
����������
�������

Citation: Bruneo, D.; De Vita, F.

Detecting Faults at the Edge via

Sensor Data Fusion Echo State

Networks. Sensors 2022, 22, 2858.

https://doi.org/10.3390/s22082858

Academic Editor: Natividad Duro

Carralero

Received: 19 March 2022

Accepted: 5 April 2022

Published: 8 April 2022

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2022 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

sensors

Article

Detecting Faults at the Edge via Sensor Data Fusion Echo
State Networks
Dario Bruneo *,† and Fabrizio De Vita †

Department of Engineering, University of Messina, 98166 Messina, Italy; fdevita@unime.it
* Correspondence: dbruneo@unime.it
† These authors contributed equally to this work.

Abstract: The pervasive use of sensors and actuators in the Industry 4.0 paradigm has changed the
way we interact with industrial systems. In such a context, modern frameworks are not only limited to
the system telemetry but also include the detection of potentially harmful conditions. However, when
the number of signals generated by a system is large, it becomes challenging to properly correlate
the information for an effective diagnosis. The combination of Artificial Intelligence and sensor
data fusion techniques is a valid solution to address this problem, implementing models capable
of extracting information from a set of heterogeneous sources. On the other hand, the constrained
resources of Edge devices, where these algorithms are usually executed, pose strict limitations in
terms of memory occupation and models complexity. To overcome this problem, in this paper we
propose an Echo State Network architecture which exploits sensor data fusion to detect the faults
on a scale replica industrial plant. Thanks to its sparse weights structure, Echo State Networks are
Recurrent Neural Networks models, which exhibit a low complexity and memory footprint, which
makes them suitable to be deployed on an Edge device. Through the analysis of vibration and
current signals, the proposed model is able to correctly detect the majority of the faults occurring
in the industrial plant. Experimental results demonstrate the feasibility of the proposed approach
and present a comparison with other approaches, where we show that our methodology is the best
trade-off in terms of precision, recall, F1-score and inference time.

Keywords: ESN; recurrent neural networks; sensor data fusion; edge computing; industry 4.0; fault
detection; deep learning

1. Introduction

The emergence of the Industry 4.0 paradigm has made modern plants involve several
set of sensors to enable monitoring under many different aspects. The pervasive presence
of sensors and actuators in industrial systems totally changed the interactions with these
systems and paved the way for the realization of more precise control and telemetry
frameworks [1]. On the other hand, when the number of sensors is large, it becomes
difficult to correlate and analyze the information coming from several heterogeneous
data sources and produce an accurate diagnosis of the system’s “health”. In particular,
dealing with signals that can be very different (e.g., in terms of sampling rate, data format,
protocols, etc.) represents one of the major challenges during the selection process of the
more informative signals [2].

In such a context, the use of Artificial Intelligence (AI) techniques based on sensor data
fusion can be considered a viable solution to address this problem. Through machine and
deep learning approaches, we realize intelligent algorithms capable of separately extracting
features from a set of heterogeneous signals and then fuse this information to improve the
predictive performance [3].

Cloud computing paradigm has played a key role in smart factories, acting as a central
entity providing the storage and computing power necessary for the execution of complex

Sensors 2022, 22, 2858. https://doi.org/10.3390/s22082858 https://www.mdpi.com/journal/sensors

https://doi.org/10.3390/s22082858
https://creativecommons.org/
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/
https://www.mdpi.com/journal/sensors
https://www.mdpi.com
https://orcid.org/0000-0002-6080-9077
https://orcid.org/0000-0002-6709-8001
https://doi.org/10.3390/s22082858
https://www.mdpi.com/journal/sensors
https://www.mdpi.com/article/10.3390/s22082858?type=check_update&version=1


Sensors 2022, 22, 2858 2 of 15

algorithms [4]. However, when working with industrial applications aiming to predict
the state of a system, time becomes a crucial component. Indeed, being able to perform a
timely detection of a fault condition can avoid more severe consequences while having a
strong impact in terms of time and money.

Today, Edge computing became a common solution to address this problem by shifting
the computation closer to the data, thus improving the security, response times, and con-
nection stability [5]. As a side effect, the use of this paradigm poses significant restrictions
on the type of algorithms that can be performed. In this sense, an Edge device is typically
equipped with a constrained hardware with limited resources, which makes it unsuitable
for the execution of advanced algorithms (e.g., Deep Neural Networks) in an effective
way [6].

Reservoir Computing (RC) [7] is a promising framework deriving from the Recurrent
Neural Networks (RNNs) characterized by a container (called reservoir) that remains fixed
during the training procedure and whose task is to learn complex input dynamics [8,9].
Among the models belonging to the RC, Echo State Networks (ESNs) are a family of neural
networks particularly suitable for the analysis of time series, which embody the power
of RNNs into models with a low number of trainable parameters [10], thus exhibiting a
reduced memory footprint and complexity that can meet the strict requirements of an Edge
device. In the context of fault detection and diagnosis, ESNs have demonstrated their
effectiveness. Most of the approaches available in the literature involve the use of RNNs
models for the analysis of time series. However, some RNNs suffer from unstable gradient
problems that can affect the training process; ESNs address this issue by keeping the fixed
weights contained in the reservoir and training only the output ones [11].

In this paper, we propose an ESN model which exploits sensor data fusion to extract
the dynamics from a set of heterogeneous sensors and to perform a fault detection of a
real-scale replica industrial plant. Through the implementation of a Cloud dashboard, we
are able to collect and label the data generated by the plant and orchestrate the Edge devices
attached to it to perform a real-time prediction. The experimental results demonstrate that
the proposed approach benefits from the merging of separate source of information to
improve its predicting capabilities while keeping the number of parameters low thanks to
the use of an RC model. We also show the effectiveness of our solution when compared
with other approaches.

The paper contributions are manifold. (i) We propose a fault detection model which
exploits sensor data fusion running on a real industrial testbed. (ii) We adopt ESNs such
that the proposed algorithm is suitable to be deployed on the constrained hardware of
an Edge device. (iii) We realize a Cloud/Edge continuum architecture that allows the
management of the data produced by the industrial system and the orchestration of the
Edge devices executing the fault detection. (iv) We produce a comparison with other
machine/deep learning methods in terms of predictive performance, model complexity
and inference time.

The rest of the paper in organized as follows. Section 2 reviews the literature. Section 3
provides a description about the concepts at the base of ESNs. Section 4 presents the pro-
posed proposed approach we implemented to assess the health condition of the industrial
plant. Section 5 describes the experimental results we obtained from testing our technique.
Section 6 concludes the paper and provides some insights for the future works.

2. Related Works

Sensor data fusion is becoming an important resource for the realization of smart
systems. Today, we are living in an era where data of various types coming from a set of
multiple sources are becoming more and more frequent, making the realization of data
fusion approaches a priority. In a context characterized by a multitude of information,
the swarm intelligence paradigm is another important player for extracting important
features from a given dataset [12] or to solve high-dimensional optimization problems [13].



Sensors 2022, 22, 2858 3 of 15

In this section, we review the works found literature, and we highlight the main differences
with our solution.

The authors in [14] present a review about sensor data fusion methods for real-time
analysis, putting in evidence the main concepts, the core steps and the research challenges.

In [15], the benefits that derive from the use of sensor data fusion as an effective
technique to produce more accurate and reliable results through the combination of data
coming from multiple sources are described. In this work the authors also present diverse
data fusion schemes, highlighting the differences among them.

In [16], a Deep Enhanced Fusion Network (DEFN) is proposed for the fault diagnosis
of wind turbine gearboxes using three-axial vibration signals. In this work, the authors
adopt Sparse Autoencoders (SAEs) to perform the feature extraction process, and such
features are then passed to an ESN to perform the actual fault detection. Although the
obtained results are good, the technique is not meant to be run on the Edge due to the
model’s complexity. In this sense, our model has been designed to run on constrained
devices thanks to its low number of trainable parameters.

The authors in [17] describe a multisensor approach for chattering detection in milling
processes. Starting from sound and vibration signals, they are passed to several feature
extraction processes such as Wavelet Package Decomposition (WPD), WPD parameters
optimization, and the extraction of time/frequency features. Then, these features are passed
as input to an ensemble method made of five algorithms, namely, Random Forest (RF),
Extreme Gradient Boost (XGBoost), Support Vector Machines (SVMs), K-Nearest Neighbor
(KNN) and Artificial Neural Network (ANN), to perform the chatter identification. The
experimental results demonstrated the effectiveness of the authors approach; however,
the large number of processing steps together with the use of an ensemble method produce
a bottleneck during the inference time. When working in fault detection applications,
the response time is a key factor. Our approach benefits from the use of ESNs, which exhibit
a fast inference time suitable for industrial applications.

In [18], the authors propose a vibro-acoustic data fusion approach based a one-
dimensional Convolutional Neural Network (1D-CNN) for bearing fault detection. The
model presented in this work adopts CNNs to separately extract the features from vibration
and acoustic signals. Then, these features are combined together and passed to a series of
fully connected layers that perform the feature fusion. The approach obtained very good
results; however, compared to ESNs, CNNs require a larger number of trainable parameters,
which could not fit the memory requirements. Moreover, if not properly parametrized
CNNs are more prone to overfitting. A similar approach is described in [19], where the
authors adopt a 2D-CNN to fuse data coming from multiple current sensors and to perform
an automatic feature extraction process. Although the results obtained are good, these
method suffers from the same problem highlighted in [18].

The work presented in [20] makes use of a sensor data fusion approach to predict
the Remaining Useful Life (RUL) of electromagnetic pumps. Given the pressure and
vibration signals collected from the pump, the prognostic algorithm adopts a multi-objective
genetic algorithm based on Long Short-Term Memories (MOGA-LSTM). The authors have
successfully demonstrated the effectiveness of their technique, but exactly as in the previous
cases, this algorithm is not designed to be executed of an Edge device. In our application
context, this aspect is of fundamental relevance in terms of quick response times, privacy
and security.

In [21], a sensor data fusion algorithm based on NARX neural networks is proposed
to predict the mass flow in sugarcane harvesters. In this case, the input data are passed to a
single hidden neuron for the feature extraction process; if, on the one hand, this reduces
the model complexity, on the other, it does not exploit the full potential of sensor data
fusion that allows it to analyze each input separately to achieve a tailored feature extraction.
Of course, when the number of inputs is large, this could lead to models with a lot of layers
and parameters. To mitigate this effect in our solution, we adopted ESNs, which keep fixed
the majority of their weights.



Sensors 2022, 22, 2858 4 of 15

The authors in [22] discuss the misalignment fault classification and describe a solution
based on SVMs and vibro-acoustic sensor data fusion. Such data are used to analyze the
system under different load conditions and operative settings and reached a 100% accuracy
in detecting the faults. If, on the one hand, the authors obtained impressive results, on the
other, the use of SVMs does not allow for catching time dynamics that only an RNN is able
to catch.

In [23], a work for gear fault classification in rotating machines is presented. Starting
from a set of vibration sensors, the models adopts Coherent Composite Spectrum (CCS) for
a first feature extraction. Then, Principal Component Analysis (PCA) and ANN are used
to perform the dimensionality reduction and a further feature extraction. These are then
merged and passed to a fault classification block for the actual prediction. The authors
demonstrated the effectiveness of their approach and the benefits derived from the use of
PCA that allowed them to reach a 100% accuracy.

3. Echo State Networks

ESNs are a family of neural networks which belong to the RC models class particularly
suitable for the analysis of time series data [24,25]. From an architectural point of view,
an ESN is equivalent to an RNN, except for the presence of a sparse and randomly connected
recurrent structure called a reservoir performing the feature extraction process. A peculiar
aspect of this layer is the fact that the reservoir weights are fixed and do not change during
the training process. Figure 1 depicts an ESN architecture, where the green and the black
arrows are the trainable and the not-trainable weights, respectively, while the red lines
indicate possible, but not required, connections.

input (K) reservoir (N) output (L)

Figure 1. ESN architecture.

Given an ESN with K input units, N reservoir units and L output units, we can define
the equations which govern the ESN as follows:

x(t + 1) = f (Win · u(t + 1) + Wr · x(t) + Wb · y(t)), (1)

y(t + 1) = g(Wout · [u(t + 1), x(t + 1), y(t)]), (2)

where x(t + 1) is the new computed reservoir state and is a function of the new input
u(t + 1), the state x(t) and the output y(t). As far as Win, Wr and Wb, they are matrices
of N × K, N × N and N × L elements, which store the weights between the input and
reservoir layers, the reservoir weights and the backwards connections between the output
and reservoir layers, respectively. Finally, f (·) is the activation function wrapping the
equation (typically the sigmoid or the tanh).

With respect to the output equation, it is obtained as the concatenation of the new
state x(t + 1), the input u(t + 1) and the previous output y(t); in this sense, the output
is “affected” by the past history of the model. The Wout is an L × (K + N + L) matrix
containing the only trainable weights of the network (i.e., those connecting the reservoir



Sensors 2022, 22, 2858 5 of 15

layer to the output). Also in this case, an activation function g(·) (typically a sigmoid or the
identity) wraps the equation to generate the actual output of the network.

Compared to other RNN models such as Gated Recurrent Units (GRUs) and LSTMs,
ESNs can exploit the sparse recurrent structure of reservoir layer to achieve comparable
results using much less parameters. In this sense, a model with a reduced number of
parameters is less prone to overfitting, a well-known problem when working with complex
Deep Neural Networks (DNNs), where a huge number of parameters produces large mod-
els. Evidently, this involves a reduction in the model memory footprint, a key aspect that
should not be underestimated especially in this period where the majority of applications is
migrating towards the constrained hardware of Edge devices. Another advantage of ESNs
is represented by their faster training/inference time thanks to the fact that the majority of
the weights are kept fixed. Considering our industrial scenario where the system response
time is a crucial requirement, together with a small model footprint such that it can fit the
hardware of an Edge device, the above-mentioned features motivated the choice of ESNs
as a preferable approach over other solutions.

However, if, on the one hand, the sparse and fixed reservoir weights allow reducing
the ESN model complexity and speed-up the training process due to the reduced number of
parameters, on the other, the impossibility of optimizing these weights can lead to unstable
results due to the random initialization [26]. Such an effect can be mitigated by using
large reservoir structures to incentivize the creation of subnetworks that can catch a large
number of input dynamics [8,24], but this still remains one of the main limitations of these
networks.

When working with ESNs, it is also very important to satisfy the separation and echo
state properties to make them properly work. With respect to the first one, it ensures the
generation of separate states given different inputs. Such a condition is fundamental to
avoid the extraction of the same patterns for several inputs that would inevitably cause the
collapse of the ESN. In this sense, the adoption of large and sparse reservoirs is necessary
to meet this property by “encouraging” the formation of mixed connections with the input
layer that stimulate the production of different states and features. The echo state property
(from here, the name of these networks) states that the effects of the inputs and the previous
states in Equation (1) should gradually vanish over time. Indeed, this is a very important
feature for an ESN since it allows balancing the present and past history of the model,
so that the output is equally affected. Unlike the previous case, the satisfaction of this
property comes from empirical tests, where it has been demonstrated that a Wr weight
matrix with a spectral radius (i.e., the largest eigenvalue in absolute value) lower than one
is a necessary (but not sufficient) requisite. The use of weight scaling techniques produce
suitable matrices which meet this condition; however, it is worth to mention that for specific
types of inputs, this could be neither necessary nor sufficient. For this reason, the echo state
property is still the object of study.

4. Proposed Data Fusion Approach

In this subsection, we introduce the scale replica plant used as an industrial testbed,
and we present the proposed approach which merges sensor data fusion and ESNs to assess
its working conditions.

4.1. Industrial Testbed

The industrial testbed we used is a scale replica of an assembly plant for the trans-
portation of car pieces adopted in automobile factories. It is powered with two gear motors,
a set of six belts, and a mobile cart that can move back and forth. We instrumented the
plant with vibration and current sensors to enable a mechanical and electrical monitoring,
and we equipped it with a set of Edge devices for the real-time execution of our fault-
detection algorithm. In particular, we used a VTV-122 sensor by IFM electronics to measure
anomalous vibrations due to the brake system or cart proximity switch malfunctioning.
The sensor operates with a power supply between 9 and 32 V and outputs a 4–20 mA signal.



Sensors 2022, 22, 2858 6 of 15

For the electrical part, we used an inverter of the S100 series by LS Industrial Systems that
we directly attached to one of the gear motors. The inverter uses a power supply between
200 and 240 V and generates an analog current output in the range 0 to 20 mA. On the
Cloud side, we realized a platform, accessible via a web dashboard, through which we can
collect and label the data produced by the sensors and orchestrate the Edge side deploying
new deep learning models, thus creating a Cloud/Edge continuum architecture.

In such a context, the possibility to manually inject faults in our scale replica testbed
(e.g., the introduction of external vibrations along the plant structure, the failure of the
brake system, the increment in gears friction, the change of belts tension, etc.) has been
fundamental to enable the data labeling of anomalous patterns, and gave us the opportunity
to study the testbed also when subject to a faulty condition.

Figure 2 depicts the Cloud dashboard we realized to orchestrate the Edge devices
connected to the industrial plant. It is divided into four sections. The first one allows the
labeling of the data collected through industrial plant and their storage under different
operating conditions of the system. The second one defines the starting and ending dates
and time that the system will use for making a query to the internal Cloud database and to
retrieve the training data. At this step, the user can also define the windows size to split the
input signals into smaller time sequences to be analyzed. The third section is used to start
the inference at the Edge in order to assess the working conditions of the industrial plant.
Here the window size performs the same task as in the training process. Finally, the fourth
section returns a report of the trained model by showing its performance and informing
the user which model is going to be injected at the Edge.

04 mar 2022

07 mar 202207 mar 2022

Window size

Window size

ESN fusion model

Figure 2. Dashboard running on the Cloud to orchestrate the Edge devices.

4.2. Fault Detection

Catalyzed by the advent of the Industry 4.0, modern systems faced a complete transfor-
mation that revolutionized the way to interact with them. Today, we can observe industrial
plants that are equipped with a large number of sensors and actuators, becoming a “smart
entity” with a self-awareness that can help the human operator during the execution of sev-
eral tasks. In such a context, one of the most important aspects is the diagnosis of industrial
systems conditions, which became a central research topic. Preventive maintenance is no
longer an option that can considered: The huge amount of components in industrial plants
makes the use of this approach unsustainable, and for this reason, modern solutions are
moving towards the realization of predictive frameworks capable of detecting abnormal
behaviors before the occurrence of the fault.

However, when working with complex systems, the generation of an accurate diag-
nosis can be very challenging due to strong nonlinearity, data heterogeneity and the large
number of process variables to take into account. Deep learning can address this problem



Sensors 2022, 22, 2858 7 of 15

through the definition of advanced predictive models that can manage a large number
of inputs and learn hidden relationships among them. Fault detection represents a key
element to recognize harmful patterns that usually anticipate a failure, thus reducing the
maintenance costs of a system [27].

Along with fault detection, it is worth mentioning the crucial role played by Edge
computing; the wide spread of this technology (which rapidly became the core element
of smart factory frameworks) is a perfect example that proves the effectiveness of this
paradigm. In a context where a large part of the tasks operated by an industrial system
is executed in real time emerges the necessity to perform specific analyses very close to
where the data are generated. Also in terms of security, Edge computing can be very
useful to better preserve data privacy by performing the inference process on data stored
locally. With particular reference to the industrial scenario, where the data can be sensitive,
the capabilities of this technique allow the realization of more secure applications. How-
ever, moving the computation towards these devices poses significant limitations on the
realization of algorithms that should meet their strict hardware resources to run effectively.

4.3. Sensor Data Fusion Model

The fault detection problem has been faced as a supervised binary classification prob-
lem where we considered two possible working states for the plant, namely, a normal
condition and an anomalous one. Figure 3 shows a block diagram with the main steps
performed in our framework. The data collection methodology we adopted is the following.
In order to have a monitoring from both the electrical and mechanical point of view, we
instrumented the plant with a vibration sensor directly attached on its structure and a
inverter that we connected to one of the engines to measure the absorbed current. With re-
spect to the sampling rates, we set the vibration signal to 30 Hz, which, from the empirical
tests, was demonstrated to be a good trade-off in terms of computational complexity and
signal reconstruction. Regarding the inverter, we set its internal sampling rate to 120 Hz
in order to meet the Nyquist frequency; however, we noticed that the absorbed current
remained stable for the majority of the time, exhibiting a change only when a fault was
occurring. Considering that these signals are also analyzed in real time by an Edge device
with limited computing capabilities, working with such a high rate would be unfeasible.
For these reasons, we created a script to interrogate the inverter with a 5 Hz rate. The data
collection phase lasted about 46 h; we started collecting the data under a normal operating
setting for about 29 h, in which the plant was properly working and the cart was able to
move back and forth. After this step, in the remaining 17 h, we started the injection of the
anomalies (for about 8.5 h each and one at a time) inside the system, first increasing the
friction of the gears and then changing the belts’ tension. At the end of this process, we
collected ∼5 M of vibration samples (i.e., ∼3 M normal, and ∼2 M anomalous) and ∼800 K
current samples (i.e., ∼5 K normal, and ∼3 K anomalous).

Sensor Data 
Fusion ESN 

model

Fault 
Detection

Data 
Collection

Resampling 
Process

Sequences 
Generation

Figure 3. Block diagram showing the steps performed in our framework.

Figure 4 depicts the current and vibration signals collected from the industrial plant in
correspondence of the two above-mentioned conditions. The first problem we faced work-
ing with these signals has been to make them have the same sampling rate. Specifically, we
adopted the SciPy Python library, which exposes some utility APIs for signals resampling;
in this sense, since the vibration exhibited a much higher number of samples than the
current, we performed an upsampling process on the last one. When working with time
series, having a homogeneous sampling rate is fundamental to avoid a time uncorrelation
between signals that would inevitably affect the overall prediction performance.



Sensors 2022, 22, 2858 8 of 15

0.0 0.2 0.4 0.6 0.8
Samples ×106

0.0

0.5

1.0

1.5

2.0

2.5

m
A

Normal
Anomalous

0 1 2 3 4 5
Samples ×106

0.0

0.5

1.0

1.5

2.0

2.5

m
m

/s

×103

Normal
Anomalous

Figure 4. Current (left) and vibration (right) raw signals collected from the industrial plant in
correspondence of the normal and anomalous conditions.

Then, we performed a second data preprocessing to split the raw signals into multiple
time sequences by applying an overlapping sliding window. As an effect of this step,
we were able to reduce the inputs complexity by focusing on smaller parts, in addition,
the analysis of several sequences instead of the whole signal allows a better feature extrac-
tion. The choice of the window size strongly depends on the signals characteristics (e.g.,
sampling rate, variability, frequency, etc.); in our empirical experiments, we tested several
windows values using as evaluation indices the resulting model prediction performance
and model complexity. At the end of this step, we selected a window size of 50 samples for
the input sequences that resulted to be the best trade-off. At the end of these preprocessing
steps, data were ready to be passed to the sensor data fusion model.

Figure 5 shows the proposed sensor data fusion ESN model. It is structured into two
parts: a feature extraction and a predictive one. Unlike a “traditional” model, where input
data are typically treated as a single monolithic block, in this case, we can notice that each
signal is separately managed and passed to an ESN. Such a separation has two effects:
(i) It improves the model input scalability, since the addition of new signals requires a
change only in the feature extraction part and not of the entire topology; (ii) it allows a
tailored feature extraction according for each input. In such a context, where inputs are
time series signals, the use of RNN structures represent a valid solution to find hidden
time dynamics that a normal machine learning model would not be able to catch. However,
when working with recurrent models such as LSTMs or GRUs, they are prone to generating
a lot of parameters and require a careful parametrization. In this sense, the choice of ESNs
resulted in being a good option since they work very well as time features extractors [28]
and use a low number of trainable parameters which make them lightweight, fast to train
and suitable to fit the hardware of an Edge device. At this step, each ESN analyzes only one
signal separately from the other one; by means of their reservoir, they are able to extract
from the input sequences a hidden vector containing the temporal features. The main idea
behind this model is that the reservoir represents a latent space. In fact, thanks to its large
dimensionality, this non-linear part of the system can extract relevant features (at a higher
abstraction layer) deriving from the input series.

The predictive part of the model starts with the Fusion layer which acts as a connecting
bridge between the input branches. At this level, the features extracted in the previous
layers are concatenated together performing the actual sensor data fusion. Finally, the ESN
layers connected in cascade have the task to perform a further feature extraction process
necessary for the prediction whose results are stored in the output layer. According to the
prediction task, the output layer can have various shapes and adopt different activation
functions. For example, in the case of a multiclass classification problem, the output layer
will have as many neurons as the number of classes to be predicted and will adopt a softmax
activation function to produce the probabilities for a given input to belong to each of them.
On the other hand, if the task to be addressed is a binary classification, then in this case is
sufficient to use as output a single neuron with a sigmoid activation to evaluate the class to
which the input belongs to.



Sensors 2022, 22, 2858 9 of 15

Preprocessed

Current

…

Fu
si

on
 la

ye
r

ES
N

 la
ye

r

ES
N

 la
ye

r

O
ut

pu
t l

ay
er

ESN layer

ESN layer

Feature extraction Predictive

Preprocessed

Vibration

Figure 5. Proposed Sensor data fusion ESN model.

Let us define the mathematical model of our sensor data fusion ESN. If we consider
a model with m separate inputs, then we can write the state and output equations of the
generic ith ESN as follows:{

x(t + 1)i = f (Wi
in · u(t + 1)i + Wi

r · x(t)i)

h(t + 1)i = f (Wi
h · x(t + 1)i),

(3)

where the equations reported in Equation (3) are a variation of the ones shown in Section 3
and obtained by removing the not required connections (i.e., the red arrows of Figure 1).
In such a context, the output of each ESN is a hidden vector h(t + 1)i storing the temporal
features extracted from the reservoir layer. Unlike Equation (2), in this case, the Wh matrix
does not contain trainable weights as the output of the ESN is in turn a hidden vector:

F(t) = [h(t + 1)1, h(t + 1)2, ..., h(t + 1)m]

X(t + 1) = f (WF · F(t + 1) + WR · X(t))
y(t + 1) = φ(Wout · X(t + 1)).

(4)

In Equation (4), we report the equations modeling the predictive part, where F(t) is
the output of the fusion layer obtained as the concatenation of the features extracted in
previous part. Since we adopted ESNs also in this part of the model, the equations are
equivalent to the ones used in Equation (3), with the main difference being that, in this case,
the input is no longer represented by the input signals (e.g., current and vibration) but by
the features extracted from them. This is evident from the second equation, where the new
computed state X(t + 1) depends on F(t + 1) (i.e., the features extracted and fused together
at the t + 1 timestep) and on the state X(t). WF and WR matrices play the same role of Win
and Wr of Equation (1), and for this reason, their weights are kept fixed. Finally, y(t + 1)
represents the actual output of the sensor fusion model, storing the prediction value; it
is equivalent to the output of an ESN since it only depends on the new computed state
X(t+ 1) and the Wout matrix containing the only trainable weights of the entire architecture.
As usual, the entire expression is wrapped by an activation function φ, which can be either
the softmax or sigmoid based on the classification problem being addressed.

5. Experimental Results

In this section, we present the results obtained from testing the proposed sensor data
fusion ESN model. The dataset extracted from the industrial plant is provided with binary
labels such that normal and anomalous samples are labeled as 0 and 1, respectively. The
splitting of the dataset has been performed using the Scikit-learn framework [29] by means
of the train_test_split function, which takes as input the data and the test size percentage
and returns the dataset split into train and test sets. In our experiments, we adopted a test
size of 20%, leaving the rest (i.e., the 80%) for the training process. For the hyperparameters’



Sensors 2022, 22, 2858 10 of 15

tuning and validation, we extracted 15% from the training data so that the test set contains
samples used exclusively for the model’s evaluation. Moreover, it is worth mentioning that
the following results have been averaged over a set of experiments in order to obtain a
more precise evaluation.

For a better understanding, in Table 1 we report the proposed model configuration
adopted in our experimentation. Such parameters derive from a grid search approach
implemented using Keras Tuner (https://www.tensorflow.org/tutorials/keras/keras_
tuner, accessed on 14 March 2022), during which we evaluated the network predictive
performance in terms of accuracy when varying the number of ESN neurons in each layer.
With respect to the feature extraction part, we used 2 ESNs (one for each input) with
20 neurons and the tanh as the activation function (representing the standard for these type
of networks). Regarding the prediction part, it is composed by 2 ESNs connected in cascade
with 16 and 4 neurons, respectively, with the tanh as activation. In both cases, we adopted
a spectral radius of 0.9 and a connectivity of the 10% in order to meet the separation and
echo state properties (see Section 3). For the trainable weights’ optimization, we used the
Adam optimizer with a learning rate of 0.001, and we set the limit of the training epochs to
2000. Moreover, to avoid model overfitting, we used an early stopping approach to halt
the training process if the model is not able to reduce the loss for a consecutive number of
epochs defined by the patience term that we set to 10. Such a technique avoids a network
“overtraining” that would inevitably cause the memorization (instead of the learning) of
the input–output relationship and a consequent reduction in the model’s generalization
capabilities. Finally, the output layer is defined by a single neuron associated with a sigmoid
activation function to perform the binary classification.

Table 1. Proposed model configuration.

Training Parameters

ESN neurons feature extraction part 20

ESN neurons predictive part 16, 4

ESN spectral radius 0.9

ESN connectivity 0.1

Output neurons 1

Activation functions tanh, sigmoid

Learning rate 0.001

Training epochs limit 2000

Optimizer Adam

Patience term 10

Figure 6 depicts the validation curves derived from the training procedure of the
proposed sensor data fusion ESN model.

The proposed approach performed very well on the test set producing results com-
parable to the ones obtained during the training. With a precision of 1.0, a recall of 0.993
and a F1-score of 0.996, our solution is able to correctly predict the conditions of the testbed
with a very low number of false positives and false negatives, a very important aspect for
an algorithm running in an industrial plant. The use of ESNs for both the feature extraction
and prediction parts result in an effective choice that allowed us to maintain a low amount
of trainable parameters (i.e., 201) while achieving a good level of predictive performance.
This, of course, has an impact not only in terms of memory footprint but also in terms
of training performance that could be affordable even for an Edge device. In this sense,
being able to perform an on-device training directly at the Edge could pave the way to
industrial application scenarios where the plant would learn in real time the occurrence of
new fault patterns.

https://www.tensorflow.org/tutorials/keras/keras_tuner
https://www.tensorflow.org/tutorials/keras/keras_tuner


Sensors 2022, 22, 2858 11 of 15

Figure 6. Validation curves extracted from the proposed model after the training process. In (a), we
can observe that both the train and validation losses follow a decreasing trend as the number of
training epochs increases. Both the curves converge at a very low value of the loss around zero, thus
demonstrating that the model correctly learned the relationship between the input and the output
with a very good level of generalization. Such a condition is also proven by (b), where, in this case,
the training and validation accuracy increase with the training epochs, reaching very high values
around one.

To demonstrate the effectiveness of the proposed approach, we performed a series of
comparisons with other models and techniques. Specifically, we considered six different
approaches, namely: a model involving both ESN and fully connected layers (ESN + FC)
which does not adopt sensor data fusion, a One Class Support Vector Machine (OCSVM)
approach, an Isolation Forest (IF) model, a fully connected DNN (FC-DNN), a 1D-CNN
approach like the one presented in [18] and an LSTM network. All the models have been
implemented using TensorFlow and Scikit-learn frameworks [29,30].

For a better vision, we report in Table 2 the results for each of the above-mentioned
models in terms of precision, recall, F1-score and the model complexity according to the
number of trainable parameters.

Table 2. Models’ comparison.

Model Precision Recall F1-Score #Trainable Params.

ESN+FC 1.0 0.976 0.987 925

OCSVM 0.753 0.753 0.753 -

IF 0.843 0.294 0.435 -

FC-DNN 0.992 0.973 0.982 2,873

LSTM 1.0 0.993 0.996 7,705

1D-CNN [18] 1.0 0.994 0.996 1,077

Proposed Sensor data fusion ESN 1.0 0.993 0.996 201

With respect to the ESN+FC model, we implemented it using an architecture similar
to the one shown in Figure 5. In particular, we used a single ESN of 40 neurons and the
tanh as activation. Since this model does not adopt sensor data fusion, both the current
and vibration signals are treated as a single block and passed to the ESN to perform the
feature extraction process. For the prediction part, we used 3 fully connected layers of 16
and 4 neurons with Rectified Linear Unit (ReLU) as activation and a single neuron (i.e.,
the output) with sigmoid as activation. The model achieved very good results in terms
of precision, recall and F1-score (i.e., 1.0, 0.976 and 0.987, respectively), comparable to the
ones reached by our model, but using 925 trainable parameters.

For the OCSVM, Scikit-learn exposes several parameters that can be set. In our
experiments, we set a penalization term (i.e., an L2 penalty) C of 0.8, and we left the gamma



Sensors 2022, 22, 2858 12 of 15

coefficient to “auto”, a special value of the library that automatically sets this coefficient
to 1/(# f eatures). The most important parameter is the kernel, which specifies the type
of transformation to be used by the algorithm when fitting the training data. Scikit-learn
proposes different alternatives such as linear, polynomial, radial-basis (RBF) and sigmoid.
From our tests, the RBF returned the best results with a precision, recall and F1-score of
0.753, which, however, are sensibly lower than the other approaches. In terms of trainable
weights, neither the algorithm nor the library provide this information, and for this reason,
we did not report it in Table 2.

The IF required a lower number of parameters to be set. To select the best number of
estimators to be used in the ensemble, we performed multiple experiments when varying
this parameter in the range 5–100 with a step of 5. What we noticed is that the performance
remained (on average) very similar with few oscillations starting from 50 estimators, and for
this reason, we adopted this value. The model reached a good level of precision equal to
0.843 but resulted in the worst recall and F1-score among all the approaches with 0.294 and
0.435, respectively. Like the OCSVM, the algorithms do not make use trainable weights
to execute.

With regards to the FC-DNN, in this case, our goal was to test the performance of a
model not having recurrent connections and therefore unable to detect time relationships.
For the realization of this topology, we used 5 hidden layers of 64, 32, 16, 4 and 1 neurons
connected in cascade using the ReLU as the activation function, except for the output
neuron, which adopts as usual the sigmoid. The obtained results are comparable with the
ones reached by the first ESN model with a precision of 0.992, a recall value of 0.973 and a
F1-score of 0.982. On the other hand, it resulted in being the model with the second largest
number of trainable parameters (i.e., 2873) due to the only presence of fully connected
layers which contain a lot of parameters to be trained, thus making it unsuitable for the
hardware resources of an Edge device.

We also realized a model exploiting sensor data fusion LSTM, which represent the
state-of-the-art in terms of RNNs. To make a fair comparison, in the feature extraction part,
we used 2 LSTMs (i.e., 1 for the current signal and 1 for the vibration) with 20 neurons and
tanh activation function. With respect to the predictive part, we used 2 LSTMs connected in
cascade with 16 and 4 neurons with tanh activation and terminated by a layer with 1 neuron
using the sigmoid. Although the LSTM reached the same results achieved by the proposed
method, it resulted in being the largest model with 7705 trainable parameters. Such a result
proves the power of this type of RNN, which, however, requires the optimization of a huge
number of variables.

In the 1D-CNN model, each input is passed to an one-dimensional convolutional
layer with 20 filters, a kernel size of 3, a stride of 1 and ReLU as the activation function.
The features extracted at this stage are then passed to 2 fully connected layers connected
in cascade with 16 and 4 neurons and with ReLU as activation function. Also in this
case, the output layer consists of one neuron using the sigmoid to perform the binary
classification. The overall performance reached by the model was good, with a precision of
1.0, a recall of 0.994 and a F1-score of 0.996; on the other hand, it resulted in being the third
largest model after the FC-DNN and LSTM models with 1077 trainable parameters.

As already mentioned, time is a crucial component, especially in fault detection
applications, where a prompt response can save a system from a total breakdown. To this
aim, we conducted a comparison of the models average inference time, focusing our
attention only on the neural network models which returned the best performance when
compared with IF and OCSVM approaches.

Figure 7 shows the average inference time of the five neural network models we
considered in our experimentation. With respect to the ESN + FC model, it reached an
inference time of 0.37 s; in such a context, we can observe that the use of the ESNs in the
feature extraction part is beneficial, making this approach one of the fastest. The FC-DNN is
one of the slowest models due to its large number of trainable parameters, with an average
inference time of 0.57 s. Regarding the 1D-CNN, we observed a slight improvement with



Sensors 2022, 22, 2858 13 of 15

respect to the DNN with an inference time of 0.45 s. From an architectural point of view,
this model is very similar to the ESN+FC one: They share, in fact, the same number of fully
connected layers, the same neurons and the same activation functions. The only difference
is represented by the feature extraction process, which is performed through an ESN and
a convolutional layer. Such a result, further demonstrates the effectiveness of ESNs in
reducing the inference time thanks to their sparse structure and low number of parameters.
As we would expect, the LSTM model resulted in being the slowest model, with an average
inference time of 1.03 s. Finally, the proposed sensor data fusion ESN, which in the previous
analysis exhibited the lowest amount of parameters, in this case, resulted in being the
fastest among the other models with an average inference time of 0.16 s.

ESN+FC FC-DNN 1D-CNN LSTM Prop. Sensor data fusion ESN
Models

0.0

0.2

0.4

0.6

0.8

1.0

Av
er
ag
e 
In
fe
re
nc
e 
tim
e 

(s
)

Figure 7. Models’ average inference time.

The results derived from these comparisons demonstrate the effectiveness of the
proposed approach, which reached a good level of performance comparable with the ones
achieved by other neural network models while using a very low number of trainable
parameters and exhibiting the fastest inference time. The combination of these results
makes our model sufficiently small to be deployed on an Edge device with a response time
suitable for the detection of faults in an industrial application context. However, we should
point out that even if nowadays most of the industrial plants are provided with historical
databases, it can happen that the data labeling process it not available or possible. In this
sense, the supervised nature of the proposed approach poses a limitation to those contexts
where it is possible to gather labeled data.

6. Conclusions

In this paper, we proposed a sensor data fusion model that exploits ESNs to perform
the fault detection at the Edge of a real-scale replica industrial plant. Although the su-
pervised nature of our method limits its applicability, the experiments demonstrated the
feasibility of the proposed approach. Thanks to the use of ESNs we were able to obtain a
model which achieved a very good level of performance with a precision of 1.0, a recall
of 0.993 and a F1-score of 0.996, while keeping a limited number of trainable parameters.
Such a result makes our approach suitable to be deployed on the constrained hardware of
an Edge device; moreover, the fast inference time exhibited by our solution allows us to
perform a real-time detection of faults in industrial systems.

Future works will be devoted to the improvement of the proposed technique through
the realization of an unsupervised scheme capable of extracting useful features from the
inputs and perform a fault detection on unlabeled data, to the use of a larger number of
signals for a better plant monitoring and to the implementation of an on-device training
procedure in order to enable a continuous learning application where the industrial plant
can autonomously learn the emergence of new fault patters.



Sensors 2022, 22, 2858 14 of 15

Author Contributions: Conceptualization, D.B. and F.D.V.; software, F.D.V.; validation D.B. and
F.D.V.; investigation, D.B. and F.D.V.; writing—original draft preparation, F.D.V.; writing–review and
editing, D.B. and F.D.V.; supervision, D.B. All authors have read and agreed to the published version
of the manuscript.

Funding: This research was partially funded by the Italian Ministry of University and Research,
grant Programma Operativo Nazionale (PON) “Ricerca e Innovazione” number PON 2014-2020
CCI2014IT16M2OP005.

Informed Consent Statement: Not applicable.

Data Availability Statement: Not applicable.

Conflicts of Interest: The authors declare no conflict of interest.

References
1. De Vita, F.; Bruneo, D.; Das, S.K. A Novel Data Collection Framework for Telemetry and Anomaly Detection in Industrial IoT

Systems. In Proceedings of the 2020 IEEE/ACM Fifth International Conference on Internet-of-Things Design and Implementation
(IoTDI), Sydney, NSW, Australia, 21–24 April 2020; pp. 245–251. [CrossRef]

2. Li, N.; Gebraeel, N.; Lei, Y.; Fang, X.; Cai, X.; Yan, T. Remaining useful life prediction based on a multi-sensor data fusion model.
Reliab. Eng. Syst. Saf. 2021, 208, 107249. [CrossRef]

3. De Vita, F.; Bruneo, D.; Das, S.K. On the use of a full stack hardware/software infrastructure for sensor data fusion and fault
prediction in industry 4.0. Pattern Recognit. Lett. 2020, 138, 30–37. [CrossRef]

4. Merlino, G.; Dautov, R.; Distefano, S.; Bruneo, D. Enabling Workload Engineering in Edge, Fog, and Cloud Computing through
OpenStack-based Middleware. ACM Trans. Internet Technol. 2019, 19, 28. [CrossRef]

5. Shi, W.; Cao, J.; Zhang, Q.; Li, Y.; Xu, L. Edge computing: Vision and challenges. IEEE Internet Things J. 2016, 3, 637–646.
[CrossRef]

6. De Vita, F.; Nardini, G.; Virdis, A.; Bruneo, D.; Puliafito, A.; Stea, G. Using Deep Reinforcement Learning for Application
Relocation in Multi-Access Edge Computing. IEEE Commun. Stand. Mag. 2019, 3, 71–78. [CrossRef]

7. Lukoševičius, M.; Jaeger, H. Reservoir computing approaches to recurrent neural network training. Comput. Sci. Rev. 2009,
3, 127–149. [CrossRef]

8. Jaeger, H. Echo state network. Scholarpedia 2007, 2, 2330. [CrossRef]
9. Rodan, A.; Tino, P. Minimum complexity echo state network. IEEE Trans. Neural Netw. 2010, 22, 131–144. [CrossRef]
10. Zhang, Q.; Qian, H.; Chen, Y.; Lei, D. A short-term traffic forecasting model based on echo state network optimized by improved

fruit fly optimization algorithm. Neurocomputing 2020, 416, 117–124. [CrossRef]
11. Bala, A.; Ismail, I.; Ibrahim, R.; Sait, S.M.; Oliva, D. An Improved Grasshopper Optimization Algorithm Based Echo State

Network for Predicting Faults in Airplane Engines. IEEE Access 2020, 8, 159773–159789. [CrossRef]
12. Zivkovic, M.; Stoean, C.; Chhabra, A.; Budimirovic, N.; Petrovic, A.; Bacanin, N. Novel Improved Salp Swarm Algorithm: An

Application for Feature Selection. Sensors 2022, 22, 1711. [CrossRef] [PubMed]
13. Long, J.; Zhang, S.; Li, C. Evolving Deep Echo State Networks for Intelligent Fault Diagnosis. IEEE Trans. Ind. Inf. 2020,

16, 4928–4937. [CrossRef]
14. Kashinath, S.A.; Mostafa, S.A.; Mustapha, A.; Mahdin, H.; Lim, D.; Mahmoud, M.A.; Mohammed, M.A.; Al-Rimy, B.A.S.; Fudzee,

M.F.M.; Yang, T.J. Review of Data Fusion Methods for Real-Time and Multi-Sensor Traffic Flow Analysis. IEEE Access 2021,
9, 51258–51276. [CrossRef]

15. Liu, Z.; Xiao, G.; Liu, H.; Wei, H. Multi-Sensor Measurement and Data Fusion. IEEE Instrum. Meas. Mag. 2022, 25, 28–36.
[CrossRef]

16. Pu, Z.; Li, C.; Zhang, S.; Bai, Y. Fault Diagnosis for Wind Turbine Gearboxes by Using Deep Enhanced Fusion Network. IEEE
Trans. Instrum. Meas. 2021, 70, 1–11. [CrossRef]

17. Tran, M.Q.; Liu, M.K.; Elsisi, M. Effective multi-sensor data fusion for chatter detection in milling process. ISA Trans. 2021.
[CrossRef]

18. Wang, X.; Mao, D.; Li, X. Bearing fault diagnosis based on vibro-acoustic data fusion and 1D-CNN network. Measurement 2021,
173, 108518. [CrossRef]

19. Azamfar, M.; Singh, J.; Bravo-Imaz, I.; Lee, J. Multisensor data fusion for gearbox fault diagnosis using 2-D convolutional neural
network and motor current signature analysis. Mech. Syst. Signal Process. 2020, 144, 106861. [CrossRef]

20. Akpudo, U.E.; Jang-Wook, H. An Automated Sensor Fusion Approach for the RUL Prediction of Electromagnetic Pumps. IEEE
Access 2021, 9, 38920–38933. [CrossRef]

21. Lima, J.d.J.A.d.; Maldaner, L.F.; Molin, J.P. Sensor Fusion with NARX Neural Network to Predict the Mass Flow in a Sugarcane
Harvester. Sensors 2021, 21, 4530. [CrossRef]

22. Patil, S.; Jalan, A.; Marathe, A. Support Vector Machine for Misalignment Fault Classification Under Different Loading Conditions
Using Vibro-Acoustic Sensor Data Fusion. In Experimental Techniques; Springer: Berlin/Heidelberg, Germany, 2022; pp. 1–15.

http://doi.org/10.1109/IoTDI49375.2020.00032
http://dx.doi.org/10.1016/j.ress.2020.107249
http://dx.doi.org/10.1016/j.patrec.2020.06.028
http://dx.doi.org/10.1145/3309705
http://dx.doi.org/10.1109/JIOT.2016.2579198
http://dx.doi.org/10.1109/MCOMSTD.2019.1900011
http://dx.doi.org/10.1016/j.cosrev.2009.03.005
http://dx.doi.org/10.4249/scholarpedia.2330
http://dx.doi.org/10.1109/TNN.2010.2089641
http://dx.doi.org/10.1016/j.neucom.2019.02.062
http://dx.doi.org/10.1109/ACCESS.2020.3020356
http://dx.doi.org/10.3390/s22051711
http://www.ncbi.nlm.nih.gov/pubmed/35270856
http://dx.doi.org/10.1109/TII.2019.2938884
http://dx.doi.org/10.1109/ACCESS.2021.3069770
http://dx.doi.org/10.1109/MIM.2022.9693406
http://dx.doi.org/10.1109/TIM.2020.3024048
http://dx.doi.org/10.1016/j.isatra.2021.07.005
http://dx.doi.org/10.1016/j.measurement.2020.108518
http://dx.doi.org/10.1016/j.ymssp.2020.106861
http://dx.doi.org/10.1109/ACCESS.2021.3063676
http://dx.doi.org/10.3390/s21134530


Sensors 2022, 22, 2858 15 of 15

23. Cao, R.; Yunusa-Kaltungo, A. An Automated Data Fusion-Based Gear Faults Classification Framework in Rotating Machines.
Sensors 2021, 21, 2957. [CrossRef] [PubMed]

24. Jaeger, H. The “echo state” approach to analysing and training recurrent neural networks-with an erratum note. Bonn Ger. Ger.
Natl. Res. Cent. Inf. Technol. GMD Tech. Rep. 2001, 148, 13.

25. Gallicchio, C.; Micheli, A. Echo state property of deep reservoir computing networks. Cogn. Comput. 2017, 9, 337–350. [CrossRef]
26. Patanè, L.; Xibilia, M.G. Echo-state networks for soft sensor design in an SRU process. Inf. Sci. 2021, 566, 195–214. [CrossRef]
27. Jalayer, M.; Orsenigo, C.; Vercellis, C. Fault detection and diagnosis for rotating machinery: A model based on convolutional

LSTM, Fast Fourier and continuous wavelet transforms. Comput. Ind. 2021, 125, 103378. [CrossRef]
28. Li, Z.; Tanaka, G. Multi-reservoir echo state networks with sequence resampling for nonlinear time-series prediction. Neurocom-

puting 2022, 467, 115–129. [CrossRef]
29. Pedregosa, F.; Varoquaux, G.; Gramfort, A.; Michel, V.; Thirion, B.; Grisel, O.; Blondel, M.; Prettenhofer, P.; Weiss, R.; Dubourg, V.;

et al. Scikit-learn: Machine Learning in Python. J. Mach. Learn. Res. 2011, 12, 2825–2830.
30. Abadi, M.; Agarwal, A.; Barham, P.; Brevdo, E.; Chen, Z.; Citro, C.; Corrado, G.S.; Davis, A.; Dean, J.; Devin, M.; et al. TensorFlow:

Large-Scale Machine Learning on Heterogeneous Systems. 2015. Available online: https://www.tensorflow.org (accessed on
1 April 2022).

http://dx.doi.org/10.3390/s21092957
http://www.ncbi.nlm.nih.gov/pubmed/33922528
http://dx.doi.org/10.1007/s12559-017-9461-9
http://dx.doi.org/10.1016/j.ins.2021.03.013
http://dx.doi.org/10.1016/j.compind.2020.103378
http://dx.doi.org/10.1016/j.neucom.2021.08.122
https://www.tensorflow.org

	Introduction
	Related Works
	Echo State Networks
	Proposed Data Fusion Approach
	Industrial Testbed
	Fault Detection
	Sensor Data Fusion Model

	Experimental Results
	Conclusions
	References

