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Abstract

Cardiac strain imaging (CSI) plays a critical role in the detection of myocardial motion 

abnormalities. Displacement estimation is an important processing step to ensure the accuracy 

and precision of derived strain tensors. In this paper, we propose and implement Spatiotemporal 

Bayesian regularization (STBR) algorithms for two-dimensional (2-D) normalized cross-

correlation (NCC) based multi-level block matching along with incorporation into a Lagrangian 

cardiac strain estimation framework. Assuming smooth temporal variation over a short span 

of time, the proposed STBR algorithm performs displacement estimation using at least four 

consecutive ultrasound radio-frequency (RF) frames by iteratively regularizing 2-D NCC matrices 

using information from a local spatiotemporal neighborhood in a Bayesian sense. Two STBR 

schemes are proposed to construct Bayesian likelihood functions termed as Spatial then Temporal 

Bayesian (STBR-1) and simultaneous Spatiotemporal Bayesian (STBR-2). Radial and longitudinal 

strain estimated from a finite-element-analysis (FEA) model of realistic canine myocardial 

deformation were utilized to quantify strain bias, normalized strain error and total temporal 

relative error (TTR). Statistical analysis with one-way analysis of variance (ANOVA) showed that 

all Bayesian regularization methods significantly outperform NCC with lower bias and errors (p 
< 0.001). However, there was no significant difference among Bayesian methods. For example, 

mean longitudinal TTR for NCC, SBR, STBR-1 and STBR-2 were 25.41%, 9.27%, 10.38% and 

10.13% respectively An in vivo feasibility study using RF data from ten healthy mice hearts 
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were used to compare the elastographic signal-to-noise ratio (SNRe) calculated using stochastic 

analysis. STBR-2 had the highest expected SNRe both for radial and longitudinal strain. The mean 

expected SNRe values for accumulated radial strain for NCC, SBR, STBR-1 and STBR-2 were 

5.03, 9.43, 9.42 and 10.58, respectively. Overall results suggest that STBR improves CSI in vivo.

INDEX TERMS

Cardiac strain imaging; Bayesian regularization; spatiotemporal information; cardiac ultrasound; 
murine echocardiography; high frequency ultrasound; multi-level block matching

I. INTRODUCTION

CARDIAC strain imaging (CSI) estimates myocardial tissue elasticity by processing 

ultrasound (US) data corresponding to the natural contraction and relaxation of the 

myocardium [1], [2]. Applications of CSI in both clinical and preclinical domains (e.g. 

assessing myocardial ischemia in murine models [3], [4], monitoring cardiac radiofrequency 

ablation in human in vivo [5]) have been reported. Accurately estimating underlying 

cardiac motion or displacement is critical for CSI. The myocardium exhibits complex 

three-dimensional (3-D) motion patterns due to torsion, thickening and contraction along 

fibers, over a cardiac cycle [6]. This complex 3-D motion causes out-of-plane motion of 

scatterers when 2-D imaging is employed for CSI resulting in significant challenges for 

accurate strain quantification [7]. Incorporation of regularization (both in space and time) 

into cardiac strain estimation is an essential step and the main focus of this paper [8].

Displacement estimation algorithms for CSI can be broadly categorized into three classes: 

non-rigid image registration (NRIR), optimization and block matching (BM) with n-

dimensional kernel-based (n = 1, 2 or 3) methods. Ledesma-Carbayo et al. [9] proposed 

a spatiotemporal elastic registration framework for estimating 2-D displacement fields by 

using a B-spline function-based parametric model representing the motion field. They 

enforced spatial smoothness and temporal coherence on the estimated deformation function 

by defining B-spline basis functions in both spatial and temporal directions to derive a 

globally plausible spatiotemporal motion field over the entire image sequence with respect 

to a reference frame (end-diastole). The approach was validated in a cardiac simulation 

model revealing the benefit of adding temporal consistency in the framework. A similar 

image intensity-based NRIR framework was applied to 3-D US image voxels by Elen et 
al. [10] to derive the cardiac motion field. Zhang et al. [11] proposed an elastic image 

registration framework for 3-D echocardiography images with spatiotemporal regularization 

(3-D + t approach). The temporal penalty term was defined where in three consecutive 

images any point in the myocardium will experience continuous velocity. Nora et. al. 
proposed spatial and sparse regularization with dictionary learning and reported better 

motion estimation accuracy compared to state-of-the-art methods [12], which was extended 

to incorporate temporal information [13]. Despite regularization being inherently embedded 

in these NRIR-based methods, they suffer from reduced sensitivity to small inter-frame 

displacements and lower elastographic signal-to-noise ratio (SNRe) due to the use of US 

B-mode or envelope data instead of RF data [14]. To address this issue, Bidisha et al. 
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proposed a NRIR-based method for RF-based CSI [15]. However, their results did not 

include analysis on strain estimation accuracy limiting its effectiveness for CSI.

Optimization-based methods with RF-data generally minimize a regularized cost function 

with smoothness constraints incorporated [16]–[21]. For example, Hashemi et al. proposed 

Global US Elastography algorithm termed as GLUE where a non-linear optimization 

problem is formulated to estimate displacement in all RF A-lines simultaneously by 

enforcing a spatial constraint [17]. Rivaz et al. [22] applied the concept of temporal 

consistency in optimization-based displacement estimation using multiple RF frames. 

The proposed method initially estimates motion between paired images using 2-D 

analytic minimization (2-D AM) [20]. The initial estimates were then utilized to derive 

physics based constrains to construct a likelihood function to incorporate data from 

multiple images. Finally, a posterior probability density was constructed by combining 

the estimated likelihood function and spatial smoothening regularization term to derive 

final displacement estimates. The proposed method was compared against strain image 

averaging and Lagrangian particle tracking [23] and provided improved performance. 

Recently, Ashikuzzaman et al. proposed using the GLUE algorithm in spatial and temporal 

domain termed as GUEST to incorporate temporal continuity in the GLUE framework and 

validated their axial strain algorithm using simulation, phantom and in vivo liver data. 

However, these results are not generalizable to CSI where lateral and shear components play 

equally important roles in the derivation of cardiac strain tensors.

Deep learning-based motion tracking algorithms have also been utilized for ultrasound strain 

elastography [24]–[27]. Tehrani et al. proposed two convolutional neural networks based 

on pyramidal warping and cost volume network (PWC-Net) [28] by utilizing B-mode, 

envelope and RF data at different levels of the data pyramid for displacement estimation 

[24]. Ostvik et al. also modified PWC-Net for myocardial deformation imaging using 

clinical echocardiography data [29]. Delaunay et al. reported a recurrent neural network 

architecture with Long-Short-Term memory blocks to perform displacement estimation with 

spatiotemporal coherence [29]. Temporal coherence was modelled as a regularization term 

in the training loss to enforce temporal consistency between successive strain images [29]. 

Recently, Lu et al. proposed learning spatiotemporal regularization using a multi-layered 

perceptron neural network using biomechanical constraints during training [30].

Typically, RF-based CSI involves performing BM either with 2-D [23], [31] or 1-D kernels 

in a 2-D search region [32]–[37]. For BM displacement estimation algorithms, 1-D or 

2-D kernels from pre-deformation RF data are matched with post-deformation kernels in 

a pre-defined search range using a similarity metric (e.g., sum of absolute difference, sum 

of squared difference, mutual information, phase correlation, normalized cross-correlation 

(NCC) [38]–[40]). Here, we focus on 2-D NCC based BM algorithm where the NCC peak 

location is used to obtain axial and lateral sub-sample shifts to determine the displacement 

vector. This approach is termed as NCC in the rest of the paper. We also denote 2-D NCC 

image as similarity metric image (SMI) for the ease of discussion.

Regularization can be included in BM algorithms either post estimation or during 

estimation. Examples of post estimation regularization include median filtering [32], 
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[36], [41], application of geometric shape constraints on the estimated motion fields 

[42], Gaussian smoothening [43]. Examples of regularization during estimation include 

application of Viterbi algorithm [44]–[47] and Bayesian strain imaging [31], [48]–[51]. 

However, there are not many reports on the use of temporal consistency concept for 

kernel-based displacement estimation. Jiang et al. [52] proposed a method of estimating 

a composite strain image by processing multiple RF frames and then selecting three RF 

frames based on a displacement quality metric (DQM) [52]. A composite strain image 

was obtained by weighted averaging of the pair of strain images. Bayer et al. [53] 

explored temporal continuity based on the assumption that motion changes gradually over 

time. Recently, Mirzaei et al. proposed the use of 3-D NCC (2-D + time) and reported 

robustness against noise corruption for axial strain imaging [54]. Previously, we have 

demonstrated the use of Bayesian regularization in the context of multi-level BM-based 

CSI and reported significant performance improvement over conventional NCC without 

regularization [31], [55]–[57]. The proposed algorithm incorporated information from a 

local spatial neighborhood to regularize 2-D NCC matrices. Note that all previous reports on 

Bayesian strain imaging utilized information only from its spatial neighbors [31], [48]–[51], 

[55], [56], [58], [59]. Recently, we extended the Bayesian regularization algorithm into the 

temporal domain with the underlying assumption of smooth variation in velocity over a short 

span of time during tissue deformation [60] and performed limited validation studies using 

phantom and murine carotid RF data. However, an optimal scheme for temporal Bayesian 

regularization, performance variation with parametric sweeps along with detailed in vivo 
validation for cardiac applications were not investigated in the conference paper.

In this paper, we apply spatiotemporal Bayesian regularization (STBR) for CSI and 

perform a detailed feasibility study for cardiac application. The paper reports on two main 

contributions. First, two schemes for incorporating temporal domain information into our 

Bayesian regularization algorithm is proposed and implemented into a Lagrangian cardiac 

strain estimation framework [31]. Second, we report results from a comparative study 

involving conventional NCC, spatial and spatiotemporal Bayesian regularization using data 

from finite-element-analysis (FEA) canine cardiac simulation and ten healthy murine hearts 

collected in vivo.

II. THEORETICAL BACKGROUND

A. OVERVIEW OF BAYESIAN REGULARIZATION

McCormick et al. treated SMI as probability density function (PDF) images and used 

Bayes theorem for regularization by incorporating information from spatial neighboring 

BM locations [51]. A basic transformation [51] (addition of one and normalization of SMI 

values by their sum) was applied on the SMIs to obtain corresponding PDF images. The key 

idea behind Bayesian regularization is to develop a likelihood function, Pr uNx ∣ uX  with 

information from adjacent neighbors and calculate a posterior probability density (PPD), 

Pr ux ∣ uNx  using Bayes theorem as follows.
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Pr ux ∣ uNx =
Pr uNx ∣ ux Pr ux

Pr uNx
(1)

where, ux is the displacement vector for the current BM location (x), uNx is the set of 

displacement vectors from a spatial neighborhood, Nx defined with four adjacent neighbors 

(left, right, top and bottom), Pr (ux) is the prior PDF corresponding to the SMI which is 

being regularized, and Pr uNx  is a normalization term. PPD denotes the regularized SMI 

after spatial information is combined with the unregularized prior PDF.

Assuming neighbors are independent to simplify mathematical modelling [55], the 

likelihood function Pr uNx ∣ uX  is defined as the multiplication of all neighboring PDFs, 

Pr (ux′|ux) which denotes the probability that a neighboring block at x′ ∈ Nx has a 

displacement ux′ given displacement ux at x and shown as below.

Pr uNx ∣ ux = ∏
x′ ∈ Nx

Pr ux′ ∣ ux (2)

The model used to define Pr (ux′|ux) is shown as follows.

Pr ux′ ∣ ux ∝ max
vx′ ∈ D

Pr vx′ × exp
− vx′ − ux 2

2σu2 (3)

Equation (3) indicates that for a possible displacement ux′, the Pr (ux′|ux) is defined as 

the maximum probability of a set of displacements (vx′ ∈ D) similar to ux′ weighted by 

a 2-D Gaussian term having the width for each direction defined a vector σu. The set of 

displacements, D is defined such that ∥vx′ − ux∥ < ϵ with ϵ = 3σu. McCormick et al. coupled 

σu with the maximum expected axial and lateral strain in an image by defining a parameter 

strain regularization sigma (SRS denoted by σε). Finally, the regularized displacement 

estimator determines the integer displacement vector as the point where the PPD maximizes 

(equation 1) and achieves sub-sample precision through interpolation. This approach is 

termed as spatial Bayesian (SBR) displacement estimator in the rest of the paper. Note, this 

algorithm can be applied iteratively to incorporate information from non-adjacent neighbors.

B. SPATIOTEMPORAL BAYESIAN REGULARIZATION (STBR)

For STBR, we consider a set of four consecutive RF frames for displacement estimation. 

Bayesian regularization is applied to SMIs; therefore, the regularization neighborhoods are 

defined in the SMI domain. As a pair of RF data frames result in a SMI at a BM location, we 

require four consecutive RF frames to have a minimum set of three SMIs at a BM location 

in the temporal domain. This is the smallest temporal neighborhood with past and future 

neighbors and is not linked to the acquisition frame rate and cardiac strain rate. However, 

if high frame rate acquisition is done or cardiac strain rate reduces, the proposed algorithm 

can be adapted to run with more than one iteration as the smooth variation in velocity 
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assumption will hold for longer spans. First, inter-frame 2-D NCC estimation is performed 

resulting in three SMIs for each BM location. Specifically, for a BM location x, we have 

past, present and future temporal unregularized SMIs denoted by SMI(t − 1, x), SMI(t, x) 

and SMI(t + 1, x) respectively with SMI(t, x) being regularized by the proposed STBR 

method as shown in Figure 1. To enforce temporal continuity assuming smooth variation 

of velocity over time, we propose two schemes for incorporating temporal information into 

Bayesian regularization here as described below.

1) SPATIAL THEN TEMPORAL BAYESIAN (STBR-1)—In this scheme, first one 

iteration of SBR is applied on all SMIs independently resulting into spatially regularized 

SMI for each BM location. Then, temporal regularization is done by considering these 

regularized SMI as the prior with a likelihood function incorporating information from its 

past and future temporal neighbors using following equation.

Pr ux ∣ uNt ∝ Pr uNt ∣ ux × Pr ux ∣ uNx (4)

where, Pr uX ∣ uNt  is the posterior PDF after temporal regularization, uNt is the set 

of displacement vectors from a temporal neighborhood, Nt defined with two adjacent 

neighbors (past and future) and Pr uX ∣ uNx  is PPD after one iteration of SBR. To define 

the temporal likelihood function Pr uNt ∣ uX , models like those reported in equations 2–

3 are utilized and a 2-D temporal Gaussian term having the width vector σt is defined. 

Finally, regularized displacement estimator determines the displacement vector as the point 

where Pr ux ∣ uNt  maximizes with sub-sample precision through interpolation. We term this 

method as STBR-1 displacement estimation.

2) SIMULTANEOUS SPATIOTEMPORAL BAYESIAN REGULARIZATION 
(STBR-2)—In the second scheme, STBR is done simultaneously on the present 

unregularized SMI using following equation.

Pr uX ∣ uNxt ∝ Pr uNxt ∣ ux × Pr uX (5)

where, Pr ux ∣ uNxt  is the posterior PDF after spatiotemporal regularization, uNxt is the 

set of displacement vectors from a spatiotemporal neighborhood, Nxt defined with two 

adjacent temporal neighbors (past and future) and four adjacent spatial neighbors for the 

present SMI (left, right, top and bottom). To define the spatiotemporal likelihood function 

Pr uNxt ∣ uX , models like those reported in equations 2–3 are utilized with appropriate 

use of Gaussian terms for modulation depending on either spatial or temporal neighbors. 

Finally, maximum a posteriori (MAP) principle was applied on Pr ux ∣ uNxt  to determine 

displacement with sub-sample precision through interpolation. This approach is termed as 

STBR-2 displacement estimator in this paper.
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III. MATERIALS AND METHODS

A. CARDIAC FINITE-ELEMENT ANALYSIS SIMULATION STUDY

To evaluate the performance of STBR for CSI, a simulation study was performed using a 

3-D FEA model of a healthy canine heart [61], [62] containing complex cardiac deformation 

over a cardiac cycle. Detailed description of FEA analysis and scatterer generation is 

described in [23], [31], [61]. Cardiac cycle RF data (125 frames) in 2-D parasternal long axis 

(PLAX) US imaging view extracted from the 3-D model was generated using a frequency 

domain US simulation program [63]. Transducer was modelled as a 1-D linear array having 

128 elements (0.2 × 10 mm2) and a pitch of 0.2 mm operating at a center of frequency of 8.0 

MHz and sampling frequency of 78.84 MHz. Simulated US images had a dimension of 80 × 

100 mm2. US attenuation was modelled with attenuation co-efficient value set to 0.5-dB/cm-

MHz. Sound of speed was assumed to be 1540 m/s for delay-and-sum beamforming. Five 

independent scatterer realizations were simulated for statistical analysis. For each scatterer 

realization, three sets of noisy RF datasets were generated by superimposing additive, white 

Gaussian noise (AWGN) on the simulated noise-less RF signals. AWGN profiles were 

generated relative to the noiseless RF signal derived from a 2-D region of interest (ROI) 

placed on the anterior wall. Furthermore, due to the simulated frequency dependent acoustic 

attenuation, the sonographic signal-to-noise (SNRs) of noisy RF data varied spatially over 

depth resulting in SNRs = 45 dB, 15 dB and 7 dB respectively for anterior wall while SNRs 

= 22 dB, 0 dB and −10 dB for posterior wall respectively [50]. Taking this SNRs variation 

into consideration, we performed our simulation error analysis by dividing the cardiac wall 

into anterior and posterior segments rather than reporting the global error for the entire wall. 

Note that, for RF data with SNRs < 0 dB all algorithms fail, and therefore were not included 

in the analysis.

B. IN VIVO MURINE CARDIAC IMAGING

In vivo feasibility study was done by collecting cardiac RF data from 10 BALB/CJ 

mice (7 male, 3 female, median age = 10 weeks, acquired from Jackson Labs, Bar 

Harbor, ME, USA) using a Vevo 2100 system (FUJIFILM Visual-Sonics, Inc., Toronto, 

Canada). All in-vivo procedures were approved by the Institutional Animal Care and Use 

Committee (IACUC) at the University of Wisconsin-Madison. High frequency US imaging 

was performed using a MS 550D transducer (center frequency = 40 MHz). We acquired 

1000 frames in PLAX view, which were stored in in-phase/quadrature (IQ) format for 

off-line CSI. Electrocardiogram (ECG) and respiratory signals were continuously monitored 

and simultaneously acquired during RF data collection. Finally, one cardiac cycle of RF data 

(sampling frequency = 512 MHz) was extracted from the collected 1000 frames by applying 

ECG and respiratory gating and used for CSI. The median heart rate of the mice scanned in 

the study was 293.40 beats per minute while the median number of frames in one cardiac 

cycle was 48. Further details regarding data collection can be found here [31].

C. STBR ALGORITHM IMPLEMENTATION

STBR is incorporated into a multi-level BM algorithm [64] and implemented using 

MATLAB and CUDA to run on a GPU (NVIDIA Tesla K80) for cross-platform 

acceleration. Figure 2 presents pseudocode for the STBR algorithm where RFData and 
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SearchParameters are structures containing four consecutive RF frames and displacement 

estimation parameters, respectively. The algorithm is as follows.

1. For all input frames, RF data are up-sampled using a 2-D windowed Sinc 

interpolator [57], [65] and multi-level pyramids are formed by data decimation.

2. At each level, inter-frame 2-D-NCC are estimated for all frames and stored in a 

3-D SMI store array.

3. A First-in-First-out (FIFO) buffer and a 3-D Bayesian store array are initialized 

on GPU and CPU memory respectively for Bayesian regularization.

4. STBR is applied iteratively for all SMI using either equation 4 or 5. Perform 

Scaling in Figure 2 denote the normalization applied on SMIs to generate the 

PDFs. In this paper, we have limited STBR to a single iteration thus requiring 

only past and future neighbors for PPD calculation. However, to integrate 

information beyond adjacent temporal neighbors, we need more than four RF 

frames as an input to the algorithm resulting in higher memory requirement 

on the GPU. To avoid illegal memory access on GPU, the FIFO buffer holds 

required SMI data on GPU device memory for a specific time, t while results 

after performing regularization on GPU are copied back to the CPU Bayesian 

store array.

5. Finally, subsample motion estimation [57] is done with 2-D Sinc interpolation 

and RF data is prepared (by aligning and stretching [66]) for the next level.

6. Repeat steps (1) – (5) for the given number of levels.

D. LAGRANGIAN CARDIAC STRAIN IMAGING

Lagrangian radial and longitudinal strain tensors were derived using a cardiac strain 

estimation framework proposed by our lab [31]. Inter-frame displacement estimation was 

performed with the multi-level BM algorithm [64] with and without regularization (SBR, 

STBR-1 and STBR-2). Note that, even though temporal information is utilized in the 

STBR method, the estimated displacement is still inter-frame. For example, if we have 

frames with ID 1, 2, 3 and 4 for STBR, estimated displacement would be between 2 and 

3 and frames 1 and 4 were utilized in the Bayesian framework to incorporate temporal 

consistency. To ensure fair comparison among methods, frames 2 and 3 were also used 

as pre- and post-deformation frames for NCC and SBR-based displacement estimation. 

The displacement estimation parameters used for FEA simulation and in vivo studies are 

summarized in Table 1. Displacement estimation parameters for FEA simulation and in 
vivo studies were chosen based on the findings from our previous publications on Bayesian 

regularization and CSI [31], [55]. For STBR, width vector σt was set empirically. Default 

axial and lateral direction σt values for FEA simulation and in vivo study were [0.01, 0.01] 

and [0.1, 0.1] respectively. A mesh of 24000 points covering the entire myocardium was 

generated by utilizing user-defined segmentation of epicardial and endocardial walls of the 

heart at end-diastole (ED) of a cardiac cycle (R-Wave of ECG) [23], [31]. The cardiac mesh 

was used then to integrate the inter-frame incremental displacements over time based on a 

Lagrangian description of motion starting from ED [31], [55], [56]. Before accumulation, 
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2-D median filtering was performed to remove any outliers from the estimated displacement 

vectors. The Lagrangian strain tensor (E) was derived by applying a least squares (LS) strain 

estimator on the accumulated displacement vectors to estimate axial, lateral and shear strain 

components [31], [33]. For FEA study, axial and lateral LS strain estimator kernel dimension 

was 0.5 mm and 1 mm respectively while in vivo study used axial and lateral kernels 

having dimension of 0.06 mm and 0.5 mm respectively to avoid smoothing/averaging during 

strain estimation. Finally, radial (er) and longitudinal (el) strains were derived by applying 

a coordinate transformation on E with details in [31]. End-systole (ES) strain images and 

segmental strain curves from both FEA simulation and in vivo mice data are used to 

qualitatively compare NCC, SBR, STBR-1 and STBR-2.

E. QUANTITATIVE PERFORMANCE ANALYSIS

Theoretical strain tensors were derived from the 3-D cardiac FEA simulation and used 

to compare the strain estimation accuracy among NCC, SBR, STBR-1 and STBR-2 

respectively. Quantitative performance analysis was done by evaluating the strain bias (%), 

normalized strain error (%) or Δε (%) and total temporal relative error (TTR) as follows.

 Strain bias (%) = E εtrue − εestimated (6)

Δε(%) =
∑i = 1

P εtrue − εestimated

∑i = 1
P εtrue

× 100 (7)

TTR(%) =
∑t = 1

T εtrue(t) − εestimated(t)
∑t = 1

T εtrue(t)
× 100 (8)

where, εtrue and εestimated denote estimated and theoretical strain images while εtrue(t) 
and εestimated (t) denote the estimated and true strain value from segmental strain curves, 

respectively, P is the number of points in the cardiac mesh (24000 points) and T is the total 

number of frames in a cardiac cycle (125 frames). We computed strain bias and Δε for each 

method at all-time points and for all scatterer realizations and concatenated the results in 

1-D arrays for statistical analysis resulting in a sample size of 620 [6]. TTR quantified the 

resemblance between the true and estimated strain curves per scatterer realization resulting 

in a sample size of 5 [31]. One-way analysis of variance (ANOVA) with the Bonferroni 

multiple comparison test was done to determine statistical significance among NCC, SBR, 

STBR-1 and STBR-2. Statistical analysis was performed using MATLAB Statistics and 

Machine Learning Toolbox Version 11.4 (R2018b).

To compare the algorithm performance in vivo, strain filters [67] were derived for the 

accumulated radial and longitudinal strains at all time points for each method by performing 

stochastic precision analysis [67]–[69]. First, local elastographic signal-to-noise (SNRe) 

were computed as follows.
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SNRe = μ
σ (9)

where, μ and σ the mean and standard deviation of strain values within a 5 points × 9 points 

ROI centered at each cardiac mesh point. The window was translated over the entire cardiac 

mesh and calculation was repeated for all time points within a cardiac cycle resulting into 

strain-SNRe pairs which were used to generate a 2-D histogram representing the SNRe PDF, 

f (SNRe, ε) and a 1-D histogram representing the strain PDF, f (ε). Then, f (SNRe, ε) was 

normalized by f (ε) resulting into the conditional PDF, f (SNRe, ε). Finally, strain filter or 

the conditional expected value of the SNRe was derived using the follow equation.

E SNRe ∣ ε = ∫
0

+∞
SNRe × f SNRe ∣ ε dSNRe (10)

To perform comparative analysis among NCC, SBR, STBR-1 and STBR-2, we qualitatively 

compared the corresponding strain filters. Additionally, E(SNRe |ε) values for radial and 

longitudinal strains at 46% and −17.69% strains were compared by one-way analysis of 

variance (ANOVA) with the Bonferroni multiple comparison test following an approach 

reported in [35].

IV. RESULTS

A. CARDIAC FEA SIMULATION STUDY

Figures 3 (b) – (f) show ES radial strain images obtained using FEA model, NCC, SBR, 

STBR-1 and STBR-2, respectively. Input RF data for this example had SNRs value of 15 

dB at anterior wall and 0 dB at posterior wall. Radial thickening of myocardium at ES was 

observed in the FEA result with positive strain values. The myocardium was divided into 

six equal segments denoted as segments 1 – 6 respectively in Figure 3 (a). Segments 1 – 6 

denote anterior base, anterior mid, anterior apex, posterior apex, posterior mid and posterior 

base segments respectively. NCC had noisy estimates in apical and posterior segments (3 

– 6) with spuriously elevated positive and negative strain values. Regularization (SBR, 

STBR-1 and STBR-2) reduced strain noise when compared to NCC in segments 3 – 6. 

STBR-1 suffered from underestimation in anterior base (segment 1).

Segmental radial strain curves corresponding to Figure 3 are summarized in Figure 4. 

Figures 4 (a) – (f) compare the segmental radial strain curves estimated using NCC, 

SBR, STBR-1 and STBR-2 for anterior base, anterior mid, anterior apex, posterior apex, 

posterior mid and posterior base segments respectively against FEA results. NCC results 

had higher deviation from the FEA in apical and posterior segments (Figures 4 (c) – (f)). 

Significant improvement in strain estimation quality was achieved with SBR, STBR-1 and 

STBR-2 methods. STBR improved the quality further in posterior mid and posterior base 

segments compared to SBR (observe the STBR-2 results in Figure 4 (e)). However, STBR-1 

underestimated radial strain in anterior base segment corroborating the finding from Figure 

3.
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Figures 5 (a) – (e) show ES longitudinal strain images obtained using FEA, NCC, SBR, 

STBR-1 and STBR-2, respectively. Longitudinal shortening of myocardium at ES was 

observed in the FEA result with uniform negative strain values. NCC had noisy estimates in 

apical and posterior segments (3 – 6) with spurious high positive negative strain values. All 

regularization methods (SBR, STBR-1 and STBR-2) reduced strain noise compared to NCC 

in segments 3 – 6 with better qualitative agreement with FEA. No significant qualitative 

difference was observed among SBR, STBR-1 and STBR-2 results.

Comparison of segmental longitudinal strain curves shown in Figure 5 are summarized in 

Figure 6. Figures 6 (a) – (f) compare NCC, SBR, STBR-1 and STBR-2 for the 6 segments 

versus FEA results. NCC results had higher deviation from the FEA in apical and posterior 

segments (Figures 6 (c) – (f)). Significant improvement in strain estimation quality was 

achieved with SBR, STBR-1 and STBR-2 methods compared to NCC with no significant 

difference among each other.

Figure 7 summarizes the comparison results for strain estimation bias. Figures 7 (a) – 

(b) show radial and longitudinal strain estimation bias for anterior and posterior cardiac 

segments as a function of input RF data SNR levels. Both SBR and STBR methods had 

lower radial strain estimation bias with statistical significance (p < 0.001). However, in some 

cases, STBR-1 had higher radial strain bias compared to SBR and STBR-2 with statistical 

significance. All regularization methods had lower longitudinal strain estimation bias with 

statistical significance (p < 0.001) compared to NCC with no statistically significant 

difference among each other. For example, for 22 dB data at posterior wall, mean el 

estimation bias for NCC, SBR, STBR-1 and STBR-2 were 1.20%, 0.19%, 0.19% and 0.23% 

respectively.

Figure 8 summarizes the comparison results for normalized strain error or Δε(%). Radial 

strain and longitudinal Δε(%) for anterior and posterior cardiac segments as a function 

of RF data SNRs are presented in Figures 8 (a) – (b) respectively. All regularization 

methods performed significantly better than NCC (p < 0.001) with no statistically significant 

difference among each other. All methods demonstrated higher normalized strain error as the 

noise level of RF data increased.

Figures 9 (a) – (b) show radial and longitudinal TTRs as a function of RF data SNRs 

respectively. All regularization methods performed significantly better than NCC for both 

radial and longitudinal strain. For posterior wall (SNRs = 0 and 22 dB), STBR-1 had 

lower radial TTR compared to SBR and STBR-2. However, at the anterior wall, STBR-1 

had significantly higher radial TTR compared to SBR and STBR-2 thus balancing out 

the performance improvement in the posterior wall. SBR had lower longitudinal TTRs 

compared to STBR methods. However, the values did not differ significantly. (For example, 

at SNRs = 15 dB, mean el TTR for NCC, SBR, STBR-1 and STBR-2 were 25.41%, 9.27%, 

10.38% and 10.13% respectively.

Figure 10 shows the variation of strain estimation bias as a function of width vector σt. 

Figures 10 (a) – (b) show the variation of radial strain estimation bias for STBR-1 and 

STBR-2 respectively while Figures 10 (c) – (d) show the variation of longitudinal strain 
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estimation bias. Width vector = [0.01, 0.01] had the lowest bias for all cases and is therefore 

used as a default parameter in the FEA study.

B. IN VIVO MURINE CARDIAC IMAGING

Figures 11 (b) – (e) show ES radial strain images obtained using NCC, SBR, STBR-1 

and STBR-2, respectively for a healthy mouse heart. Segments 1–6 shown in Figure 

11 (a) denote anterior base, anterior mid, anterior apex, posterior apex, posterior mid 

and posterior base segments respectively used for segmental analysis. Radial thickening 

of myocardium at ES was observed in all results. However, NCC depicts patches of 

spuriously high non-physiological negative strain values throughout the entire myocardium. 

All regularization methods significantly reduced these erroneous strain values providing 

performance improvement. The best strain distribution was achieved with STBR-2 in vivo 
(observed regions indicated with arrows) correlating with the physiological expectation from 

a healthy mouse heart.

Figures 12 (a) – (f) compare segmental radial strain curves estimated using NCC, SBR, 

STBR-1 and STBR-2 for the 6 segments [shown in Figure 11 (a)] respectively. NCC without 

regularization resulted in noisy radial strain curves. For example, observe the peak shift and 

temporal jitter noise in anterior mid and posterior apex segments respectively. Significantly 

better radial strain curves were obtained using Bayesian regularization (both spatial and 

spatiotemporal). STBR-2 had the best quality curves quantified in terms of physiological 

relevant strain variation and temporal smoothness thus corroborating the ES strain image 

quality observation from Figure 11.

Figures 13 (a) – (d) show ES longitudinal strain images obtained using NCC, SBR, 

STBR-1 and STBR-2, respectively for a healthy mouse heart. Longitudinal shortening of 

myocardium at ES was observed in all results. However, NCC depict patches of spuriously 

high unphysiological positive strain values throughout the entire myocardium with higher 

concentration in the apical and posterior base segments. All regularization methods 

significantly reduced those erroneous strain values providing performance improvement. 

The most homogeneous strain distribution was achieved with STBR-2 in vivo with 

significant improvement in the apical regions (observed regions indicated with arrows).

Figures 14 (a) – (f) qualitatively compare segmental radial strain estimated using NCC, 

SBR, STBR-1 and STBR-2 for anterior base, anterior mid, anterior apex, posterior apex, 

posterior mid and posterior base segments respectively. NCC resulted in noisy longitudinal 

strain curves in the apical [Figure 14 (c)] and posterior base [Figure 14 (f)] segments. SBR 

provided significant performance improvement in all segments except anterior apex [Figure 

14 (c)] with reduced ES longitudinal strain value. STBR-2 had the best quality curves 

quantified in terms of physiological relevant strain variation and temporal smoothness thus 

corroborating the ES strain image quality observation from Figure 13.

Figure 15 summarizes the results for in vivo stochastic precision analysis performed 

using ten healthy mice for radial (Figure 15(a)) and longitudinal (Figure 15(b)) strain 

filter comparisons, respectively. The strain filter presented in Figure 15 denote the mean 

of strain filters estimated individually for ten mice. Strain filter comparsion illustrated 
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performance improvement with Bayesian regularization for both radial and longitudinal 

strain when compared to NCC. SBR and STBR-1 strain filters were coincident with each 

other indicating no performance improvement with STBR-1. However, STBR-2 produced 

the strain filters with higher E(SNRe |ε) values for both er and el strains. Figures 15 (c) 

– (d) illustrate the comparison of E(SNRe |ε) values for each method at 46% accumulated 

radial strain and −17.69% accumulated longitudinal strain, respectively. All regularization 

methods performed significantly better than NCC (p < 0.05). Note that STBR-2 had the 

higher E(SNRe |ε) values both for radial and longitudinal strains even though it was not 

statistically significant when compared to SBR and STBR-1. The mean E(SNRe |ε) values at 

46% accumulated radial strain for NCC, SBR, STBR-1 and STBR-2 were 5.03, 9.43, 9.42 

and 10.58, respectively. The mean E(SNRe |ε) values at −17.69% accumulated longitudinal 

strain for NCC, SBR, STBR-1 and STBR-2 were 7.24, 11.68, 12.06 and 13.62, respectively.

Figures 16 (a) – (b) show the variation of in vivo radial strain and longitudinal estimation 

performance as a function of σt. For both STBR-1 and STBR-2, we have generated strain 

filters with σt = [0.01, 0.01] and [0.1, 0.1] respectively. Figure 16 show that σt = [0.1, 0.1] 

provided higher E(SNRe |ε) values for both methods with the best performance achieved 

with STBR-2 for radial and longitudinal strain results. Therefore, width vector = [0.1, 0.1] 

was used as a default parameter in the in vivo study.

Table 2 presents computational times for all methods for inter-frame displacement 

estimation. The results are measured in seconds and evaluated for a mouse RF dataset. The 

final RF data dimension was 6016 × 440 and mean execution time for 49 frames covering 

a complete cardiac cycle is reported. Bayesian methods required more computational time 

than NCC with highest time required by STBR-1.

V. DISCUSSION

In this paper, we evaluated two STBR approaches (STBR-1 and STBR-2) and compared 

them against conventional NCC and spatial Bayesian regularization (SBR) using FEA and in 
vivo small animal studies both qualitatively and quantitatively. The key findings from these 

studies are summarized as follows.

a. Both spatial and spatiotemporal regularization methods performed significantly 

better than NCC for both FEA simulation and in vivo studies.

b. For the FEA simulation study, STBR-1 and STBR-2 performed as good as SBR 

in most of the cases. Few cases resulted in lower estimation errors with STBR 

however without any statistical significance.

c. Incorporation of temporal domain information resulted in better ES strain images 

and smoother strain curves in vivo.

d. STBR-2 is the preferred spatiotemporal regularization scheme because of lower 

errors in FEA simulation and higher SNRe in vivo.

Qualitative comparison of ES radial strain images and temporal strain curves derived 

showed the robustness of Bayesian regularization to handle significant noise corruption 

when compared to NCC. Posterior segments incurred increased noise artifacts when 
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compared to anterior segments in the FEA simulation because of the modelled frequency 

dependent acoustic attenuation reducing SNRs with depth. The strain images presented in 

Figure 3 are reported at the ES phase of cardiac cycle while the average segmental temporal 

curves shown in Figures 4 represent strain values averaged over the entire cardiac cycle by 

dividing it into six equal segments. Therefore, the presented ES strain images denote a single 

time point in the temporal curves. Although the strain images look noisy in the posterior 

wall, on average the strain values with STBR-1 and STBR-2 were closer to FEA resulting 

in better qualitative agreement in posterior segments (apex, mid and base) compared to NCC 

and SBR indicating the benefit of using temporal regularization for low SNR regions [Figs. 

3 (c) – (d) and Figs. 4 (d) – (f)]. No statistically significant difference between SBR and 

STBR methods for higher SNR data was observed. These results suggest that for high SNR 

input data, additional regularization with temporal information may not be necessary.

In addition, spatial then temporal regularization (STBR-1) resulted in under-estimation of 

radial strain in apical anterior base segment (Figures 3 (d) and 4 (a)) suggesting iterative 

application of Bayesian regularization with only temporal information might result in 

undesirable bias due to over-regularization [55]. The prior PDF used in STBR-1 (equation 

4) posterior PDF calculation is the posterior PDF calculated after one iteration of spatial 

Bayesian regularization and the likelihood function only utilizes information from temporal 

neighbors. Therefore, STBR-1 has the effect of running Bayesian regularization twice (first 

iteration spatial only and second iteration temporal only) which is not the optimal iteration 

number for segment 1 (apical base). Furthermore, the chosen width vector value (σt [0.01, 

0.01]) appeared to be too small thus enforcing higher regularization. On the contrary, 

STBR-2 uses spatial and temporal information simultaneously resulting in a better safeguard 

against over-regularization from temporal information only. This can be observed in Figure 

17 where STBR-1 showed higher sensitivity towards over-regularization when compared to 

STBR-2 as a function of width vector values (observe the ROI indicated by arrows).

SBR, STBR-1 and STBR-2 longitudinal results demonstrated good agreement with FEA 

results compared to NCC with no clear distinction between them [Figures 5 and 6]. These 

results might be attributed to the simulated higher lateral sampling frequency (500 A-lines) 

and lateral Sinc interpolation used before displacement estimation [65]. Similar to radial 

strain images, ES longitudinal strains images from Bayesian methods look noisy in the 

posterior wall however temporal strain curves showed good agreement due to the averaging 

over cardiac segments [Figures 5 (c) – (d) and Figures 6 (d) – (f)]. These qualitative 

findings correlate well with the quantitative evaluation of strain bias, normalized strain error 

and total temporal relative error. Note that, higher TTRs with STBR-1 compared to SBR 

and STBR-2 resulted from underestimation with only temporal regularization. Additionally, 

adaptive application of either SBR or STBR-2 might be a preferred approach for Bayesian 

regularization depending on local signal decorrelation and input RF data signal-to-noise 

ratio for future studies.

In vivo qualitative results suggest benefits from using temporal information for CSI 

observed with uniform strain distribution and strain curves with smooth temporal variation 

and physiological relevance (Figures 11 – 14). Quantitative stochastic analysis results 

(Figure 15) corroborate the qualitative findings with STBR-2 demonstrating the best 
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performance in terms of E(SNRe |ε). Even though STBR-2 had higher radial and 

longitudinal E(SNRe |ε) values compared to all other methods, the results were not 

statistically significant possibly due to small sample size (n = 10) and the choice of a 

conservative post-hoc test (Bonferroni) for multiple comparisons after ANOVA for four 

algorithms. Additionally, the best performance with STBR-2 correlates with our conclusion 

from FEA simulation study where STBR-2 is preferred over STBR-1 due to lower errors.

We also demonstrated performance variation with the choice of σt (temporal Gaussian width 

vector) in FEA simulation and in vivo studies [Figures 10 and 16] with optimal σt being 

0.01 and 0.1, respectively. One interesting observation from these results is the dependence 

of σt on image acquisition frame rate (simulation = 250 Hz for canine heart and in vivo 
= 213 Hz mouse heart) suggesting lower σt for data collected at higher frame rate. Our 

previous in vivo STBR for carotid strain imaging also corroborates the finding (optimal 

σt = 0.005 for carotid artery with imaging frame rate = 538 Hz). σt can be considered 

as a tuning parameter controlling the type of displacements allowed by the model [note 

that likelihood function construction in equation (3)]. Lower σt enforce higher temporal 

continuity and vice versa. Thus, it is reasonable to expect the optimal choice to be tissue and 

imaging frame rate specific. In this paper, we set σt empirically, a potential drawback which 

must be addressed before employing STBR for future in vivo studies. Possible solutions 

include dynamic variation of σt based on local signal decorrelation [18], [55], [70] or 

designing tissue-specific presets for displacement estimation parameters as suggested by 

Ashikuzzaman et al. [16]. Please note that the link between width vector σt and image 

acquisition frame rate are observational at this point and warrant further investigation in the 

future by designing appropriate in vivo studies.

Computational timing analysis showed that STBR methods require more time to execute 

when compared to NCC or SBR (Table 2). Additional processing time stems from the 

referred time loops shown in Figure 2 [Algorithm 1]. Several methods exist to improve 

computation efficiency. For example, NCC calculation are done within a temporal for 

loop which calls a CUDA kernel having 2-D blocks of threads. The temporal loop can 

be replaced with 3-D blocks of threads achieving better parallelization. However, higher 

memory requirement will be a potential challenge while adopting this approach.

In this work, temporal consistency is designed to be piecewise smooth as information from 

only immediate past and future neighboring frames is used in contrast to spatiotemporal 

algorithms which enforce global smooth displacement trajectory over a cardiac cycle 

[9] with cyclic periodicity [71]. Similar, piecewise temporal smoothness was previously 

reported in literature for CSI [11], [13]. This constraint is applied to ensure robustness 

against out-of-plane motion artifacts which can introduce large discontinuity in temporal 

displacement fields consequently impacting the cardiac strain estimates negatively thus 

resulting in physiologically more plausible strain variation in vivo [observe Figure 12 and 

14]. Please note that in case of patients (e.g. arrhythmia) heart movements might be irregular 

mostly impacting cyclic periodicity [72] however smoothness assumption in a small local 

neighborhood should still hold based on findings from feasibility studies reported by Elen 

et al. [10]. Moreover, in the preferred spatiotemporal regularization scheme (STBR-2), 
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the spatial neighborhood size is always larger than temporal neighborhood size in our 

implementation thus ensuring that the algorithm is not biased by temporal information.

Even though we did not observe noticeable performance improvement within our simulation 

studies, we observed discernable performance improvement with STBR methods (specially 

SBTR-2) in in vivo studies. In vivo CSI is significantly challenging due to out-of-

plane motion of heart, partially decorrelated speckle pattern, acoustic shadowing and 

reverberation artifacts from sternum impacting image quality [9]–[11]. We hypothesize 

that not incorporating these complex imaging conditions in our simulation framework 

might resulted in the performance difference observed between simulation and in vivo. 

Furthermore, the better performance in vivo due to temporal coherence corroborates with 

findings from previous literature reports [9]–[11], [13], [30].

Several state-of-art US imaging techniques with plane or diverging wave imaging have also 

been implemented for cardiac and vascular strain imaging applications [34], [73], [74]. 

These techniques achieve significantly higher frame rates compared to focused line-by-line 

image acquisition approaches. We anticipate more robust Bayesian regularization for these 

applications using both spatial and temporal domain information simultaneously.

One limitation of the current study is the use of data only from healthy models for both FEA 

and in vivo studies. To better understand the robustness and efficacy of the STBR, diseased 

heart models [6] (e.g., ischemia, dyssynchrony, arrhythmia) will be considered in future 

studies. Another limitation is the algorithm implementation for linear arrays as opposed to 

phased array transducers. This must be addressed before possible application of STBR to 

in vivo human studies. Finally, our analysis was limited to a single iteration of temporal 

regularization thus sampling information only from its immediate past and future neighbors. 

In our previous work on Bayesian regularization and CSI [31], [55], we have found that a 

single iteration was sufficient for optimal performance in the FEA simulation model. For 

consistency between simulation and in vivo studies, we set the iteration number to be one 

in our in vivo study. With higher iteration number, information beyond adjacent spatial and 

temporal neighbors will be incorporated in STBR which may lead to over-regularization if 

the algorithm is not adaptive [55]. Iterative application will be investigated in future studies 

to better understand the effect of neighborhood size for STBR.

VI. CONCLUSION

Spatiotemporal Bayesian regularization is applied to a Lagrangian cardiac strain estimation 

framework in this paper. The proposed algorithm was validated using a FEA canine 

deformation model and in vivo healthy murine data sets. Our results suggest that Bayesian 

regularization benefits with additional temporal information specially when applied in vivo.
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FIGURE 1. 
Neighborhood definition for spatial and spatiotemporal Bayesian regularization. The SMI 

being regularized is denoted by the blue circle while its spatial and temporal neighbors are 

indicated by red and green circles, respectively. Each rectangle represents a SMI.
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FIGURE 2. 
Proposed algorithm for STBR incorporated into a multi-level block matching displacement 

estimator. SMI = Similarity metric image, PPD = Posterior Probability Density.
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FIGURE 3. 
Qualitative comparison of ES radial strain estimation for FEA simulations. (a) Cardiac 

segments used for regional analysis. (b) – (f) denote FEA, NCC, SBR, STBR-1 and 

STBR-2 results, respectively. SNRs values at anterior and posterior wall = 15 dB and 0 

dB respectively.
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FIGURE 4. 
Qualitative comparison of radial strain curves for FEA simulation. Radial strain curves 

comparison among NCC, SBR, STBR-1 and STBR-2 for (a) anterior base, (b) anterior 

mid, (c) anterior apex, (d) posterior apex, (e) posterior mid and (f) posterior base segments 

respectively. SNRs values at anterior and posterior wall = 15 dB and 0 dB respectively.
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FIGURE 5. 
Qualitative comparison of ES longitudinal strain estimation for FEA simulation. (a) – (e) 

denote FEA, NCC, SBR, STBR-1 and STBR-2 results, respectively. SNRs values at anterior 

and posterior wall = 15 dB and 0 dB respectively.
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FIGURE 6. 
Qualitative comparison of longitudinal strain curves for FEA simulation. Longitudinal 

strain curves comparison among NCC, SBR, STBR-1 and STBR-2 for (a) anterior base, 

(b) anterior mid, (c) anterior apex, (d) posterior apex, (e) posterior mid and (f) posterior 

base segments respectively. SNRs values at anterior and posterior wall = 15 dB and 0 dB 

respectively.
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FIGURE 7. 
Strain estimation bias comparison (n = 620). (a) – (b) Radial and longitudinal strain 

estimation bias as a function of SNRs levels sampled from anterior and posterior walls. 

SNRs = 0 and 22 dB were from posterior wall.
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FIGURE 8. 
Normalized strain error or Δε(%) comparison (n = 620). (a) – (b) Radial and longitudinal 

Δε(%) as a function of SNRs levels sampled from anterior and posterior walls. SNRs = 0 and 

22 dB were from posterior wall.
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FIGURE 9. 
TTR error comparison (n = 5). (a) – (b) Radial and longitudinal TTR as a function of SNRs 

levels sampled from anterior and posterior walls. SNRs = 0 and 22 dB were from posterior 

wall.
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FIGURE 10. 
Variation of strain estimation bias as a function of σt (n = 125). (a) – (b) Variation of 

radial strain estimation bias as a function of σt for STBR-1 and STBR-2 respectively. (b) 

Variation of longitudinal strain estimation bias as a function of σt for STBR-1 and STBR-2 

respectively.
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FIGURE 11. 
In vivo ES radial strain image comparison. (b) – (e) Radial strain images estimated with 

NCC, SBR, STBR-1 and STBR-2 respectively. Segments 1–6 shown in Fig. 11 (a) denote 

anterior base, anterior mid, anterior apex, posterior apex, posterior mid and posterior base 

segments respectively.
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FIGURE 12. 
In vivo qualitative comparison of radial strain curves. Radial strain curves comparison 

among NCC, SBR, STBR-1 and STBR-2 for (a) anterior base, (b) anterior mid, (c) anterior 

apex, (d) posterior apex, (e) posterior mid and (f) posterior base segments respectively.
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FIGURE 13. 
In vivo ES longitudinal strain image comparison. (a) – (d) Longitudinal strain images 

estimated with NCC, SBR, STBR-1 and STBR-2 respectively.
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FIGURE 14. 
In vivo qualitative comparison of longitudinal strain curves. Longitudinal strain curves 

comparison among NCC, SBR, STBR-1 and STBR-2 for (a) anterior base, (b) anterior 

mid, (c) anterior apex, (d) posterior apex, (e) posterior mid and (f) posterior base segments 

respectively.
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FIGURE 15. 
In vivo stochastic precision analysis (n = 10). (a) – (b) Radial and longitudinal strain filter 

comparison, respectively. (c) – (d) Comparison of E(SNRe |ε) for each method at 46% 

accumulated radial strain and −17.69% accumulated longitudinal strain, respectively.
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FIGURE 16. 
Variation of in vivo strain estimation performance as a function of σt. (a) – (b) Radial and 

longitudinal strain estimation performance as a function of σt.
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FIGURE 17. 
ES radial strain images from (a) STBR-1 and (b) STBR-2 respectively as a function of 

σt. STBR-1 shows strain under-estimation in the ROI indicated by arrows (blue pixels) for 

lower values of σt. The strain dynamic range is from −10% to +10%.
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TABLE 1.

Displacement estimation parameters for FEA simulation and in vivo studies.

Value Unit

Number of levels 3 -

RF data sampling factor [Axial: Lateral] 1:2 -

Axial decimation factors [3,2,1] -

Lateral decimation factors [2,1,1] -

Axial kernel length [8λ, 5λ, 1λ] Wavelengths

Lateral kernel length [15, 12, 10] A-lines

Kernel overlaps [Axial, Lateral] [10*,90] %

Median filter kernel [Axial, Lateral] [5** × 5] pixels

Subsample estimation 2-D Sine -

*
In vivo axial kernel overlap was 50 %

**
In vivo median filter axial kernel dimension was 7 pixels
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TABLE 2.

Summary of computational time (seconds).

NCC SBR STBR-1 STBR-2

73.20 114.30 316.15 156.86
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