generalized correlation. However, it remains unclear how lin-
ear correlations relate to mutual information, and consequently entropy and free energy in proteins. To elucidate 
this issue, we calculated second order mutual information (MI) and linear correlation coefficient r (see Methods 
in supporting info for details) for all pairs of backbone dihedrals φ and ψ for ten protein molecules. MI vs. r plots 
of four proteins were presented in Fig. 2 (and Fig. S10 for similar plots of the remaining 6 proteins). Contour lines 
of these scatter plots approximately reflect relationship (see Methods for details) between r and maximum possible 
MI (denoted MPMIr here after) engendered by corresponding linear correlations (as there is always possibility of 
nonlinear correlations for any given BTP). It is found that contour lines are essentially the same regardless of the 
identity of proteins, and may be reasonably well-fit (Figs 2 and S10) with the following function. This equation 
is an empirical fitting that applies well to all data. The major considerations are i) symmetry for the two sides of 
the minimum and ii) the asymptotic value of mutual information goes from 0 to ∞, which is consistent with a 
logarithm function defined on the domain [1, ∞ ]:

=
− − +MI r rln(1 )ln(1 )

2 (2)

Meanwhile, data points locate above and far from the contour line (as specified by Equation 2) indicate that sig-
nificant nonlinear correlations exist for corresponding BTPs. Again, note that MI is linearly related to entropy 
by the Boltzmann constant. Therefore, for points fall on Equation 2, entropic cost for initial increase of r from 
0.1 to 0.4 is around 0.08kB, while a further increase of r from 0.4 to 0.7 corresponds to approximately 0.23kB. In 
extreme cases, one may have large variation of linear correlations with no thermodynamic impact at all, this can 
be easily imagined if one draw a horizontal line in one of MI vs. r plots as shown in Fig. 2a. Therefore, utilization 
of linear correlations to characterize protein torsional correlations does not provide thermodynamic support  

Figure 1. Structures of ten proteins analyzed in this study. (a) Barstar (pdb code: 1bta), (b) RNase Sa 
(pdb code: 1rgh), (c) Ribonuclease inhibitor (pdb code: 2bnh), (d) Kallikrein (pdb code: 2pka), (e) Human 
sulfertrasferase (pdb code: 3f3y), (f) Pancreatic trypsin inhibitor (pdb code: 5pti), (g) Ribonuclease A (pdb 
code: 7rsa), (h) β-barrel-assembly machinery E (BamE), (i) Cyclin-dependent kinase 2 (CDK2) and (j) Hen egg 
white lysozyme (HEWL). Hereafter, all proteins are either labeled with its PDB codes or abbreviations shown 
in parenthesis to be concise. α helices are in purple, β strands are in yellow, all other secondary structures were 
termed “loop” in this study and are shown in cyan. This figure was prepared with VMD48.



www.nature.com/scientificreports/

3Scientific RepoRts | 6:34481 | DOI: 10.1038/srep34481

(see supporting text Complex mapping between mutual information and linear correlations and relevant figures 
(Figs S2–S9) for more discussions). Additionally, while the theoretical range of MI goes from 0 to ∞ , thermo-
dynamics dictates that we will not observe huge values in practical biomolecular systems, which operate under 
ambient conditions. Indeed, as shown in Fig. 2 (and Fig. S10), the maximum MI we observed is less than 1.3 
and MI value beyond 1.0 is extremely rare. Based on these analysis and observations, we concluded that utili-
zation of MI to characterize dynamical correlations provides both practical convenience and physical intuition. 
Nonetheless, we analyzed linear correlations extensively for comparison with MI on the one hand, and to identify 
nonlinear contributions to BTP correlations on the other hand.

Sequential distribution of BTP correlations. To analyze the distribution of both linear correlations and 
MI of BTPs in primary sequence space, a correlation matrix was created for each analyzed protein and presented 
in Fig. 3 (and Fig. S11). For convenience of presentation on the same matrix, r was first transformed into MPMIr 
by utilizing Equation (2). For sequentially long-ranged pairs (off diagonal points in correlation matrices), the full 
MI (presented in left-upper half matrices), which includes both linear and nonlinear contributions, is significantly 
larger than MPMIr (presented in right-lower half matrices) in most of proteins analyzed. The observation sug-
gests that nonlinear contributions are increasingly more important over longer distances in primary sequences. 
However, the extent of difference between full MI and MPMIr varies significantly for different proteins, and 
range from non-significant for the two smallest proteins (1bta, 5pti) to dramatic for larger proteins (see Fig. 3d,  
Figs S11d and S11ae). Additionally, a common feature shared by all proteins is that significant MI in off-diagonal 
region is primarily associated with loop residues (all residues that are in neither an α helix nor a β strand were 
defined as loop residues in this study).

Relevance of spatial distances and secondary structures for nonlinear BTP correlations. In 
three dimensional protein structures, large distances in primary sequence may correspond to either long or 
short distances in space. Correlations caused by physical adjacency are trivially expected in condensed phases. 
In practice, what we care most are SLR correlations due to their potential participation in functionally important 
allosteric interactions. To analyze spatial variance of BTP correlations, the calculated MI and MPMIr were plotted 
with respect to spatial distances as shown in Fig. 4 (and in Fig. S12). Two major consistent features were observed 
in all of studied proteins. Firstly, SLR correlations have significant nonlinear contributions since MI are generally 
larger than corresponding MPMIr. Secondly, loop-loop (L-L) BTPs exhibit the most and the strongest, α helix and 
β strand (α/β-α/β) BTPs have the least and the weakest, and α/β-loop (α/β-L) BTPs manifest intermediate SLR 

Figure 2. Mutual information MI vs. linear correlation coefficient r plots for four selected proteins. (a) 2pka, 
(b) 7rsa, (c) CDK2 and (d) HEWL. The green dashed line is a universal fit of the contour for data points for all ten 
studied proteins and is given by Equation 2. The horizontal line in (a) is to emphasize that widely different values 
of linear correlation coefficients may correspond to the same value of mutual information, which is directly 
related to entropy, and hence free energy of the molecular system. See Fig. S10 for MI vs. r plots of the remaining 
six analyzed proteins.
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correlations. Regarding the second feature, significant variation was observed among different proteins (e.g. 3f3y 
exhibits significantly more extensive SLR L-L BTP correlations than 1bta, Fig. S12ad).

Qualitatively, correlation matrices for studied proteins (see Figs 3 and S11) suggest that for significant sequen-
tially non-local correlations (off-diagonal region), nonlinear contributions are significant. Similarly, distance vs. 
correlation plots in Fig. 4 (and Fig. S12) indicate that SLR correlations have significant nonlinear contributions 
and this is especially true for some L-L BTPs. To further clarify relative importance of nonlinear correlations 
for different types of BTPs (i.e. L-L, α/β-L and α/β-α/β) at different spatial distances, we constructed MI vs. r  
plots for spatially local (with inter-torsion distances equal to or smaller than 8 Å) and non-local (otherwise) 
BTPs of each type and presented the results in Fig. 5 (and Fig. S13). For most proteins, α/β-α/β BTPs exhibit 
extremely rare (except for 3f3y) nonlinear correlations that locate above the indicated contour line specified by 
Equation 2, L-L BTPs have the most number of data points exhibit significant nonlinear correlations, and α/β-L 
BTPs stays in between. The relative ratio of BTPs with significant long-range correlations were listed for L-L, 
L-α/β, and α/β-α/β types for each protein in Table S3. Spatial locality, while makes decisive difference in cor-
relation strength, plays a unimportant role in relative significance of linear and nonlinear contributions among 
different types of BTPs. Human sulfertransferase seems to be an outlier with significant proportion of α/β-α/β 
BTPs locate above the contour line (Fig. S13d). Nonetheless, even for this seemingly special protein, spatial local-
ity remains to be an non-decisive factor in determining relative importance of nonlinear contributions in corre-
lations of different types of BTPs (α/β-α/β, α/β-L and L-L). It is important to note that, in all studied proteins, 
the majority BTPs fall on or locate closely to the contour line in MI vs. r plots (Fig. 5) regardless of specific BTP 
types (Table 1). Therefore, linear correlation contributes dominantly for most of BTPs irrespective of the specific 
secondary structures in which the participating torsion locate. It is only that L-L BTPs are the most likely, and 
α/β-α/β BTPs are the least likely to have significant nonlinear contributions to their correlations, with α/β-L 
BTPs being the intermediate scenario in this regard.

Torsional state transitions and nonlinear BTP correlations. Based on observations mentioned above, 
we were quite confident that neither spatial distance nor the specific identity of belonging secondary structure is 
a necessary factor for significant nonlinear contributions in BTP correlations. Instead, it should be some other 
property that is the most likely to associate with loop residues and is the least likely to associate with residues 
in stable secondary structures. For backbone torsions of loop residues, one outstanding feature is significantly 

Figure 3. Correlation matrices of four selected proteins, (a) 2pka, (b) 7rsa, (c) CDK2 and (d) HEWL. For each 
protein, the full mutual information (MI) is shown in upper-left triangle, and the MPMIr transformed from 
linear correlation coefficient r is shown in lower-right triangle. The numbers in both horizontal and vertical 
axis are indices of backbone torsions, which run from N-terminus to C-Terminus. Strength of correlation is 
indicated by the color bar to the right side. By limiting the range of MI (and MPMIr) to [0, 0.3], correlations 
of BTPs formed by immediate neighboring torsions in sequence were effectively excluded for a better view of 
correlation patterns elsewhere. See Fig. S11 for MI vs. r plots of the remaining six analyzed proteins.
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higher probability of having torsional state transitions on various time scales. In contrast, most backbone tor-
sions in stable secondary structures stay in one specific torsional state for native proteins. To test for necessity 
of torsional state transitions in nonlinear contributions to BTP correlations, we calculated distributions of all φs 
and ψs for each of studied proteins and searched for torsional state transitions according to the specified rule (see 
Methods-Distributions of backbone torsions and joint distributions for BTPs in supporting info for details), and the 
results were shown in Table 1. Indeed, a nonlinearly correlated BTP (see “Nonlinear BTPs” column in Table 1) 
belongs the most likely to the “DMP (double multiple peak)” scenario, the least likely to the “DSP (double single 
peak)” scenario, and with the intermediate probability belonging to the “SMP (single multiple peak)” case. Again, 
it is important to note that regardless of the torsional state transition status, most BTPs are not significantly cor-
related and such BTPs were classified as “Linear BTPs” in Table 1. Since joint distributions of a given BTP is not 
directly deducible from distributions of its participating torsions, we proceeded to search for peaks (local max-
ima) of the joint distribution of each BTP (see Methods-Distributions of backbone torsions and joint distributions 
for BTPs in supporting info for details). The results were shown in Fig. 6 (and Fig. S14). It is observed that the 
contour line is mainly covered by BTPs with single-peak joint distributions. The majority of BTPs locate far above 
the contour line have three or more peaks that are associated with torsional state transitions in participating tor-
sions. However, there are small but significant number of BTPs with single joint peak distributions locate above 
the contour line, and there are rare BTPs with double or triple-peak joint distributions fall onto or locate slightly 
below the contour line. Therefore, while single-peak distributions of participating torsions (or BTP joint distribu-
tions) associate predominantly with linear correlations and multiple-peak distributions associate predominantly 
with nonlinear contributions, the small number of exceptions suggested that torsional state transitions are neither 
necessary nor sufficient conditions for, but associate significantly more tightly with nonlinear BTP correlations 

Figure 4. MI (top panels) and MPMIr (bottom panels) for BTPs with various inter-torsion distances (the 
vertical axis, in Å) of the four selected proteins, (a) 2pka, (b) 7rsa, (c) CDK2 and (d) HEWL. α/β-α/β BTPs 
are shown in blue, α-L BTPs in green, and L-L BTPs in red. See Fig. S12 for similar plots of the remaining six 
analyzed proteins.



www.nature.com/scientificreports/

6Scientific RepoRts | 6:34481 | DOI: 10.1038/srep34481

Figure 5. MI vs. r plots for local (with inter-torsion distances being smaller than or equal to 8 Å, crosses in top 
panels) and long-range (otherwise, squares in bottom panels) BTPs for four selected proteins, (a) 2pka, (b) 7rsa, 
(c) CDK2 and (d) HEWL. α/β-α/β BTPs are shown in blue, α-L BTPs in green, and L-L BTPs in red. See Fig. 
S13 for similar plots of the remaining six analyzed proteins.

PDB 
code

Linear BTPs Nonlinear BTPs Nlinear
NnonlinearNDSP (%) NSMP (%) NDMP (%) NDSP (%) NSMP (%) NDMP (%)

1bta 11023 (71.9) 3999 (26.1) 299 (1.9) 3 (3.7) 24 (30.3) 52 (65.8) 193

1rgh 7494 (42.7) 8171 (46.6) 1875 (10.6) 9 (2.1) 70 (16.9) 336 (80.9) 42

2bnh 325998 (78.9) 82284 (19.9) 4992 (1.2) 40 (12.1) 132 (39.9) 159 (48.0) 1248

2pka 53274 (55.2) 37844 (39.2) 5337 (5.5) 27 (1.4) 415 (21.9) 1449 (76.6) 510

3f3y 32589 (22.3) 77234 (52.9) 36105 (24.7) 51 (0.4) 1102 (9.4) 10560 (90.2) 12

5pti 3907 (61.2) 2201 (34.5) 273 (4.3) 9 (15.0) 24 (40.0) 27 (45.0) 106

7rsa 15738 (53.8) 11934 (40.8) 1564 (5.4) 15 (1.6) 170 (18.9) 714 (79.4) 32

bame 2076 (25.6) 4437 (54.7) 1595 (19.7) 4 (0.5) 48 (6.0) 751 (93.5) 10

cdk2 90936 (52.0) 71138 (40.7) 12833 (7.3) 15 (1.2) 171 (14.1) 1028 (84.7) 144

lyzm 9988 (31.7) 15995 (50.7) 5569 (17.7) 23 (2.1) 193 (17.7) 872 (80.1) 29

Table 1.  Number (percentage in parenthesis) of BTPs with participating torsions experiencing torsional 
state transitions in MD trajectory sets of analyzed proteins. NDSP: number of BTPs with both torsions having 
a single peak distribution (Double Single-Peak, DSP). NSMP: Number of BTPs with one of a pair of torsions has 
multiple (two or more) peak distributions and the other one has a single-peak distribution, (Single Multiple-
Peak, SMP). NDMP: Number of BTPs with both torsions having multiple-peak distribution, (Double Multiple-
Peak, DMP). A BTP is defined to be nonlinearly correlated when it is vertically above the contour line defined 
by Equation (2) more than 0.02, or linearly correlated if otherwise. Nlinear: Number of linearly correlated BTPs; 
Nnonlinear: Number of nonlinearly correlated BTPs.
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than sequential distances, spatial distances and identity of belonging secondary structures. Additionally, for spa-
tially local BTPs (Figs 6a–d and S14a–f), a large fraction of points fall onto or locate close to the contour line 
exhibit significant linear correlations, while most of data points fall onto or near the contour line have weak linear 
correlations for SLR BTPs (Figs 6e–h and S14g–l). These observations further suggest that it is quite difficult for 
linear correlations to propagate over long distances spatially in proteins.

Nonlinear contributions and heterogeneous linear correlations. BTPs that locate above the con-
tour line but with both participating torsions exhibiting single peak distributions (varies from 0.4% for 3f3y 
to 15% for 5pti, Table 1) suggested that nonlinear contribution to BTP correlation may exist independent of 
torsional state transitions. These BTPs also exhibit single peak joint distributions (Fig. 6). Conversely, there are 
also rare BTPs that both fall on the contour line and have double- or triple-peak joint distributions and corre-
sponding multiple-peak distributions for one participating torsions corresponding to torsional state transitions. 
Such observations indicate that predominantly linear correlations may exist for BTPs with participating tor-
sions having torsional state transitions. We are interested in pursuing the origin of nonlinear contributions that 
are independent of torsional state transitions in the former case (termed single-peak nonlinear case below), and 
the reason why torsional state transitions in later cases resulted in negligible nonlinear contributions (termed 
multiple-peak linear case below).

For two independent DOFs x and y, their joint distribution is given as:

= ∗p x y p x p y( , ) ( ) ( ) (3)

the effective correlation between two correlated variables x and y should be reflected by the following distribution 
difference:

∆ = −p x y p x y p x p y( , ) ( , ) ( ) ( ) (4)

Therefore, analysis of these two distributions for corresponding BTPs may help us reveal physical mechanisms 
behind both the single-peak nonlinear case and multiple-peak linear case.

We first examined BTPs belong to the single-peak nonlinear case, and found that their joint distributions are 
continuous with various highly anisotropic shape, the overwhelming majority of which have either two ellipti-
cal joint distribution peaks in immediate contact or a “L” shape with various extent of splay (see Fig. 7c1), and 
Fig. 7b1)), and both scenarios correspond to strongly anisotropic motion of participating torsions within a single 
torsional state. In contrast, for typical BTPs with single-peak joint distributions and fall on the contour line, the 
joint distribution peak is approximately ellipse with various eccentricity (Fig. 7a1,d1)). More importantly, in the 
distribution difference plots, at least one set of same-signed peaks (but lines were drawn for positvely-signed 
peaks only) fall approximately on the same straight line for linearly correlated BTPs (Fig. 7a2,a3)), which sug-
gested that linear correlations for all observed data are approximately homogeneous. In contrast, two or more 
line segments with different slopes are necessary to connect same-signed peaks for single-peak nonlinear case 
(Fig. 7b2,b3), Fig. 7c2,c3)), which suggested that heterogeneous linear correlations exist for different subpart of 
the observed data. Additionally, for BTPs fall on the bottom part of the contour line, the participating torsions are 

Figure 6. Extent of nonlinear correlations and number of joint distributions peaks (indicated by the side color 
bar) for local (with inter-torsion distances being smaller than or equal to 8 Å, (a–d)) and long range (otherwise, 
(e–h)) BTPs of the four selected proteins. (a,e) 2pka, (b,f) 7rsa, (c,g) CDK2, (d,h) HEWL. Number of joint 
distribution peaks is represented by different colors according to the color scale to the right of each plot. See  
Fig. S14 for similar plots of the remaining six proteins.
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essentially independent and no peak exist for the distribution difference (Fig. 7d2)), and consequently no lines 
may be drawn (Fig. 7d3)).

We further selected BTPs belong to the multiple-peak linear case (Fig. 7e1)) and a few other representative 
BTPs with multiple-peak joint distributions (that correspond to torsional state transitions of participating tor-
sions) and significant nonlinear contributions in their pair correlations (Fig. 7f1,g1,h1)), and examined corre-
sponding joint distributions and distribution differences. It was found that for BTPs locate far above the contour 
line, multiple line segments with different slopes are necessary to connect same-signed peaks in distribution dif-
ference(Fig. 7f2,f3,g2,g3,h2,h3)), which suggested that linear correlations between the two participating torsions 
are highly heterogeneous. Consequently, correlations for such BTPs may not be properly represented by a single 
linear correlation coefficient and mutual information is a better choice. While for BTPs fall onto or locate in the 
vicinity of the contour line, same-signed peaks falls approximately on a single straight line, which suggested that 
linear correlations for such BTP is essentially homogeneous (see Fig. 7e2,e3)).

These observations demonstrate that regardless of torsional state transitions, as long as a pair of DOFs have 
heterogeneous linear correlations, it is likely that there are significant nonlinear contributions to their pair cor-
relation. The reason is that it is not possible to effectively represent such heterogeneous linear correlations with 
a single linear correlation coefficient. It is noted that heterogeneous linear correlations do not guarantee signifi-
cant nonlinear correlation. Combinations of heterogeneous linear correlations may result in effectively negligible 
global correlations. Therefore, a safe description is that for a pair of significantly correlated DOFs, heterogeneous 
linear correlations are both necessary and sufficient for nonlinear contributions.

Figure 7. Joint distributions (1), distribution differences (2) and lines connecting positive peaks for 
distribution differences (3) of eight selected BTPs. (a) BTP (4:5) of 1bta, a representative BTP with strong 
homogeneous linear correlations and single peak joint distribution, (b) BTP(141:142) of 1rgh, a representative 
BTP with heterogeneous linear correlations and a “L”-shaped anisotropic joint distribution peak, (c) BTP 
(120:121) of 7rsa, a representative BTP with heterogeneous linear correlations and an strongly anisotropic 
joint distribution peak that is essentially two elliptical peaks in immediate contact. (d) BTP (9:86) of HEWL, 
a representative BTP with two participating torsions being essentially independent. (e) BTP(81:311) of 2pka, 
a representative BTP with strong homogeneous linear correlations and a double-peak joint distribution, (f) 
BTP (141:144) of CDK2, a representative BTP with significant heterogeneous linear correlations and six-
peak joint distributions. (g) BTP (298:299) of CDK2, a representative BTP with significant heterogeneous 
linear correlations and double-peak joint distributions. (h) BTP (179:183) of 2pka, a representative BTP with 
significant heterogeneous linear correlations and six-peak joint distributions.
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When multiple peaks exist for joint distribution differences Δ p(x, y), a homogeneous linear correlation implies 
that firstly, at least one set of same-signed peaks fall approximately on the same straight line (e.g. Fig. 7e2,e3)); and 
secondly, anisotropic local distribution difference within each peak should be well-described by the same straight 
line (e.g. Fig. S7k,l). One can intuitively imagine that the probability of observing three or more peaks to be on 
the same line in a plane is fairly small. When three or more peaks exist for joint distribution p(x, y) of a BTP, it 
is likely that corresponding distribution difference Δ p(x, y) has three or more same-signed peaks. Therefore, it 
is extremely rare for BTPs with three-peak joint distributions fall on the contour line, and we did not observe a 
single case of BTP with four or more peak joint distributions fall on the contour line. Meanwhile, for a BTP with 
single or double same-signed peaks in distribution difference, when within-peak distribution is isotropic, one 
essentially observe approximately homogeneous linear correlations (note that strict homogeneity corresponds 
to a single straight line with no dispersion of data). However, when one (or both of) same-signed peak(s) are 
strongly anisotropic, possibility of significant heterogeneous linear correlations start to surface (Fig. 7g1–3)).

It is noted that there are a number of BTPs fall below the contour line in MI vs. r plots, especially when dis-
tances between two participating torsions is below 8 Å (Fig. 6a–d). Generally speaking, there are always some 
nonlinear contributions to correlation between two torsions unless the joint distribution between them strictly 
fall on a single straight line. The contour line is simply an effective fit that successfully captures the maximal 
(minimal) extent of (non-)linear contributions for a larger number of protein BTPs. When a BTP has sufficiently 
homogeneous linear correlations, it is expected to fall below the contour line, which is an upper bound of mutual 
information resulted from pure linear correlations for BTPs. This is vividly illustrated by case 6 in Complex map-
ping between mutual information and linear correlations in supporting info, where as two joint distribution peaks 
gradually increase distances on the line connecting them, the size of each local peak (and heterogeneities asso-
ciated with it) becomes less and less important, and global homogeneity of linear correlations between them 
effectively increases. The corresponding position of the DOF pair on MI vs. r plot fall on the contour line initially 
and drop below it eventually (Fig. S7j,l).

Trajectory subset analysis. While these observations are consistent with the idea that either torsional state 
transitions or strongly anisotropic intra-well torsional motion are necessary for heterogeneity of linear correla-
tions, which seems to be both necessary and sufficient for nonlinear contributions to the overall mutual informa-
tion. We might not be firmly conclusive regarding the association between torsional state transitions (or strongly 
anisotropic intra-well torsional motions) and heterogeneity of linear correlations, however. The reason is that for 
a given protein trajectory set, BTPs fall on the contour line have different identities and physical environment 
from those locate above it, and there are other differences between two different BTPs in addition to presence/
absence of torsional state transitions (or anisotropic intra-well torsional motion). To resolve these uncertainties, 
we selected some BTPs that manifest strong nonlinear contributions to pair correlations and locate far above the 
contour line in relevant MI-r plots from each protein and carried out the following analysis. Firstly, we splitted the 
original trajectory set into 20 (200 for HEWL due to much larger size of its trajectory set) equally sized subsets. 
Secondly, both MI and r were calculated for each of selected BTP on each of the trajectory subsets. For a given 
BTP, since torsional state transitions occur on specific time scales, we expect to observe various extent of which 
in different trajectory subsets. Therefore, by observing the extent of nonlinear contributions, relevant torsional 
DOF distributions and number of joint distribution peaks from trajectory subsets of the same BTP, we effectively 
excluded the possibility that observed differences are simply due to the fact of observing different BTPs. MI-r 
plots of selected BTPs and number of peaks in their joint distributions obtained from trajectory subsets of the 
four selected proteins were presented in Fig. 8 (see also Fig. S15). Firstly, it is clear that relative importance of 
linear and nonlinear contributions exhibited in trajectory subsets are widely different from that calculated in the 
collective set. Secondly, regarding number of peaks for BTP joint distributions and distances to the contour line, 
very similar pattern was observed as for the corresponding full trajectory sets (Figs 6 and 8). These observations 
unequivocally confirmed the association between torsional state transitions (or strongly anisotropic intra-well 
torsional motion) and heterogeneity of linear correlations.

The observed behavior of trajectory subsets is consistent with expectation that torsional state transitions gen-
erally occur on relatively longer time scales and are rare events on time scale of snapshots recording (ps), and 
therefore was not observed in many trajectory subsets, for which linear correlations dominate.

Discussions
Potential functional relevance of SLR nonlinear BTP correlations and challenges. From a func-
tional point of view, proteins with diverse and significant SLR correlations may be utilized to transmit widely dif-
ferent signals upon different stimuli. It is likely that all hub proteins in protein-protein interaction networks have 
this property18. Conversely, proteins with few SLR correlations may not be versatile in transmitting information 
over long distances, or at most transmit highly specific and dedicated signals. The biological implication is that 
for a protein with diverse significant SLR backbone torsional correlations executed by loop residues, potentially 
rich opportunities exist for designing molecular agent to modulate its functions allosterically. Considering the 
paramount importance of flexible loop residues in coordinating and participating a wide variety allosteric inter-
actions5,19,20, and the emerging superiority of drug targeting allosteric sites3,4,21–24, SLR nonlinear correlations 
exhibited by many L-L BTPs are of far reaching potential importance in future manipulation of biological sys-
tems. However, to fully realize the potential of such versatile SLR, one need to have the capability of predicting 
such correlations on the one hand, and to understand the mechanism of how information transmit from one site 
to a distal site in a nonlinear way on the other hand. Both are significant challenges that need to be addressed and 
are briefly discussed below. Firstly, despite the fact that with steady expected increase of computational power, 
sub-millisecond to milliseconds MD simulations are expected to be routine in a decade, the fact that we identified 
SLR nonlinear correlations does not guarantte that we may accurately predict such correlations through extensive 
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MD simulations. The major concern is the quality of force fields in describing such SLR dynamical correlations 
since we essentially have no reliable reference to perform corresponding optimizations. This is in contrast to the 
availability of protein data bank for validation of parameters describing individual torsional distributions25,26. 
The other possible way is to utilize machine learning technique once we have sufficient reliable data of such SLR 
nonlinear torsional correlations, which are unfortunately not available for the time being. Secondly, backbone 
torsions in stable secondary structures mainly exhibit harmonic intra-well dynamics and linear correlations that 
are on relatively short time scales (nanoseconds or shorter), while nonlinear SLR backbone torsional pair corre-
lations are mainly associated with aharmonic torsional state transitions that occur on much longer and widely 
different time scales (ranging from tens of nanoseconds up to multiple micron-seconds and beyond as observed 
in MD simulations). Therefore, if distal nonlinear BTP correlations were indeed transmitted through stable sec-
ondary structures, it should not be harmonic vibrational motions that contribute predominantly to linear pair 
correlations among on-path backbone torsions in corresponding secondary structures. As shown in Figs 4 and 5,  
significant SLR BTP correlations are predominantly nonlinear. Despite many insightful studies that have been 
carried out to achieve mechanistic and/or operational understanding of the signal transmission in allostery and to 
identify on-path communicating residues21,24,27–40, the time scale issue remain to be tackled for improved under-
standing of how SLR nonlinear correlations are transmitted.

Time scales and spurious correlations. Nonlinear protein BTP correlations, which were demonstrated 
by our analysis of MD trajectories to occur over large spatial distances, are strong candidates for mediation of 
allosteric interactions. Significant SLR nonlinear BTP correlations are mainly associated with torsional state tran-
sitions, which occur on widely different time scales for different torsional DOFs. It is therefore important to 
specify time scales when one is interested in correlations of a given BTP. When small MD trajectory sets (up to 
~10ns) with snapshots interval on ps time scales is utilized for analysis, the results are likely to be dominated by 
strong linear correlations associated with harmonic local motions. Therefore, such analyses are not likely to be 
insightful for disclosing mechanisms of many functionally important allosteric interactions. Indeed, short time 
scale linear correlation based network analysis was found to be not effective41. A latent problem associated with 
long time scale correlations is identification of spurious correlations, which remains a grand challenge despite 
discussions before14. For illustration, we constructed MI vs. r plots for lysozyme based on trajectory sets of differ-
ent sizes as shown in Fig. 9. One would immediately conclude that a significant fraction of nonlinear correlations 
observed in Fig. 9b are spurious since they disappear in larger trajectory sets (Fig. 9c–e). However, without larger 
trajectory sets, we usually have no reliable way of identifying spurious correlations from genuine ones. We may 
have the following thought experiment. Let’s assume that we have two independent MD trajectories A and B of 
the same length for two different proteins, and pick a torsion a in A and a torsion b in B, if torsional state transi-
tions of a and b occur on very similar time scales that happen to be comparable with the total length of the two 
trajectories, it is likely for us to observe a strong correlation between a and b if both torsions experienced a small 
number of torsional state transitions in trajectories A and B respectively. Such correlation is spurious since we 
know that there is no physical forces to coordinate torsional state transitions between a and b, they must go out 

Figure 8. Extent of nonlinear correlations and number of joint distributions peaks (indicated by the side color 
bar) for local (with inter-torsion distances being smaller than or equal to 8 Å, (a–d)) and long range (otherwise, 
(e–h)) BTPs of four selected proteins in 20 (200 for HEWL) equally sized trajectory subsets. (a,e) 2pka, (b,f) 7rsa, 
(c,g) CDK2, (d,h) HEWL. Number of joint distribution peaks is represented by different colors according to the 
color scale to the right of each plot. Black crosses indicate the position of selected BTPs in MI vs. r plots of the 
original collective trajectory set. Colored circles are based on calculated MI and r in trajectory subsets. See Fig. S15 
for similar plots of the remaining six proteins.
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of phase gradually and eventually lose correlation if the observation was sufficiently long (or sufficiently many 
observations were made). However, for two DOFs that are in the same protein molecule and we do not have suf-
ficiently long (or many) observation(s), we have no way of differentiating a genuine correlation from a spurious 
one unless we have the ability to identify physical interaction networks mediating arbitrarily given pairs of DOFs 
in a molecule, which is just as, if not more, difficult a task itself. We might be tempted to believe that a correlation 
for a BTP is genuine if we observed many torsional state transitions for the participating torsions. However, we 
can never be sure that there might be an much slower latent DOF, transitions of which has not been observed 
but may deminish or strengthen observed correlations for our interested pair. Similarly, we might be tempted to 
speculate that an observed correlation for a BTP is likely to be spurious if only a few torsional state transitions 
were observed for participating DOFs, however, such correlations may be equally likely genuine. Fortunately, for 
many interesting and important biomolecular systems, there are experimental means to estimate time scales of 
key molecular events, and such time scale information would be of great help in differentiating spurious correla-
tions from genuine ones.

It is noted that the MI vs. r plot of lysozyme in Fig. 2d is apparently different from Fig. 9e. The difference is 
that Fig. 2d is generated by taking one out of every ten snapshots available, so a significant weight is given to local 
torsional motions in calculation of mutual information. While Fig. 9e was obtained by uniformly taking one from 
every 10,000 snapshots of the same trajectory set, thus essentially the vast majority of local torsional motions 
were missing. Since in practice, long time scale correlations are more likely to be associated with biomolecular 
functions, it is suggested that one should focus on global torsional motions.

To be more quantitative on the convergence of distributions of each torsion utilized in correlation analysis, we 
arbitrarily partitioned trajectory set of each protein into three equally sized subsets, calculated K-L divergence 
for the distribution of each torsion for each pair of trajectory subsets, and classified the corresponding torsion as 
satisfactorily converged if the maximum of three K-L divergence value is smaller than 0.2. As shown in Table 2, 
essentially all torsions are converged for HEWL. For other proteins with smaller trajectory sets, various fractions 
of torsions are not well converged. Nonetheless, all key conclusions remain the same for converged torsions.

It is important to note that convergence of BTP correlations (or simulation) is dependent upon our interested 
part of free energy landscape. For example, when our major interest is native conformational transitions, we do 
not need to observe folding/unfolding events that are likely to be on much longer time scales. A more naive source 
of spurious correlations is simply unusually small sample size (number of data points), which is highly likely to 
cause spurious correlations. In this study, we utilized extensive MD trajectories (ranges from a few μs to hundreds 
of μs) and a simple random permutation calculation suggest that our results do not suffer from trivial lack-of-data 
spurious correlations (see Table S2).

Conclusions
In summary, we analyzed extensive MD simulation trajectories for ten proteins of different sizes and folds, and 
found that significant SLR nonlinear BTP correlations exist in most of studied proteins. Such nonlinear corre-
lations are predominantly executed by loop residues and mainly associate with aharmonic torsional state tran-
sitions of participating torsions, which occur on widely different and relatively long time scales. Alternatively, 
nonlinear correlations in limited cases may associate with strongly anisotropic local torsional motion. Ultimately, 
heterogeneous linear correlations of participating torsions are direct causes of significant nonlinear contributions 
to BTP correlations. In contrast, significant linear correlations are largely limited to shorter spatial range and time 
scales, and are more likely to associate with residues in stable secondary structures. Long time scales and spatially 
long range of nonlinear BTP correlations make them strong candidates for mediation of allostery in proteins. 
Considering the tremendous role of loop residues in participation of biological activities and in transmission of 
signals, our findings implicate rich possibilities in modulation of biological activities through identification of 
novel allosteric sites. Meanwhile, time scale difference between SLR nonlinear correlations and local harmonic 

Figure 9. MI vs. r plots of HEWL constructed from trajectory set of (a) 1, (b)10, (c)100, (d)1000 and (e) 
10000 20-ns trajectory segments. 5000 snapshots were uniformly taken from corresponding trajectory sets for 
calculation of MI and r for all BTPs.

Protein 1bta 1rgh 2bnh 2pka 3f3y 5pti 7rsa BamE CDK2 HEWL

Ptorsion
nc  (%) 5.7 17.9 4.9 24.8 28.1 11.4 22.8 49.3 7.7 0.0

Table 2.  Percentage of not well converged torsions (Ptorsion
nc ) for each analyzed protein trajectory set.
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dynamics warrants further investigations on transmission of allosteric signals across single or multiple protein 
structural domains. Efforts are undergoing in our group for nonlinear correlation networks of proteins.

Methods
MD simulation trajectories for the ten proteins. As mentioned in the Fig. 1, pdb codes or abbrevia-
tions are utilized to represent names of protein molecules. MD simulation trajectories of 1bta, 1rgh, 2pka, 5pti, 
7rsa and 2bnh were taken from our previous studies42,43. HEWL trajectories were taken from our previous confor-
mational analysis study44. Human sulfurtransferase (3f3y) trajectory set was taken from a previous study45 except 
that we continued to run for 1 μs more. BamE simulation system was prepared with the same protocol with the 
initial structure being 2yh9. CDK2 trajectory were generated in a similar protocol with these previous trajectories 
except utilization of the AMBER force fields and package. Briefly, 200 different crystal structures were solvated to 
generate 200 simulation systems, and a 200ns production run were carried our for each simulation system after 
equilibration, the details of this study is in the process of analysis and will be published elsewhere. A table (S1) was 
prepared for lengths of various trajectory sets.

Indexing of backbone torsions. For each protein with N residues, 2N −  2 backbone torsions were calcu-
lated from corresponding trajectory set and utilized for analysis. We did not consider the φ of the N-terminal 
residue and ψ of the C-terminal residue, and the 2N −  2 torsions were indexed by numbers 1 through 2N −  2.

Calculation of circular linear correlations and their instability. Linear correlations between two tor-
sions x and y were represented using the circular correlation coefficients10,11,46 as shown in following Equations:
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with x being the average of torsion x, r being circular linear coefficient and is termed “linear correlation coeffi-
cient” in the main text and hereafter, M being number of snapshots utilized for analysis, and xi being the value of 
x for snapshot i.

Due to the circular property of torsion angles, brute force calculation of Pearson correlation coefficients is not 
possible for two torsions. However, when examine carefully the equation utilized for calculating the mean angle 
(Equation 5), it is apparent that when a torsion has a two peak distribution with 180° difference and approximately 
equal weights, summation of both sine and cosine terms essentially vanish and the calculated results only reflect 
local noises. We did observe such instability of circular linear correlations in our analysis, as shown in Fig. S1,  
three subsets of a BTP with essentially similar joint distribution (p(x, y)) and distribution difference (Δ p(x, y) = 
  p(x, y) −  p(x)p(y)) have dramatically different calculated linear correlation coefficients, ranging from strongly 
negative, to essentially negligible and strongly positive linear correlations. Unfortunately, it seems to be difficult 
to come up with a new formulation that are free of this or other problems for torsions. Therefore, it is essential to 
be cautious with linear correlation obtained from circular analysis. However, mutual information is free of such 
instability in addition to the fact that it is linearly related to entropy. It is noted that such instability is more severe 
with small data sets.

Calculation of mutual information. Mutual information for each backbone torsional pair (BTP) compris-
ing two torsions x and y was calculated using the following equations:
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with S being informational entropy and p being probability in specified bin, nx and ny are number of bins utilized 
for torsions x and y. In this study, nx =  ny =  60 if not stated otherwise.

Distributions of backbone torsions and joint distributions for BTPs. Distributions of each back-
bone torsion was established by discretizing it into 60 equally sized bins, followed by counting number of snap-
shot in each bin and normalization with total number of snapshots. Joint distribution of each BTP was established 
by discretizing the 2π ×  2π square into 3600 equally size squares.
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To count the number of peaks in distribution of a single torsion, we first calculated differences between neigh-
boring bins as δn =  p(n) −  p(n −  1)(n =  0, ···, 59) (note the cyclic property of torsions so we have δ0 =  p(0) −  p(59)). 
Next we only consider bins with non-zero differences, if we have δi <  0 and the first following non-zero  
δj >  0 (j ≥  (i +  1)), i is taken as a boundary bin between two peaks, after all boundary bins were found for a torsion, 
all bins between two neighboring boundary bins are merged as a collective bin. A collective bin with a probability 
larger than 0.1 is taken as a distribution peak.

To count the number of peaks in the joint distribution of BTPs, we compare the probability of each bin with 
that of 8 surrounding bins. A given bin is counted as a tentative distribution peak if its probability is larger than 
all of the 8 neighbors. Subsequently, if differences between indices of two tentative peaks on both dimension are 
equal to or smaller than 3, these two tentative peaks will be merged as one joint distribution peak. The reason 
is that with a 6° torsion bin-size, when indices difference on a given dimension is not more than 3, difference 
between two peaks are not more than 24° away from each other when they have a index difference not more than 
3, and such numerically separate peaks should not be considered as torsional state transitions.

Torsional distribution convergence analysis. To quantitatively test for convergence of backbone tor-
sional distributions that were utilized in BTP correlation analysis, we first arbitrarily partitioned the trajectory set 
of each protein into three equally-sized subsets. Subsequently, we calculated K-L divergence for distribution of 
each backbone torsion for each pair of trajectory subsets and classify the corresponding torsion as satisfactorily 
converged is the largest K-L divergence is smaller than 0.2. The same binning was utilized for torsions as in the 
calculation of mutual information.

Random permutation analysis for sufficiency of statistics in calculation of mutual information 
and linear correlation coefficient. To test for possible spurious correlation due to lack of statistics (num-
ber of data points). We performed correlation calculation based on random permutations. Specifically, in calcula-
tion of either MI or r, in each step i for looping through M snapshots, we take value of x and y from independent 
random snapshots ranging from 1 through M. In this way, correlation between x and y is effectively annihilated 
and resulting extent of correlation should be due to lack of statistics. The largest spurious correlation value found 
for all BTPs of each protein were listed in Table S2, since these values are smaller than the size of dots (or other 
shapes) in relevant plots, no error bar was shown in all plots.

Inter-torsion distances. The mid point of the central bond is utilized as the position of a given torsion. The 
inter-torsion distance for a given BTP is defined as distance between positions of its two participating torsions.

Identity of belonging secondary structures for backbone torsions. Identity of the belonging sec-
ondary structure for a backbone torsion is assigned based on DSSP analysis47 of the PDB structure utilized to 
build the simulation system. For CDK2 and HEWL, for which multiple PDB structures were utilized to initiate 
independent simulations, we carried out DSSP analysis for all utilized PDB structures, and each amino acid was 
assigned a secondary structure identity that has the most number of observation. In DSSP output, a residue may 
be assigned one of seven states (H: α helix, B:residue in isolated β-bridge, E: extended strand, participates in β 
ladder, G: 310 helix, I: π helix, T: hydrogen bonded turn, S: bend). We classified H as α, E as β and all others as L.

Represented BTPs in correlation matrices and scattered plots. Explicit representation of all BTPs 
in correlation matrices and various forms of scattered plots would result in excessively large figure files. Only part 
of BTPs were represented in these plots to avoid this problem while maintaining a satisfactory visualization of 
the original data, full data sets are available upon requests. Details are stated below: 1) In Figs 3 and S11. A BTP is 
represented only when indices for both of its participating torsions are multiples of 3 (1bta, 1rgh, 5pti, 7rsa, bame, 
HEWL), 5 (2pka), 7 (3f3y, CDK2) or 11(2bnh). 2) In Fig. 2, Fig. S10, Fig. 5, Figs S13 and S14, the following strate-
gies were utilized to reduce figure size. We generated a random number ran in the range of [0, RAN] for each BTP, 
which would be selected to be presented in corresponding figures if MI >  ran. for 1bta, 1rgh, 5pti, 7rsa, BamE 
and HEWL, RAN =  0.05, for 2bnh, 1pka and CDK2, RAN =  0.1, and for 3f3y, RAN =  0.15. 3) In Figs 4 and S12,  
we again used the above random number strategy and with RAN =  0.03 for 1bta, 1rgh, 5pti and BamE, and with 
RAN =  0.5 for 2bnh, 2pka, 3f3y, 7rsa, CDK2 and HEWL. In Fig. 9, we used RAN =  0.16.
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