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a b s t r a c t

Proteins mainly perform their functions by interacting with other proteins. Protein–protein interactions 
underpin various biological activities such as metabolic cycles, signal transduction, and immune response. 
However, due to the sheer number of proteins, experimental methods for finding interacting and non- 
interacting protein pairs are time-consuming and costly. We therefore developed the ProtInteract frame-
work to predict protein–protein interaction. ProtInteract comprises two components: first, a novel auto-
encoder architecture that encodes each protein’s primary structure to a lower-dimensional vector while 
preserving its underlying sequence attributes. This leads to faster training of the second network, a deep 
convolutional neural network (CNN) that receives encoded proteins and predicts their interaction under 
three different scenarios. In each scenario, the deep CNN predicts the class of a given encoded protein pair. 
Each class indicates different ranges of confidence scores corresponding to the probability of whether a 
predicted interaction occurs or not. The proposed framework features significantly low computational 
complexity and relatively fast response. The contributions of this work are twofold. First, ProtInteract as-
similates the protein’s primary structure into a pseudo-time series. Therefore, we leverage the nature of the 
time series of proteins and their physicochemical properties to encode a protein’s amino acid sequence into 
a lower-dimensional vector space. This approach enables extracting highly informative sequence attributes 
while reducing computational complexity. Second, the ProtInteract framework utilises this information to 
identify protein interactions with other proteins based on its amino acid configuration. Our results suggest 
that the proposed framework performs with high accuracy and efficiency in predicting protein-protein 
interactions.
Crown Copyright © 2023 Published by Elsevier B.V. on behalf of Research Network of Computational and 

Structural Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creative-
commons.org/licenses/by-nc-nd/4.0/).

1. Introduction

A protein is a macromolecule constituted by chains of amino 
acids, with side-chain groups extending from a connected backbone 
[1]. Protein–protein interactions (PPI) play a vital role in almost 
every intracellular biological and biochemical activity [2,3,4]. Most 
proteins execute their functions by interacting with other proteins. 
These functions include nutrient transport, enzymatic reactions, 

immune response, communication between cells, and tissue re-
generation. Thus, accurately identifying PPIs is essential for under-
standing cell physiology [5]. We now understand the close 
relationship between abnormal PPIs and a range of pathologies such 
as neurodegenerative conditions, cancer, and infectious diseases 
[6,7,8]: identifying functional PPIs has proved to be a turning point in 
how technology can instaurate the foundations for target, and in-
dividualised therapies [9,10,11].

Many have addressed the PPI identification problem via experi-
mental methods such as yeast two-hybrid screening [12,13,14], mass 
spectrometry [15,16,17,18,19], protein microarrays [20,21,22,23]. 
These approaches are often costly and time-consuming [24,25,26]. 
Computational methods aim, therefore, to reduce false-positive and 
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false-negative results by providing preliminary testing prior to the 
experiments [27,28,29].

Recent advances in deep learning frameworks, fuelled by the 
large amount of data available for training, have revolutionised sci-
entific studies [30]. In particular, it has become possible, to some 
extent, to predict PPI [31,32].

Nevertheless, the performance of deep learning algorithms is 
affected by multiple factors such as network structure, which may 
involve multiple sub-networks and the feature selection mechanism 
along with the activation and pooling functions, noise, and im-
balanced datasets [33,34]. To handle problems such as noise, wavelet 
transforms have been employed [35], while more informative re-
presentations and dimensionality reduction have been implemented 
using methods such as Boltzmann machines and autoencoders [36]. 
For problems with high feature dimensionality, learning can be op-
timised by extracting uncorrelated features while keeping highly 
informative features using convolutional and stacked autoencoders 
[33,34,35,37]. In biological contexts, modelling protein structures 
includes prediction from the amino acid sequence, designing pro-
teins with specific functionalities, and predicting properties or be-
haviour of a protein, which require a broad knowledge at the 
molecular level [38].

Deep learning architectures for PPI prediction may operate on 
different inputs, including primary structure [39,40,41,42], do-
main composition [43,44], gene expression [45,46,47], and the 
proteins’ 3-D structure [48], to mention a few. It is often believed 
that 3-D structure delivers a relatively more complete set of in-
formation for PPI prediction [49]. However, all the vital informa-
tion required to identify PPIs is encoded in the amino acid 
sequence, i.e. the primary structure [50], so sequence-based 
methods have gained particular attention [51]. DeepPPI [52], for 
example, aims to improve PPI prediction using a variety of sta-
tistical descriptors to learn the protein characteristics. TransPPI 
[53] captures latent patterns in the protein sequence using a 
Siamese-like architecture of convolutional layers. This method 
predicts interaction probabilities by concatenating a pair of pro-
tein representations from two identical sub-networks. CAMP is 
another PPI prediction method based on convolutional layers; it 
receives an integration of multiple features such as primary and 
second structures, physicochemical properties, and protein evo-
lutionary information as input [54]. This method includes a self- 
attention layer to learn the long-range dependencies between 
residues in protein sequences. The D-SCRIPT framework [55]
comprises a pre-trained, bidirectional long short-term memory 
(BiLSTM) model [56] that generates structurally informative fea-
tures for each protein and a projection module to reduce the di-
mensionality of embeddings. These low-dimensional embeddings 
include the protein’s residue contact map; these maps are used to 
predict the interaction probabilities. Another convolution-based 
framework, called DeepTrio [57], performs binary PPI prediction 
by employing multiple parallel convolutional neural networks. 
PIPR [58] is a sequence-based framework which integrates a 
convolution-pooling layer and bidirectional residual gated re-
current units (GRU) [59], extracting the local features and global 
sequential information of proteins, and thus capturing the mutual 
effects of protein pairs in PPI prediction tasks. S-VGAE [60] uses a 
variational graph autoencoder [61] to learn the latent features of 
proteins. A PPI identification method using GCNs [5] integrates the 
one-hot encoding representation of protein sequences and the 
positional information of each protein in the PPI network.

In this paper, we propose a sequence-based method called 
ProtInteract that predicts protein–protein interactions through two 
main tasks: encoding and prediction. A novel autoencoder archi-
tecture encodes each protein to remedy the computational com-
plexity posed by the high dimensionality of protein representation 
while extracting sequential attributes of the protein’s primary 

structure. This autoencoder is composed of 2-D convolutional and 
temporal convolutional network (TCN) layers (see Section 5.1).

ProtInteract is trained on the STRING database, which contains 
PPI datasets for various organisms. In each dataset, protein pairs are 
associated with an interaction score which shows the confidence of 
STRING assessment on an interaction being valid, given the available 
evidence [62,63]. Those interaction scores are the basis for Pro-
tInteract’s prediction process. These interaction scores are then 
normalised between zero (non-interacting pairs) and one (inter-
acting pairs with the highest confidence). We formulate the pre-
diction task as three different multiclass classification scenarios 
comprising, respectively two, three and five classes [64]. For the 
two-class scenario, interactions are divided into non-interacting (0 ≤ 
interaction score ≤ 0.5) and interacting pairs (0.5  <  interaction score 
≤ 1). For the three-class scenario, a range for erroneous results (0.4  <  
interaction score ≤ 0.7) is considered as well as non-interacting (0 ≤ 
interaction score ≤ 0.4), and interacting pairs (0.7  <  interaction score 
≤ 1). In the STRING database, an interaction score of 0.5 may suggest 
that, on average, every second interaction is labelled incorrectly (a 
false positive) [63, 65, 66]; we consider a wider span for such in-
teractions. The final scenario comprises five classes, where the non- 
interacting and interacting spans are divided into high- and low- 
confidence spans (see Table 4), to define five different classes. In 
each scenario, a deep convolutional neural network (deep CNN) 
predicts the probability of correctly classifying an interaction. Ad-
ditionally, many other researchers employed an LSTM architecture 
as the baseline model when dealing with time series and sequential 
datasets [67,68,69,70], which inspired to leverage LSTM as a baseline 
model to demonstrate the comparative advantages of the TCN ar-
chitecture. The rest of the paper is organised as follows: In Section 2, 
some of the most recent methods for addressing the PPI problem are 
briefly discussed. Section 3 outlines our proposed framework. The 
novel autoencoder architecture will be presented in Section 5.1, and 
the baseline model in section 10.2. The multi-class classification 
scenarios are discussed in Section 6. The architecture of the deep 
CNN is presented in Section 7. Section 8 will discuss the experi-
mental results, through the examples of Homo sapiens and Mus 
musculus. Finally, Section 9 concludes this work.

2. PPI prediction

Among the computational methods developed for PPI prediction, 
some aim to extract new features from protein information while 
others use the extracted features to learn new models [71]. For in-
stance, the approach proposed by Guo et al. [72] to obtain non-in-
teracting protein pairs has been used to develop a SVM-based 
method in [41], and a PIPR method in [58]. A multimodal approach 
based on LSTM is proposed in [71], which predicts PPI by integrating 
structural and sequential information of proteins as additional fea-
tures to the input feature set. The physiochemical attributes of 
amino acids, such as hydropathy [73], isoelectric point, and charge, 
play crucial roles in identifying interactions between protein se-
quences [74]. The PPI prediction is conducted based on sequences in 
[75] by defining units of three adjacent amino acids and measuring 
the frequencies of those units in a protein sequence. Other methods 
such as amino acid index distribution [76], the conjoint triad method 
[75], and autocovariance [72] extract features such as locations of 
amino acids, frequencies and physicochemical properties aiming to 
represent a protein sequence.

In order to reduce the high dimensionality of protein structures, 
several techniques have been developed, such as random forest [41]
and support vector machine (SVM) and its derivatives [77,78]. An-
other SVM-based approach named ACT-SVM [79] extracts features 
from protein sequences for input vector to the classifier. A sequence- 
based human PPI prediction, proposed in [80], is based on a stacked 
autoencoder (SAE). Another sequence-based PPI prediction 
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approach, Deep Sequence Contact Residue Interaction Prediction 
Transfer (D-SCRIPT) [81], models protein structure using the pre- 
trained language model in [56]. A heterogeneous network is used for 
PPI prediction in [82]. They represent proteins by concatenating local 
and global features. They used a k-mer method 1 [83] to extract local 
features. To extract global features, LINE (Large-scale Information 
Network Embedding) is employed [84]. Finally, a random forest 
classifies the potential protein pairs.

A deep learning method for PPI prediction, called ordinal regression 
and recurrent convolutional neural network (OR-RCNN) [85], com-
prises two recurrent convolutional neural networks (RCNNs) to extract 
local features and sequential information from the protein pairs, and 
ordinal regression to construct multiple sub-classifiers. The viability of 
these techniques is yet to be verified experimentally. Therefore, to 
understand the potential of generative models in protein engineering, 
more needs to be done, such as analysing the strengths and limitations 
of different models and the possibilities for incorporation into existing 
engineering operations. First and foremost, representation of the input 
to the network is a matter of great importance [86]. Given the high 
dimensionality of protein sequence datasets—which include amino 
acid physicochemical features and large chains of amino acids— deep 
learning methods may suffer from extended training times. On the 
other hand, reducing the number of amino acid features may lead to 
underfitting [87,88].

We propose, here, a framework for learning a meaningful re-
presentation of protein sequence while reducing its dimensionality 
using a novel autoencoder. PPIs are characterised based on their 
associated score from the STRING database. This score, a value from 
zero and one, expresses the confidence of an interaction existence 
based on the available evidence. A score of zero indicates the highest 
confidence that a pair of proteins do not interact. In contrast, in-
teraction with the highest confidence is characterised by a score of 
one. In this work, we composed the PPI prediction as three separate 
classification problems by defining various ranges of interaction 
scores. The first scenario is a classification with two classes, where 
the interaction score range is bisected, indicating only non-inter-
acting and interacting pairs (Table 2). The second and third scenarios 
designate multiple levels of confidence: a score in (0.4,0.7] indicates 
medium confidence, which may include false-positive samples, with 
the extremes indicating one or two levels of confidence in the in-
teracting and non-interacting pairs (Tables 3, 4). The concept of 
defining three scenarios for ProtInteract is rooted in the idea of 
identifying high-affinity protein-protein interactions (PPIs) with 
scores within the range of (0.9,1] (the probability of interactions 
falling within the most extreme confidence ranges). This expands 
the potential applications of ProtInteract to include the identification 
of protein–ligand pairs [89]. Furthermore, by establishing these 
scenarios, we are able to eliminate uncertainty present in the da-
tasets, specifically regarding interactions falsely labelled as positive 
within the range of [0.4,0.7). This allows for more accurate classifi-
cation of interactions within higher confidence ranges. These sce-
narios will be discussed in more detail in Section 6.

3. ProtInteract outline

Most protein design problems require profound knowledge to 
analyse difficulties and obtain optimal design [90]. However, the 
emergence of deep neural networks has provided the computational 
capacity to exploit the rich reserves of existing historical data. The 
proposed framework comprises two deep neural networks, each 
responsible for one task. First, a deep learning architecture reduces 
the input data size by extracting meaningful sequential patterns 

from the protein sequence. Second, a deep learning architecture 
performs the PPI prediction task using the extracted features.

For the first task, we propose two different architectures, namely 
a convolutional-TCN autoencoder and a convolutional-LSTM auto-
encoder, and compare their accuracies by using the latter as a 
baseline model. The main reason for this autoencoder framework is 
to reduce the dimensionality and to remove redundancies from the 
input tensor, which accelerates the training of the following network 
for PPI prediction. The intuition behind adopting TCN and LSTM in 
the framework is their ability to extract sequential patterns. As first 
introduced in [91], TCN allows a hierarchical, bi-level analysis of 
sequential data such as time series [92]. TCNs tend to outperform 
and have a longer long-term memory than recurrent neural net-
works (RNNs) such as LSTM and Gated Recurrent Units (GRU) when 
sequential data are involved [93,94]. Here, we show the advantage of 
using TCN over LSTM in our architecture.

In the following step, a deep convolutional neural network (CNN) 
architecture receives encoded proteins and predicts their interaction 
according to the three defined different scenarios: two, three and five 
classes, according to Tables 2, 3 and 4, respectively. For each scenario, 
the deep CNN predicts the class of each interaction given the encoded 
protein pairs. A schematic representation of these steps is shown in 
Fig. 1. The network structure is described in greater detail below.

The following section discusses our approach to encoding pro-
teins using the physicochemical properties of their amino acids.

4. Protein representation

The first step toward developing a deep learning algorithm for 
PPI prediction is preprocessing the datasets to encode the categorical 
amino acids into a set of numerical values [95]. A common technique 
is one-hot encoding [95,96], which may not be well-suited to pro-
blems with high cardinality, such as encoding proteins of significant 
length. For example, for a dataset comprising the twenty standard 
amino acids and an unknown amino acid (X), Alanine (A) might be 
represented as [10000000000000000000] using one-hot encoding, 
which is a simple vector with twenty zeros. Here, one-hot encoding 
results in sparse vectors with many non-informative zeroes re-
presenting a protein of some length [97,98]. Such a high proportion 
of zeroes in the encodings results in a neural network that struggles 
to learn because it observes mostly zero-valued inputs. To eliminate 
this difficulty, each amino acid is first characterised by ten physi-
cochemical features, as reported in Table 1. These features are highly 
informative and represent various aspects of the protein. For inter- 
protein bindings to form, amino acids should chemically comple-
ment each other, allowing hydrophobic, polar, or charged interac-
tions [99]. The hydropathy properties of amino acids, i.e., 
hydrophobicity and hydrophilicity, are the dominant properties of 
protein-protein binding [100,101]. The helix and sheet probabilities 
are two statistically driven parameters [102]. The protein’s iso-
electric point pI (i.e., the pH at which its net charge is zero), its side- 
chain net charge number NCN [103,104], and its solvent-accessible 
surface area (SASA) are key factors in protein stability and folding 
studies [105]. The features of unknown amino acids (X) are calcu-
lated by the median of each known feature from twenty standard 
amino acids. With the varied ranges of the physicochemical features, 
min–max normalisation is performed for each feature reported in 
Table 1. These ten attributes have proven efficient in determining the 
potential for protein interactions.

Given a protein dataset, such as that of Homo sapiens, the number of 
amino acids in each protein may be substantially different. For in-
stance, TRP-Cage protein [PDB code: 2M7D] has the shortest length in 
the H. sapiens dataset, comprising twenty amino acids, while Titin2 is 

1 In an amino acid sequence of length N, any k  <  N consecutive amino acids are 
called a k-mer. These are collected using a sliding window of length 1 ≤ k ≤ N. 2 https://pdb101.rcsb.org/motm/185
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composed of more than 34,000 amino acids, thus making it difficult to 
represent to the neural network. Since nearly 98% of H. sapiens and M. 
musculus sequence datasets from the STRING database are proteins 
with a length of 2048 amino acids or fewer; we ignore the longer 
proteins in this paper with only a small loss of content. Additionally, to 
equalise the variety of lengths, all protein encodings are padded, with 
zeroes, to 2048 units. Consequently, each protein may be encoded as a 
tensor with the unwieldy dimensionality of 2048 × 10, requiring slow 
and computationally expensive training [33,36].

The underlying sequential structure and orientation of proteins 
are dictated by the well-defined order of amino acids in the peptide 
chain: the amino end of each amino acid (its N-terminus) links to the 
carboxyl end (C-terminus) of the growing peptide chain [108,109], 
and the position of each amino acid along a specific chain de-
termines the chain’s final three-dimensional configuration and its 
binding ability [110]. The arrangement of amino acids along a protein 
determines a causal directionality which is contrary to an assump-
tion on which traditional neural networks are based, viz. the in-
dependence of all the input vector units [35,111]. Thus, traditional 
neural networks lack the ability to capture sequential information. 
For this reason, the recurrent neural network (RNN) and its variants, 
such as the gated recurrent unit (GRU) [59], and LSTM [112,113]

incorporate hidden states which are generated by sequential in-
formation, thus capturing the underlying distribution of such data-
sets [91,114,115]. However, these methods are often computationally 
expensive, and training is slow [93,116,117]. This led to the devel-
opment of the temporal convolutional network (TCN) for sequence 
modelling based on dilated causal 1-D convolutional layers [93]. TCN 
outperforms LSTM in a diverse range of tasks and datasets [93]. 
Owing to those advantages, we employ TCN layers as the auto-
encoder architecture’s main framework, and we propose a baseline 
model using LSTM layers for comparison (see Section 10). The TCN 
architecture is explained in the following section.

4.1. Temporal convolutional network (TCN)

The many advantages of LSTM come at a high computational cost, 
consequently, and it is slow to train [93,116]. We overcome these 
difficulties using the temporal convolutional network.

The TCN architecture leverages two basic principles. Firstly, there 
is no information leakage from future to past, owing to causal di-
rectionality in the convolution, i.e. for an input sequence with length 
t as {0,...,t − 1} the ith element of the output sequence depends only 
on the elements that precede it in the input sequence [118], i.e. the 

Fig. 1. The ProtInteract framework comprises a convolutional TCN autoencoder that extracts highly informative sequential patterns encoded by each protein and lowers its 
dimension. A deep CNN predicts the probability of an interaction falling within the range of a defined class. The two proteins form a complex, which is represented in this 
architecture by the stacking of the two proteins.

Table 1 
Physicochemical properties of 20 amino acids: a) volume; b) isoelectric point; c) helix probability; d) sheet probability; e) hydrophobicity; f) hydrophilicity; g) polarity; h) 
polarisability) [102,104,106,107]. 

Amino acid Symbol a b c d e f g h SASA NCN

Alanine A 1.00 6.11 0.42 0.23 0.62 -0.50 8.10 0.046 1.181 0.007187
Cysteine C 2.43 6.35 0.17 0.41 0.29 -1.00 5.50 0.128 1.461 -0.03661
Aspartate D 2.78 2.95 0.25 0.20 -0.90 3.00 13.00 0.105 1.587 -0.02382
Glutamate E 3.78 3.09 0.42 0.21 -0.74 3.00 12.30 0.151 1.862 0.006802
Phenylalanine F 5.89 5.67 0.30 0.38 1.19 -2.50 5.20 0.290 2.228 0.037552
Glycine G 0.00 6.07 0.13 0.15 0.48 0.00 9.00 0.000 0.881 0.179052
Histidine H 4.66 7.69 0.27 0.30 -0.40 -0.50 10.40 0.230 2.025 -0.01069
Isoleucine I 4.00 6.04 0.30 0.45 1.38 -1.80 5.20 0.186 1.810 0.021631
Lysine K 4.77 9.99 0.32 0.27 -1.50 3.00 11.30 0.219 2.258 0.017708
Leucine L 4.00 6.04 0.39 0.31 1.06 -1.80 4.90 0.186 1.931 0.051672
Methionine M 4.43 5.71 0.38 0.32 0.64 -1.30 5.70 0.221 2.034 0.002683
Asparagine N 2.95 6.52 0.21 0.22 -0.78 2.00 11.60 0.134 1.655 0.005392
Proline P 2.72 6.80 0.13 0.34 0.12 0.00 8.00 0.131 1.468 0.23953
Glutamine Q 3.95 5.65 0.36 0.25 -0.85 0.20 10.50 0.180 1.932 0.049211
Arginine R 6.13 10.74 0.36 0.25 -2.53 3.00 10.50 0.291 2.560 0.043587
Serine S 1.60 5.70 0.20 0.28 -0.18 0.30 9.20 0.062 1.298 0.004627
Threonine T 2.60 5.60 0.21 0.36 -0.05 -0.40 8.60 0.108 1.525 0.003352
Valine V 3.00 6.02 0.27 0.49 1.08 -1.50 5.90 0.140 1.645 0.057004
Tryptophan W 8.08 5.94 0.32 0.42 0.81 -3.40 5.40 0.409 2.663 0.037977
Tyrosine Y 6.47 5.66 0.25 0.41 0.26 -2.30 6.20 0.298 2.368 0.023599
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input sequence with indices {0,...,i}. The unique bond directionality 
(i.e. sequentiality) in the peptide backbone imposed by the N-ter-
minus to-C-terminus translation of amino acids is analogous to that 
of time-series data [108,109,119]. Therefore, one may consider pro-
teins as pseudo-time series as illustrated in Fig. 2, where the time is 
a proxy for the amino acid positions in the polypeptide chain, which 
determines the functionality and properties of that protein [38].

Second, the TCN architecture can map an input sequence of any 
length to an output sequence with the same length, just as RNNs can. 
To accomplish this, the TCN employs a 1-D fully convolutional ar-
chitecture, in which the input and hidden layers have the same 
length.

In a simple causal convolution network, the size of the receptive 
field determines how far into the past the network can access. This 
size grows linearly with the network depth. This precludes causal 
convolution from being applied to sequential tasks requiring a long 

history. To avoid this obstacle, the TCN architecture uses dilated 
convolutions that provide an exponentially large receptive field 
[120]. The dilated convolution operator F(s) on element s of a 1-D 
input sequence x ∈ Rn and filter f: {0, ... ,k − 1} → R is defined as

= =
=

F s x f s f i x( ) ( * )( ) ( ).
i

k

s i d
0

1

.d

where d is the dilation factor, k is the filter size, and s − i.d indicates 
the direction of the past [93]. In addition to network depth, the re-
ceptive field depends on filter size k and the dilation factor d [118], 
so, to expand the receptive field, one may increase the dilation 
factor, which includes a wider range of inputs, i.e. it captures long 
range sequential patterns [118,121]. Therefore, the dilation factor 
adjusts the effective history of the TCN. Fig. 3 depicts a TCN with 
three dilated causal convolutional layers.

Fig. 2. Proteins may be represented as pseudo-time series such as financial instruments in stock market. 

Fig. 3. a) A temporal convolution with dilation factors d = 1,2,4 and a filter size of k = 3; b) Architecture of the residual block associated with the TCN. 
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The network depth is essential for learning robust representa-
tions, but it leads to vanishing gradients. In order to circumvent this 
issue and build deep networks, the residual block has been devel-
oped [93,122]. Residual blocks are employed between TCN layers, 
allowing for training much deeper models and accelerating con-
vergence [123]. Essentially, as the name suggests, the residual blocks 
learn residual mapping with reference to the input. The intuition 
behind such a design is that optimising the residual mapping is 
easier than optimising the desired underlying mapping (mapping 
function from input to output) [122]. Let H(x) and F(x) respectively 
denote the desired underlying mapping and residual mapping. We 
may represent the original mapping as H(x) = F(x) + x for input x. If 
identity mapping is desired, as shown in Fig. 3(b), it would be easier 
to push the residual mapping F(x) to zero rather than to fit an 
identity mapping by a stack of nonlinear layers [122,124]. The re-
sidual module for TCN consists of a dilated causal convolution, fol-
lowed by weight normalisation [125] and a nonlinear activation 
function (a rectified linear unit, ReLU) [126].

In the RNN timeline, the later frames are computed once their 
predecessors are complete. In contrast, convolutional networks can 
perform the computations in parallel owing to the independent use 
of the same kernel (or similar kernel) in each layer repeatedly [117]. 
TCN offers a flexible receptive field that may be expanded to cover 
the entire sequence length and captures longer effective history by 
integrating dilated convolutions and residual layers [121]. TCNs tend 
to have a more extended long-term memory than RNNs, making 
them more suitable for capturing long-range dependencies as a 
common binding mechanism [93, 94, 127, 128].

Given the high-dimensional tensor representing each protein 
sequence and the size of protein datasets, training a neural network 
may be slow and computationally expensive [33, 36, 117]. To address 
this issue, a novel autoencoder framework is proposed, which ex-
tracts informative abstract features that characterise each protein in 
a lower dimension.

In the next section, the fundamentals of autoencoder structure 
are discussed.

5. Autoencoder

Autoencoders, as depicted in Fig. 4, are a type of unsupervised, 
feedforward neural network that reconstructs the output from the 
input [129]. They consist of two parts, namely, the encoder and the 
decoder. The encoder maps the input data into a lower-dimensional 
space in the so-called latent layer (latent representation), while the 
decoder reconstructs the input data from the latent layer; such a 
network is said to be under-complete because of the constriction 
that the latent layer imposes [130]. Autoencoders are capable of 
learning nonlinear dimension reduction functions, removing re-
dundancies and correlations while extracting highly informative 
features [130]. The input layer represents a high-dimensional and 
possibly correlated feature space, and this network is used to extract 
low-dimensional and uncorrelated features via the latent layer (the 
encoder output).

The intention behind using autoencoders is to transform the 
high-dimensional input tensor into a low-dimensional, informative 
uncorrelated feature [33,34].

Fig. 4. Autoencoder architecture. 
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The proposed autoencoder architecture is composed of 2-D 
convolutional layers that reduce the input tensor dimension, while 
TCN layers extract sequential patterns. These patterns are extracted 
from the latent layer and fed into the deep CNN to predict the 
probability of PPI (interacting vs non-interacting). Let us now ex-
amine the proposed autoencoder architecture more closely.

5.1. Convolutional TCN Autoencoder

The architecture of the convolutional TCN autoencoder (Conv- 
TCN-AE) is shown in Fig. 5, comprising an encoder and a decoder. 
This architecture is inspired by convolutional autoencoders, which 
learn the low-dimensional representation of the input tensor 
[131,132]. However, the standard convolutional layer fails to comply 
with causal directionality so to extract the underlying sequential 
attributes encoded by each protein and long-range dependencies, 
TCN layers are employed after the 2-D convolutional layers [94].

Initially, the encoder receives a tensor of 2048 × 10 dimensions, 
representing a protein sequence plus the physicochemical features 
of its amino acids. This tensor is passed through 2-D convolutional 
and max-pooling layers to reduce its dimensionality. The dropout 

layers are employed to reduce over-fitting and to improve general-
isation error [133]. Since the TCN layers are based on causal 1-D 
convolutional layers, a Reshape layer is placed between the 2-D- 
convolutional layers and TCN layers. Next, the densely connected 
layer extracts these features with the desired encoding size. The 
encoder generates a fixed-sized vector in the latent layer, which 
captures the informative sequential attributes delivered by the input 
tensor. These latent features may provide information on the short- 
and long-range interactions that may occur after protein folding. 
These features will represent a protein in a lower-dimensional space, 
which reduces the computational complexity of predicting interac-
tions.

Following encoding, the decoder reconstructs the input data 
from the latent features. The features are transformed into a 2-D 
tensor using a dense layer and a Reshape layer. Next, two TCN layers 
and then a Reshape layer transform the tensor to 3-D. Then, four 2-D 
transposed convolutional layers restore the original input tensor. 
Two 2-D convolution layers fully reconstruct the input with its ori-
ginal dimensions. The pseudocode of this architecture is presented 
in Alg. 1. 

Fig. 5. Conv-TCN-AE architecture that reduces the dimension of input data and extracts informative and uncorrelated features. 
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Algorithm 1. Convolutional-TCN Autoencoder [134].

6. Classifying interactions

The datasets used in this work are retrieved from the publicly 
available databases STRING [63] and Negatome 2.0 [135]. The 

Negatome 2.0 includes experimentally curated negative (non-inter-
acting protein pairs, i.e., with the lowest confidence score of zero for 
the interaction) and positive interactions (pairs with the highest 
confidence score of one for the interaction) for various organisms, 
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such as Homo sapiens, Mus musculus, Saccharomyces cerevisiae, 
Escherichia coli, and Drosophila melanogaster. The STRING database 
includes a broader range of organisms compared to Negatome 2.0, 
such as Caenorhabditis elegans, Danio rerio, and Arabidopsis 
thaliana. To facilitate access to these datasets, we provided a GitHub 
repository with all data incorporated into this study. This repository 
includes the Negatome 2.0 datasets for Homo sapiens and Mus 
musculus (231 KB) and the protein sequence datasets with the 
amino acid sequence of each protein for Homo sapiens and Mus 
musculus (12.6 MB) used to train the autoencoders and PPI datasets 
(700 MB), which predict the PPIs.

The protein network dataset retrieved from the STRING database 
comprises pairs of proteins, and their respective interaction scores 
computed based on seven evidence channels [62,63], as follows: 

1. Experiments channel: evidence originating from laboratory ex-
periments (including biophysical, biochemical and genetic ex-
periments). The primary interaction databases organised in the 
IMEx consortium [136,137], plus BioGRID [138], are the main 
source for this channel.

2. Database channel: evidence that has been confirmed by a human 
expert curator using information imported from pathway data-
bases [139].

3. Text mining channel: evidence collected by searching through all 
PubMed abstracts, through an in-house collection of more than 
three million full-text articles, and through other text collections 
related to proteins [140,141]. An association score is defined 
based on how frequently a pair of proteins are mentioned in the 
same paper. When parsing one or more sentences via natural 
language processing, if a concept connecting the two proteins is 
discovered (such as ‘binding’ or ‘phosphorylation by’), the asso-
ciation score is increased.

4. Co-expression channel: for this channel, gene expression data 
resulting from various expression experiments are normalised, 
pruned and then correlated [62,63]. A high association score is 
assigned to protein pairs with consistent similarity in their ex-
pression patterns under different conditions.

5. Neighbourhood channel: this is a genome-based prediction 
channel where an association score is given to protein pairs 
consistently observed in each other’s genome neighbourhood. 
This and the next two channels are generally most relevant for 
Bacteria and Archaea.

6. Fusion channel: an association score is given to a protein pair 
when there are one or more organisms whose respective ortho-
logs have fused into a single, protein-coding gene.

7. Co-occurrence channel: in a given organism, the phylogenetic 
distribution of orthologs of all proteins is evaluated. An associa-
tion score is assigned if two proteins show high resemblance in 
this distribution, i.e. their orthologs tend to be observed as 
‘present’ or ‘absent’ in the same subsets of organisms [142].

Each technique has its own disadvantages leading to biases, false 
positives and false negatives. The STRING dataset quantifies these 
uncertainties by allocating scores to proposed protein interactions 
indicating the probability of the interaction existence according to 
the nature and quality of the supporting evidence [62,63]. All these 
scores are integrated into a final “combined score” that reflects the 
confidence on whether an interaction between two non-identical 
proteins is biologically meaningful, given all the contributing evi-
dence in the STRING database [63]. Consequently, the interactions 
are associated with a score between zero and one (zero for non- 
interacting pairs and one for pairs whose interaction is indicated by 
strong evidence).

In this work, the prediction of protein–protein interactions is 
formulated as multi-class classification problems. Three separate 
scenarios are defined to evaluate the interactions from different 
perspectives. Firstly, we begin with a common scenario where in-
teractions are divided into interacting and non-interacting pairs. As 
described in Table 2, interactions with the score within the [0,0.5] 
range are labelled non-interacting, and those belonging to (0.5,1] 
range are labelled interacting pairs. In the STRING database, inter-
actions with a score of 0.5 are indicated as false positives, suggesting 
erroneous labelling for roughly every second interaction [65,66].

The next scenarios take a more nuanced approach: interactions 
scoring 0.4 in STRING are considered mediumconfidence, and in-
teractions scoring above 0.7 are high-confidence interactions (i.e. 
more likely to interact, based on the available evidence) [62, 63, 65]. 
We hence propose a score range of (0.4,0.7], indicating medium 
confidence, for the second and third scenarios.

This mid-range may include falsely labelled (false-positive) pairs. 
The second scenario comprises three classes – non-interacting, in-
teracting, and the aforementioned medium-confidence interactions, 
as shown in Table 3.

Finally, the third scenario comprises five classes. The non-inter-
acting and interaction ranges from the second scenario are further 
subdivided into two, as reported in Table 4. The interactions scoring 
in [0, 0.15] are noninteracting with the highest confidence, while 
those in (0.15, 0.4] are non-interacting with relatively less con-
fidence. At the upper end, (0.7, 0.9] and (0.9,1] represent interacting 
pairs with high and highest confidence, respectively [65, 66, 143]. 
One advantage of defining these thresholds is that one may find 
high-affinity PPIs among those protein pairs with interaction scores 
in (0.9,1] range, which extends the applications of ProtInteract to 
identifying protein–ligand pairs [89].

The next section illustrates the deep CNN architecture.

7. Predicting PPI using a Deep CNN

A deep CNN is designed, as shown in Fig. 6, to predict the 
probability of an interaction belonging to a class according to three 
defined scenarios. Initially, each protein is encoded using a Conv- 

Table 2 
Confidence score thresholds for two classes of protein–protein interactions. 

Classes Confidence Score Description

class 1 0 ≥ – ≤ 0.5 The score threshold is assigned to non-interacting protein pairs.
A score of zero suggests a non-interactive pair with the highest confidence

class 2 >  0.5 – ≤ 1 This range indicates interacting protein pairs based on experimental and theoretical evidence.
A score of one indicates full confidence in the protein pair’s interactivity.
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TCN-AE (in ProtInteract) or Conv-LSTM-AE (for the baseline model). 
Then, protein pairs are constructed by stacked encoded proteins in 
tandem, as depicted in Fig. 1, to create the input tensor for the 
deep CNN.

The CNN architecture is described in Alg. 2. The CNN comprises 
three 1-D-convolutional layers, max-pooling layers to downsample 
the tensor, dropout layers to avoid overfitting and data leakage, and 
dense layers to map the tensor from the preceding layer to a desir-
able size. Finally, the output is obtained from a densely connected 

layer using a softmax activation function, which yields the prob-
ability of an interaction falling within the defined range of classes for 
each scenario according to Tables 2, 3 and 4. As described above, the 
first scenario entails a simple yes–no prediction of whether a protein 
pair is interacting or non-interacting. The second scenario includes a 
medium-confidence range in addition to interacting and non-inter-
acting pairs. Finally, in the third scenario, the deep CNN outputs five 
values indicating the probability of given interaction belonging to 
each of the classes described in Table 4. 

Table 4 
onfidence score thresholds for five classes of protein–protein interactions. 

Classes Confidence Score Description

class 1 0 ≥ – ≤ 0.15 The confidence of interaction is very low.
class 2 >  0.15 – ≤ 0.4 This score range shows low confidence in the occurrence of an interaction between a protein pair.
class 3 >  0.4 – ≤ 0.7 A score in this range may indicate a falsely labelled pair.
class 4 >  0.7 – ≤ 0.9 Interaction scores within this range indicate high confidence of interaction between two proteins.
class 5 >  0.9 – ≤ 1 This range indicates highly interactive protein pairs, based on experimental and theoretical evidence.

Fig. 6. Deep CNN architecture outputs the interaction probabilities in the defined classes. The output dimension changes for each scenario, where we have two neurons (two 
classes) for the first scenario, three neurons (three classes) for the second scenario and five neurons (five classes) for the final scenario.

Table 3 
Confidence score thresholds for three classes of protein–protein interactions. 

Classes Confidence Score Description

class 1 0 ≥ – ≤ 0.4 The interaction confidence threshold is low.
class 2 >  0.4 – ≤ 0.7 A score in this range may indicate a falsely labelled pair.(for instance, a score of 0.5 suggests that nearly every second interaction may be 

incorrectly labelled as an interacting pair).
class 3 >  0.7 – ≤ 1 This range shows highly interactive protein pairs based on experimental and theoretical evidence. A score of one indicates full confidence 

in the protein pair’s interactivity.
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Algorithm 2. CNN – PPI prediction [134].

8. Experimental results

Training the proposed framework requires two types of datasets: 
protein sequences and protein–protein interactions. In the first 
stage, dimensionality is reduced on a protein sequence dataset, ex-
tracting an abstract representation while preserving the sequential 
structure information in each protein. This is followed by encoding 
the PPI dataset and performing PPI prediction based on the scenarios 
in Tables 2, 3 and 4. The data processing and the training of the 
neural networks were performed on an HP Apollo System with 40 
Dual Intel Xeon Gold 6149 processors, one Nvidia Tesla V100 (16 GB) 
graphics processor, and 378 GB of memory. The following sections 
explain these stages further in detail.

8.1. Dimensionality Reduction

Training and evaluation datasets are retrieved from the STRING 
database, which contains multiple datasets, including protein se-
quences, protein network data, and association scores between or-
thologous groups, amongst others. Here, we use the protein 
sequence to train the networks at the encoding stage and protein 
network datasets to train the deep CNN. This work is conducted on 
two species, namely, Homo sapiens and Mus musculus. The protein 
sequence dataset comprises protein IDs and their amino acid se-
quence from multiple species, including those reported in Table 5. 
Here, we consider proteins with a length of 2048 amino acids or less 
in order to constrain the overall data dimensionality.

The training hyper-parameters for both Conv-TCN-AE and Conv- 
LSTM-AE are acquired by grid search for the TCN and LSTM 

architectures. Both architectures are optimised in terms of hyperpara-
meters and can be fairly compared. Grid search is an exhaustive 
method for finding an optimal combination of hyperparameters. This 
method divides the domain of hyperparameters into a discrete grid and 
calculates the performance metrics of every combination of hy-
perparameters using k-fold cross-validation. The part of the grid that 
maximises the average value in cross-validation yields the optimal 
combination of hyperparameters [144], as shown in Table 6. The 
training is conducted based on five-fold cross-validation. Five-fold 
cross-validation is an evaluation method that helps discover a machine 
learning model configuration that can best predict the outcome of 
unseen data. With this approach, the data is randomly shuffled and 
divided into five subsets of equal size, called ”folds”. The process is 

Table 5 
The number of protein sequence instances retrieved 
from STRING database for H. sapiens and M. musculus. 

Species Samples

H. sapiens 19542
M. musculus 22024

Table 6 
Training and validation hyperparameters for Conv-TCN-AE and Conv-LSTM-AE. 

Parameter Value Description

Padding Length 2048 Padding length of all amino acid sequences
Epochs 100 Training epochs per protein
Batch Size 16 Size of training batch
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repeated five times, each using a different fold as the testing set (20%) 
and the combined other four folds (80%) as the training set. This allows 
for a robust evaluation of the model’s performance, as each data point 
is used for testing exactly once. The model’s performance is determined 
by averaging the results from the five iterations. First, this method 
supports reducing overfitting by training and evaluating the model on 
different subsets of the data. Second, data leakage is avoided by en-
suring the model is not trained on or exposed to the test data, which 
provides a more realistic estimate of its ability to generalise to new 
data [145]. Finally, the validation set used during training is created by 
randomly selecting 20% of the data from the training set. The accuracy 
of each network corresponds to its ability to reconstruct encoded data 
after 100 epochs.

The Conv-TCN-AE and Conv-LSTM-AE reconstruction accuracy 
(similarity of the input tensor to reconstructed output tensor by 
reducing mean squared error) are compared for H. sapiens and M. 
musculus in Fig. 7 and 8 respectively.

It may be concluded that the TCN architecture is slightly more 
accurate. It is worth mentioning that ConvTCN-AE is noticeably 
faster and less computationally demanding to train compared to 

Conv-LSTM-AE [111]. In our tests, it took 2 h 37 min to train Conv- 
TCN-AE through five-fold cross-validation, whereas ConvLSTM-AE 
took 72 h 41 min to train, with the same number of LSTM and TCN 
layers. Moreover, both Conv-TCN-AE and Conv-LSTM-AE obtain 
better accuracy for H. sapiens than for M. musculus.(Table 7).

The PPI prediction stage is discussed thoroughly in the next section.

8.2. PPI prediction

As mentioned earlier, ProtInteract’s performance is assessed 
using two organisms, H. sapiens and M. musculus. Subsequently, a 
deep CNN predicts the probability of an interaction belonging to the 

Fig. 7. The accuracy of Conv-TCN-AE and Conv-LSTM-AE for H. sapiens. 

Fig. 8. The accuracy of Conv-TCN-AE and Conv-LSTM-AE for M. musculus. 

Table 7 
The five-fold cross-validation training times for Conv-TCN-AE 
and Conv-LSTM-AE. 

Architecture Training Time

Conv-TCN-AE 2 h 37 min
Conv-LSTM-AE 72 h 41 min
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defined classes according to three defined scenarios (see Tables 2, 3 
and 4). The dataset for this task is created by merging the STRING 
and the Negatome 2.0 datasets and removing the duplicated sam-
ples. As mentioned earlier, Negatome 2.0 only comprises interac-
tions with a score of zero non-interacting with the highest 
confidence) and one (interacting with the highest confidence) [135], 
whereas STRING includes protein pairs with interaction scores dis-
tributed on a continuum from zero and one [62, 63, 65]. Both STRING 
and Negatome 2.0 datasets are imbalanced in the sense of having 
uneven numbers of non-interacting, and interacting pairs [146].

For instance, let us consider the H. sapiens PPI dataset from 
STRING. Nearly 83% of the dataset belongs to interactions in class 1 
from Table 2 or class 1 from Table 3 or classes 1 and 2 from Table 4; 
showing considerable imbalance in the dataset, which has an ad-
verse effect on training the deep CNN [147]. To tackle this issue, we 
randomly downsample the classes with a higher number to the class 
with the least number of instances. For instance, the H. sapiens da-
taset that is distributed into three classes contains 858726 samples 
in class 1, 112706 in class 2 and 74814 in class 3. Therefore, we 
randomly sample 74814 pairs from classes 1 and 2 to obtain three 
balanced classes. Thus, a balanced dataset is created for each sce-
nario, and the number of samples is reported in Table 8. Further-
more, the training, testing and validation are performed using five- 
fold cross-validation.

The hyperparameters for training the CNN are reported in 
Table 9. These parameters were obtained by grid search [144].

8.2.1. H. sapiens PPI prediction results
The classification accuracies (correctly labelling an interaction) 

using the deep CNN are illustrated in Fig. 9, Figs. 10 and 11 for two, 
three and five classes respectively. Accordingly, the deep CNN 
achieves relatively higher accuracy in all three scenarios for those 
proteins encoded by Conv-TCN-AE than Conv-LSTM-AE. This may be 
due to the extended long-term memory of TCN layers, which allows 
better retention of information on long-range interactions compared 
to LSTM layers [93, 94, 127]. Therefore, it can be concluded that 
encoded features of Conv-TCN-AE encapsulate more informative 
attributes.

The Receiver Operator Characteristic (ROC) curve is a graphical 
plot visualising the ability of deep CNN to correctly predict the class 
of an interaction. A plot relates the true positive rate (TPR) on the y- 
axis versus the false positive rate (FPR) on the x-axis. Accordingly, 
the top left corner of the plot represents a false positive rate of zero 
and a true positive rate of one. Thus, a larger area under the curve 
(AUC) is usually better. Here, the deep CNN predicts the probability 
of an interaction falling within the range of the defined classes, re-
flecting the confidence level of an interaction between a pair of 
proteins.

Fig. 12 shows the ROC curve for the two-class classification sce-
nario. The deep CNN obtains higher AUC using TCN-encoded features 
than LSTM-encoded features.

Fig. 13 illustrates the ROC curve for the three-class classification 
scenario. For both TCN-encoded and LSTM-encoded features, the 
AUC diminishes compared to the two-class classification.

The ROC curve for the five-class scenario is depicted in Fig. 14, 
where AUC is the lowest among all three scenarios. Note that the 
AUC for all three scenarios is higher for TCN-encoded features than 
LSTM-encoded features. This may once again show the advantage of 
the TCN architecture compared to LSTM architecture for encoding 
proteins. From AUC for all scenarios, it may be inferred that Pro-
tInteract can accurately classify pairs with the lowest and highest 
interaction confidence.

8.2.2. M. musculus PPI prediction results
The classification accuracies for M. musculus are shown in Fig. 15, 

Figs. 16 and 17, for all three scenarios, respectively.
By comparing Fig. 9 to Fig. 15, classification accuracy for M. 

musculus is slightly lower than H. sapiens. This may be due to the 
smaller training set for M. musculus compared to H. sapiens (see 
Table 8).

Fig. 9. Prediction accuracy of CNN with input features encoded by Conv-LSTM-AE and Conv-TCN-AE for two-class classification (H. sapiens). 

Table 8 
The balanced protein–protein interaction datasets for H. sapiens and M. musculus 
include a different number of protein pairs for each class, corresponding to each 
classification scenario. 

Species/Scenario (samples) Two classes Three classes Five classes

H. sapiens 160113 74813 27128
M. musculus 75501 42905 11650

Table 9 
Hyperparameters of training and validation of CNN for PPI prediction. 

Parameters Value Description

Epochs 500 Training epochs
Batch Size 64 Size of training batch
α 5 × 10−5 Learning rate
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On increasing the number of classes, the classification accuracy 
decreases.

The following figures, Figs. 12, 13, and Fig. 14, display the ROC 
curves for M. musculus for all three scenarios, respectively.

From Figs. 18, 19 and 20, the average AUC for both TCN-en-
coded and LSTM-encoded cases show slight decreases with 
the increase of classes. However, classes three from the second 
scenario and five from the third scenario have shown equal or 

Fig. 10. Prediction accuracy of CNN with input features encoded by Conv-LSTM-AE and Conv-TCN-AE for three-class classification (H. sapiens). 

Fig. 11. Prediction accuracy of CNN with input features encoded by Conv-LSTM-AE and Conv-TCN-AE for five-class classification (H. sapiens). 
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higher AUC compared to both classes from the two-class classifi-
cation scenario. This means that ProtInteract can distinguish 
the classes with the highest confidence of interaction regardless 
of the scenario.

8.3. Discussion

By analysing the results obtained by ProtInteract, as reported in 
Table 10, one may infer that ProtInteract classifies the interaction 

Fig. 13. ROC curve for three-class classification using LSTM- and TCN-encoded features (H. sapiens). 

Fig. 12. ROC curve for two-class classification using LSTM- and TCN-encoded features (H. sapiens). 
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more accurately for H. sapiens than for M. musculus. This may be due 
to the fact that H. sapiens has 112%, 74%, and 132.50% more training 
samples in the balanced datasets, as reported in Table 8, compared 
to the M. musculus balanced dataset for two, three and five classes, 

respectively. Additionally, the lower number of training samples 
among three scenarios results in a slight decline in classification 
accuracy (see Table 8).

Fig. 14. ROC curve for five-class classification using LSTM- and TCN-encoded features (H. sapiens). 

Fig. 15. Prediction accuracy of CNN with input features encoded by Conv-LSTM-AE and Conv-TCN-AE for two classes classification (M. musculus). 
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Fig. 16. Prediction accuracy of CNN with input features encoded by Conv-LSTM-AE and Conv-TCN-AE for three classes classification (M. musculus). 

Fig. 17. Prediction accuracy of CNN with input features encoded by Conv-LSTM-AE and Conv-TCN-AE for five classes classification (M. musculus). 
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Let us consider H. sapiens: for TCN-encoded features, the deep 
CNN accuracy of correctly labelling interactions of two-class is 3.50% 
and 4.77% higher than three and five classes, respectively. For LSTM- 
encoded features, the classification accuracy of two-class is 1.40% 
than three and 6.30% higher than five classes.

TCN-encoded (LSTM-encoded) features are those encoded by 
Conv-TCN-AE (Conv-LSTM-AE), which serve as the input tensor of 
the deep CNN. The area under the ROC curve (AUC) portrays the 
discriminative ability of the deep CNN for each class [148]. Con-
sidering all three scenarios, AUC is evidently higher when the deep 

Fig. 18. ROC curve for two-class classification using LSTM- and TCN-encoded features (M. musculus). 

Fig. 19. ROC curve for three-class classification using LSTM- and TCN-encoded features (M.musculus). 
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CNN is fed by TCN-encoded features. The deep CNN achieves higher 
accuracy, precision and AUC, where the input tensor is encoded by 
Conv-TCN-AE (TCN-encoded) compared to the baseline model, Conv- 
LSTM-AE (LSTM-encoded). Considering H. sapiens, the deep CNN 
achieves 2.7%, 0.6% and 4.3% higher accuracy when fed by TCN-en-
coded features than LSTM-encoded features.

A similar pattern appears for M. musculus, where, for TCN-en-
coded features, classification accuracy for two class is 1.80% and 
4.50% higher than three and five classes, respectively. For LSTM- 
encoded features, the deep CNN obtains 1.42% and 2.92% higher 
accuracy for two-class compared to three and five classes. Finally, 
considering M. musculus, the deep CNN with TCN-encoded features 
obtains 6.70%, 7.70% and 4% higher accuracy than LSTM-encoded 
features for all three scenarios, respectively.

Consequently, one may conclude that Conv-TCN-AE architecture 
is not only considerably faster than Conv-TCN-AE (baseline model) to 
train but also that ProtInteract’s accuracy of correctly labelling in-
teractions is noticeably higher for protein pairs encoded by Conv- 
TCN-AE than by Conv-LSTM-AE.

9. Conclusion

Various diseases such as neurodegenerative diseases, infectious 
diseases, and cancer are closely related to abnormal protein–protein 
interactions [6, 7, 8]. Therefore, identifying protein–protein interac-
tions helps pave the way towards developing new drugs and tar-
geted therapeutic approaches [9, 10, 11].

In this work, a deep learning framework is developed to predict 
protein–protein interactions corresponding to sequential patterns 
encoded for each protein. The prediction problem is expressed as a 
multi-class classification problem under three scenarios [64]. Each 
scenario is defined according to different confidence score thresh-
olds of protein interactions [65]. This framework is composed of two 
components. The first component encodes the amino-acid se-
quences and reduces the data dimensionality representing each 
protein while extracting underlying sequential informative features. 
These tasks are implemented using a novel deep autoencoder ar-
chitecture called Conv-TCN-AE. We proposed a similar architecture 
using LSTM layers called Conv-LSTM-AE as a baseline model to 
compare the performance of TCN layers with a well-known model 
such as LSTM [93, 94, 117, 127]. The second component is a deep CNN 
that predicts the class of a given interaction based on the confidence 
score thresholds from the STRING database.

One of the significant achievements of the proposed framework 
is its low computational complexity and relatively fast response. 
Training LSTM and TCN networks as an individual architecture is 
extremely time-consuming and requires comparably high compu-
tational capacity, preferably GPU [149]. However, the proposed au-
toencoder architecture, namely, Conv-TCN-AE, benefits from the 
sequential pattern recognition ability of TCN while considerably 
reducing the training time and computational complexity [117]. The 
Conv-TCN-AE encodes the dataset with relatively high dimensions 
into a sequential tensor with a limited number of informative fea-
tures. Therefore, we can analyse large sets of data for far less time.

Fig. 20. ROC curve for five-class classification using LSTM- and TCN-encoded features (M. musculus). 

Table 10 
ProtInteract performance of five-fold cross-validation for three different multi-class classification scenarios. 

Species Scenario Accuracy AUC AveragePrecision

TCN Encoded LSTM Encoded TCN Encoded LSTM Encoded TCN Encoded LSTM Encoded

H. sapiens 2- classes 0.9568 0.9315 0.9600 0.9400 0.9550 0.9400
3- classes 0.9244 0.9182 0.9340 0.9200 0.8950 0.8600
5- classes 0.9132 0.8756 0.9060 0.8940 0.7920 0.7620

M. musculus 2- classes 0.9145 0.8456 0.8600 0.8100 0.8450 0.7850
3- classes 0.8983 0.8337 0.8600 0.8100 0.7870 0.7850
5- classes 0.8749 0.8216 0.8480 0.7980 0.7000 0.6800
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To further extend this work, we plan to improve the proposed 
framework by incorporating a bidirectional architecture and adding 
a generative architecture to accurately predict the interaction scores. 
In addition, we will test ProtInteract on other species, including 
Saccharomyces cerevisiae, Escherichia coli, Drosophila melanogaster 
and Caenorhabditis elegans.
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Appendix

The LSTM architecture is explained as follows.

A.1. Long Short-Term Memory

As mentioned earlier, RNNs were introduced in order to incorporate sequential information when mapping input to output sequences 
[35,111]. This means RNNs have the capability of comprehending and interpreting input and output sequences by identifying the correlation 
and progression of elements within the sequence. This is achieved through the utilisation of a memory component within RNNs, thus enabling 
them to retain and recall previous information in the sequence. This allows for the formation of decisions based on a comprehensive un-
derstanding of the entire sequence, as opposed to just the current input. However, RNNs often suffer from vanishing gradients, limiting the 
range of context to which they can be applied [150,151]. To cope with this issue, LSTM architecture was introduced [112], as shown in Fig. 21.

The LSTM architecture consists of a set of recurrently connected memory blocks and corresponding control gates, namely, the forget gate ft, 
the input gate it and the output gate ot which update and control the cell states [152]. The input and forget gates control the current network 
memory and a flow of new information. More specifically, as the new information flows into the network, the forget gate manages what 
information needs to be removed from cell states, while the input gate controls what information will be stored in the cell state. Finally, the 
output gate determines the encoded information to be forwarded as the input of the next time step.

= +f (W [h , x ] b )t f t 1 t f (A.1a) 

=h o Stanh( )t t t (A.1b) 

Fig. 21. LSTM architecture. 
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where σ is the sigmoid activation function, W and b are the weight matrix and bias vector, and ⊗ denotes point-wise product. The initial 
operation is conducted by the forget gate ft, Eq. (A.1a), which controls which information to keep or to remove. The LSTM architecture contains 
the hidden state ht, Eq. (A.1b) that is formed by the sequential information. The next step is to store the new input information in the cell state 
via the input gate it, Eq. (A.2a). Accordingly, the cell state can be modified via candidate values Ŝt by Eq. (A.2b) and Eq. (A.2c). Finally, the LSTM 
determines the output of each unit by Eq. (A.2d).  

it = σ(Wi·[ht−1,xt] + bi)                                                                                                                                                              (A.2a)

= · +S W h x bˆ ( [ 1, ] )t c t t c (A.2b) 

= +S f S i S1 ˆt t t t t (A.2c) 

ot = σ(Wo·[ht−1,xt] + bo)                                                                                                                                                            (A.2d) 

The following section illustrates the architecture of the convolutional LSTM autoencoder as the baseline model in this work.

A.2. Convolutional LSTM Autoencoder

The architecture of the convolutional LSTM autoencoder (Conv-LSTM-AE) is shown in Fig. 22. This architecture comprises the well-known 
LSTM layer, which serves as a baseline model to compare with Conv-TCN-AE in the proposed framework. Similar to Conv-TCN-AE, Conv-LSTM- 
AE consists of two main components. The encoder receives high-dimensionality data to encode into a lower dimensionality and extracts the 
sequential patterns using two layers of LSTM. Next, the latent features are extracted from the output of a densely connected layer. The decoder 
reconstructs the input data via dense, LSTM, and 2-D transposed convolutional layers. Finally, a 2-D convolutional layer maps the data into the 
proper dimensionality. The pseudocode of this architecture is shown in Alg. 3. 

Fig. 22. Conv-LSTM-AE architecture that reduces the dimensionality of input data and extracts informative and uncorrelated features. 
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Algorithm 3. Convolutional-LSTM Autoencoder [134].
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