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Abstract

Background: The evolution and treatment of lung alterations related to congenital

spine and chest wall deformities (CWD) are poorly understood. Most animal models

of CWD created postnatally were not evaluated for respiratory function. The goal of

our study was to evaluate the effects of a CWD induced in utero on lung growth and

function in an ovine model.

Methods: A CWD was induced in utero at 70–75 days of gestation in 14 ovine

fetuses by resection of the 7th and 8th left ribs. Each non‐operated twin fetus was

taken as control. Respiratory mechanics was studied postnatally in the first week and

at 1, 2, and 3months. Post‐mortem respiratory mechanics and lung histomorphome-

try were also assessed at 3months.

Results: Eight out of 14 CWD lambs (57%) and 14 control lambs survived the postna-

tal period. One severe and five mild deformities were induced. At birth, inspiratory

capacity (25 vs. 32mL/kg in controls), and dynamic (1.4 vs. 1.8 mL/cmH2O/kg), and

static (2.0 vs. 2.5 mL/cmH2O/kg) respiratory system compliances were decreased in

CWD lambs. Apart from a slight decrease in inspiratory capacity at 1 month of life,

no other differences were observed in respiratory mechanics measured in vivo there-

after. Postmortem measurements found a significant decrease in lung compliance—

for each lung and for both lungs taken together—in CWD lambs. No differences in

lung histology were detected at 3 months in CWD animals compared to controls.

Conclusions: Our study is the first to assess the effects of a prenatally induced CWD on

lung development and function from birth to 3months in an ovine model. Our results

show no significant differences in lung histomorphometry at 3months in CWD lambs

compared to controls. Resolution at 1month of the alterations in respiratory mechanics

present at birth may be related to the challenge in inducing severe deformities.
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1 | INTRODUCTION

Congenital spine and chest wall deformities (CWD) can be found in

almost one in every 1000 births.1 Due to space restriction,2 CWD can

hamper lung growth and function to the point of thoracic insufficiency

syndrome (TIS).3 Respiratory insufficiency hence is responsible for the

early death of nearly 30% of the newborns with the most severe

deformities.4 Patients who survive the neonatal period may still suffer

from TIS as their deformities progress in severity with growth.

Current fusionless surgical implants5 may present a potential

breakthrough in CWD treatment. They however are still controversial

because of the various options available as well as the mixed results

reported in the literature.6,7 For instance, the Vertical Expanding Pros-

thetic Titanium Rib (VEPTR) is associated with a high complication rate

and little improvement in pulmonary function.8–10 We believe that the

lack of efficiency of the surgical implants is due to the poor appraisal of

their efficacy beforehand in the appropriate animal model of CWD.

Most previous animal studies on the relationships between respi-

ratory mechanics and CWD induced the deformities postnatally.11–15

As the majority of lung development occurs in utero and during the

immediate postnatal period however, results obtained from these ani-

mal models cannot completely define the effects of CWD on respira-

tory function. We previously developed an ovine model of in utero

induced CWD to mimic as closely as possible the clinical settings.16 Our

initial proof-of-concept study, which measured lung function at 48 h of

life, did not however allow us to define the effects of CWD on lung

development. Indeed, contrary to rodents, lung development in ovines is

similar to humans, with alveolarization beginning prenatally and finishing

postnatally.17,18 In terms of respiratory mechanics, it is expected that a

chest wall deformity would lead to a decrease in chest wall compliance,

leading in turn to a decrease in respiratory system compliance. In addi-

tion, it is expected that the restricted volume of the rib cage alters lung

growth, leading also to a decrease in lung compliance.

The main aim of our study was therefore to confirm the appropri-

ateness of our preclinical model of congenital CWD and to document

the natural history of the alterations in respiratory mechanics and lung

development in the first 3 months of life.

2 | MATERIALS AND METHODS

The study was carried out in accordance with the recommendations of

the Canadian Council on Animal Care. The study protocol was approved

by the Ethics Committee for Animal Care and Experimentation of the

Université de Sherbrooke (protocol #2019–218). Experiments were con-

ducted in eight CWD and 14 control lambs born at term from nine ewes.

2.1 | In utero creation of the spinal and chest wall
deformity

Under general anesthesia (isoflurane 2%, Baxter Corporation,

Mississauga, ON, Canada), CWD were induced surgically in utero in

70–75 days old fetuses (normal term of 147 days), as previously

described.18 Briefly, under sterile conditions, a longitudinal laparotomy

was performed to expose the uterine horns, and a hysterotomy was per-

formed. The lower limbs, abdomen, and thorax of the fetal lamb were

delivered. Then, the seventh and eighth left ribs were localized—by man-

ual counting from the first to the last and vice versa—and resected. Fol-

lowing fetal skin closure, each lamb was returned to the uterus and the

amniotic fluid was replaced with warm Ringer's Lactate containing peni-

cillin G (Vétoquinol N-A Inc, Lavaltrie, QC, Canada). The membranes and

uterus were closed, followed by the abdominal wall. Once awake, the

ewes returned to their pen and were allowed pursuing the remainder of

their gestation until they gave birth spontaneously to their offspring.

2.2 | Characterization of the ovine model of spinal
and thoracic deformity

The lambs were kept with their mother from birth up to 3 months of life.

Since sheep reach puberty toward 6–8 months of age, our study hence

encompassed the period with the bulk of postnatal alveolarization. Vital

signs—including respiratory rate (RR), heart rate (HR), and transcutaneous

oxygen hemoglobin saturation (SpO2)—and weight were measured

monthly. These measurements were performed to detect the develop-

ment of respiratory insufficiency or failure to thrive in early life. In addition,

rib cage dimensions, including spine to xyphoid and spine to sternum

lengths, and rib cage width, were measured using a pelvic caliper dedicated

to large animals (see Figure 1). Chest x-rays were performed to assess the

deformity with the Cobb angle measurements of the main curve.

2.3 | Assessment of respiratory system mechanics

As previously described,18 respiratory system mechanics were

assessed in anesthetized (IV propofol, 6 mg/kg/h, Baxter Corporation,

Mississauga, ON, Canada), curarized (one succinylcholine bolus,

2 mg/kg, Teligent Canada, Mississauga, ON, Canada) and ventilated

lambs using a Servo-i ventilator (Maquet, Rastatt, Germany). Respira-

tory measurements were repeated every month in each animal from

birth up to 3 months of life. First, the dynamic respiratory system

compliance was computed on 10 respiratory cycles in the volume con-

trol mode (tidal volume: 10–12 mL/kg, RR: 40/min, PEEP: 0 cmH2O,

FiO2: 30%). Afterward, the maximal inspiratory capacity was mea-

sured by inflating the lungs with a positive pressure of

30 cmH2O. Finally, the pressure-volume curve of the respiratory sys-

tem was computed by progressively inflating the lungs from 5 to

20 cmH2O followed by a stepwise deflation down to 5 cmH2O. The

static compliance was measured at each 5 cmH2O increment/

decrement step. Given that the upper inflection point of the pressure-

volume curve was below the 20 cmH2O pressure level, the static com-

pliance values were averaged without including this level. In this way,

our static compliance values are within both the lower (above the

functional residual capacity) and upper inflection point. No measur-

able hysteresis was observed during these measurements.19
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2.4 | Post-mortem measurement of lung function
and histomorphological analysis

All lambs were euthanized at 3 months of age with an overdose of

pentobarbital (90 mg/kg, Bimeda, Cambridge, ON, Canada). Following

euthanasia, the tracheobronchial tree, lungs, and mediastinum were

resected en bloc to perform post-mortem respiratory mechanics, as

described above, on both lungs and then for each lung individually.

Also, CT scans of the spine and chest wall were performed on the

lamb carcasses using a Philips Brilliance CT 16-slice scanner with

1-mm slice thickness, and the intrathoracic volume was quantified

using the 3D Slicer, version 4 image analysis software20 (http://www.

slicer.org).

Histomorphometric analysis of the lung was performed in all

8 CWD animals and 6 randomly selected control lambs (Figure 2). Fol-

lowing post-mortem respiratory function measurements, the resected

F IGURE 1 Summary of chest wall
measurements: spine to sternum (1) and
spine to xyphoid (2) lengths, and rib cage
width (3).

F IGURE 2 Representative scan of a
control lamb's lung section used for
histomorphometric analysis. Scale
bar: 50 μm.

TABLE 1 Cobb angle from birth to
3 months of life in lambs with congenital
spine and chest wall deformity.

Cobb angle
at birth (o)

Cobb angle at
1 month (o)

Cobb angle at
2 months (o)

Cobb angle at
3 months (o)

CWD 1 0 0 0 0

CWD 2 0 0 0 0

CWD 3 7.5 0 0 0

CWD 4 10 0 0 0

CWD 5 10 7.5 0 0

CWD 6 13 7.5 7.5 8

CWD 7 13 7.5 7.5 10

CWD 8 51 43 45 45

Note: CWD, each number represents a different lamb.

Abbreviation: CWD, congenital spine and chest wall deformity.
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lungs were perfused with 10% formaldehyde diluted in PBS under a

pressure of 20 cmH2O for 1 h, then immerged in 10% formaldehyde

at 4�C for a minimum of 72 h. Further tissue preparation was per-

formed as previously described.21 Following whole lung immersion in

10% formaldehyde, 1 cm3 of a dependent and a non-dependent region

of each pulmonary lobe was removed. The lung samples were then

treated with 0.1 M of sodium cacodylate and 1% osmium tetroxide

before being embedded in paraffin. Each lung sample was thereafter

cut into 3 μm sections and stained with 0.1% toluidine blue before

being scanned with a NanoZoomer (20�—11 plans Z—separated by

0.5 μm) (Hammatsu Photonics, Hammatsu, Japan). The resulting files

were processed using a high-throughput image analysis workflow previ-

ously developed.21,22 Briefly, the image files were processed on a

24-core Xeon system (Intel, Santa Clara, CA) equipped with a 256 GB

RAM and analyzed with Matlab 2014a environment (MathWorks,

Natick, MA) in four steps: (1) selection of the regions of interest using a

custom-made graphic user interface; (2) automated data extraction

from the Hamamatsu NDPI file format at native resolution; (3) image

processing (segmentation, object detection and area quantification);

and (4) septum quantification. For the present study, the perimeter/

area ratio of closed structures with an area between 2500 and

10 000 μm2 and a perimeter size above 200 μm—excluding large

and medium vessels, and any other parts that were not an alveolar

region—, as well as the number of septa, was quantified. The closed

structures were manually drawn in each of 272 images of lung

section randomly selected and opened using the NDPITools software.

2.5 | Statistical analysis

All analyses were performed using MATLAB R2018a software. Means

and standard deviations were computed. The non-parametric Mann–

Whitney U test was used, and differences considered significant

if p < 0.05.

3 | RESULTS

3.1 | Ovine model of spinal and thoracic deformity

A congenital spine and chest wall deformity was induced in utero in

14 ovine fetuses. Eight out of 14 CWD (57%) and 14 control lambs
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TABLE 3 CT scan intrathoracic volumes of control and CWD

lambs at 3 months of life.

Lamb Control (n = 4) (cm3) Deformity (n = 6) (cm3)

1 2281.22 2170.47

2 2188.15 2109.01

3 2059.84 1715.78

4 1471.86 1691.96

5 - 1619.48

6 - 1420.60
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survived the postnatal period. The causes of death included abortion

(n = 3), prematurity (n = 1), respiratory insufficiency at birth (n = 1),

and stillbirth (n = 1). One severe (51� Cobb angle) and five mild CWD

(two with 13�, two with 10� and one with 7.5� Cobb angle) were

observed at birth. Two lambs had no measurable deformity at birth.

No CWD progressed at 3 months of age (Table 1).

Morphological data are reported in Table 2. The only significant

differences were observed for the sagittal spine to xyphoid length.

The differences were significant in the first days of life with the CWD

animals having a greater spine to xyphoid length compared to con-

trols. No differences were seen at 1- and 2-months follow-up. Signifi-

cant differences were found at 3 months of age with controls having

F IGURE 3 CT 3D reconstruction of
the rib cage of a control lamb compared
to a severe deformity lamb. (A) CT scans
of control lamb, (B) CT 3D reconstruction
of the rib cage of a control lamb, (C) CT
scans of a deformity lamb, (D) CT 3D
reconstruction of the rib cage of a
deformity lamb.
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greater length than CWD lambs. No significant differences were

observed for weight, spine to sternum length, and coronal plane width

between groups.

Post-mortem thoracic volume at 3 months of life computed from

chest CT scan was significantly smaller in the six lambs with a severe

or mild CWD than in the four control animals (Table 3; p = 0.0001).

Examples of CT reconstruction are shown in Figure 3.

3.2 | Measurement of respiratory system
mechanics

Results for in-vivo respiratory system mechanics revealed that at birth

CWD animals had a significant decrease in inspiratory capacity

(p = 0.02), and in dynamic (p = 0.005) and static (p = 0.005) respira-

tory system compliance compared to control animals (Table 4). There-

after, apart from the inspiratory capacity, which remained decreased

at 1 month of life in the CWD animals compared to controls

(24 ± 4.2 mL/kg vs. 28 ± 4.9 mL/kg, p = 0.04), no other significant

differences were noted up to 3 months of life.

Results for post-mortem respiratory system mechanics at

3 months of life revealed that the decrease in inspiratory capac-

ity observed for both and each of the lung was significant only

for the right lung in CWD animals. Meanwhile, the static compli-

ance was significantly decreased for both lungs taken as a

whole, as well as for each of the right and left lung compared to

controls (Table 5).

3.3 | Histomorphometric analysis of lung regions
at 3 months

Overall, no differences in alveolar perimeter as well as surface area

were observed between control and CWD group. 77% of all alveoli

were under 5000 μ2 of surface area and less than 200 μ of perimeter

size. The rest of the alveoli were of variable size. Furthermore, the

TABLE 4 Respiratory system mechanics measured in vivo from birth to 3 months of life in control (n = 14) and CWD (n = 8) lambs.

Inspiratory capacity mL/kg Dynamic compliance mL/cmH2O/kg Static compliance mL/cmH2O/kg

CTRL CWD p value CTRL CWD p value CTRL CWD p value

2–3 days 32 ± 6.7 25 ± 3.6 0.02 1.8 ± 0.3 1.4 ± 0.2 0.005 2.5 ± 0.4 2.0 ± 0.4 0.005

1 month 28 ± 4.9 24 ± 4.9 0.04 1.3 ± 0.2 1.2 ± 0.1 0.1 1.8 ± 0.2 1.6 ± 0.2 0.3

2 months 21 ± 4.5 19 ± 4.4 0.2 0.8 ± 0.2 0.7 ± 0.1 0.1 1 ± 0.3 1 ± 0.3 0.7

3 months 19 ± 3.1 16 ± 3.9 0.2 0.6 ± 0.1 0.6 ± 0.1 0.1 0.8 ± 0.2 0.8 ± 0.2 0.2

Note: See abbreviations in Tables 1 and 2. *p < 0.05.

Abbreviations: CTRL, control lambs; CWD, congenital spine and chest wall deformity.

TABLE 5 Post-mortem
measurements of respiratory mechanics
at 3 months in control (n = 14) and CWD
(n = 8) lambs.

Inspiratory capacity mL/kg Static lung compliance mL/cmH2O/kg

CTRL CWD p value CTRL CWD p value

Total 18.5 ± 6.9 13.3 ± 5.2 0.13 0.65 ± 0.3 0.50 ± 0.3 0.001

Right 8.4 ± 3.4 5.4 ± 1.6 0.02 0.31 ± 0.1 0.23 ± 0.1 0.00001

Left 7.6 ± 3.3 5.6 ± 2.0 0.2 0.28 ± 0.1 0.21 ± 0.1 0.0001

Abbreviations: CTRL, control lambs; CWD, congenital spine and chest wall deformity.

F IGURE 4 Histograms of alveolar
complexity analysis, measured as the
perimeter/area ratio of closed structures.
Various regions of the lungs were used for
this histomorphometric analysis in control
(n = 6) and CWD (n = 8) lambs. L, left;
A, anterior; I, inferior; M, middle, P,
posterior; R, right; S, superior, T, tracheal.
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complexity of alveoli (perimeter/area) was not significantly different

between CWD and control lambs (Figure 4).

4 | DISCUSSION

Results from the present study show alterations in respiratory func-

tion and lung development from birth to 3 months in a new congenital

CWD ovine model. Despite the persistence of a decrease in respira-

tory system compliance and in lung and thoracic volume in CWD

lambs, no differences in lung histomorphometry were detected

between control and CWD lambs at 3 months.

4.1 | Ovine model of spinal and thoracic deformity

Following resection of two ribs between 70 and 75 days of gestation,

we observed a variable—from absent to severe—severity of CWD at

birth, as documented in our previous pilot study.18 Conversely to pre-

existing postnatal animal models,11–15 this spectrum mimics CWD in

human newborns, who inconsistently present with significant defor-

mity at birth. Most of the prenatally induced deformities in lambs

however were mild at birth. The latter could be explained by the fact

that most severe deformities of the spine seen in humans are caused

by defects in segmentation23,24 rather than formation (our model).

Also, the healing potential of the gestating fetus during the second

half of the gestation may have been underestimated.25,26 This how-

ever seems unlikely, for only one lamb had a small portion of one rib

grown back, following removal of the entire 7th and 8th ribs along

with periosteal bed in all lambs.

Finally, the lesion created by the surgical technique used to

induce CWD may not have been important enough to generate

severe deformities. However, it remains unclear what caused the fetal

losses. Whether it were due to the surgical insult or due to a rapidly

progressing deformity in utero are potential hypotheses.

Moreover, all congenital CWD we induced in lambs did not pro-

gress at 3 months of age. This is explained as most mild deformities

have good prognosis and do not tend to progress.27,28 This finding

supports the notion that mild deformities do not progress and may

have good prognosis in terms of lung function. However, the severe

deformity lamb also did not progress during the 3-month interval.

Finally, the decrease in rib cage volume that we observed in

CWD vs. control animals using CT-scan is consistent with the smaller

antero-posterior chest wall measurements in CWD lambs. Lower vol-

umes are seen in patients with thoracic insufficiency syndrome.3

However, these are mostly seen in severe deformities.

4.2 | Respiratory system mechanics and
histomorphometry analysis

As previously observed in our pilot study,18 CWD animals showed a

decrease of 20% in inspiratory capacity, as well as dynamic and static

respiratory system compliance at birth. The magnitude of this

decrease is less than initially anticipated from our previous pilot

results, showing a 60% decrease in respiratory system compliance and

a 39% decrease in inspiratory capacity.18 Such differences can be

explained by the two lambs with severe CWD in the pilot study, who

also presented with severe respiratory distress at birth, as observed in

some human newborns.3,29

Furthermore, post-mortem respiratory system mechanics at

3 months of life in CWD lambs revealed a decrease in static compli-

ance for both lungs, as well as for each of the right and left lung. The

decrease in lung compliance is likely related, at least partly, to

the decreased lung size in CWD lambs, as recently shown in lambs

with lung hypoplasia induced by amniotic fluid drainage.30 Although

mild, the decrease in the antero-posterior length of the thorax, in tho-

racic volume (CT scan), as well as in lung volume and compliance is in

line with the concept of thoracic insufficiency syndrome, which

relates thoracic volume restriction to decreased lung function.3

Although similar intrathoracic volumes were found in control and

CWD lambs using CT scan 3D-reconstruction, post-mortem inspira-

tory capacity and compliance were decreased in CWD lambs. Differ-

ences in parenchymal tissue, such as the concentration in elastin or

collagen, might be responsible for such decrease. Unfortunately, we

do not have any results to confirm our hypothesis. Histomorphometry

data does not suggest any differences between both study groups at

3 months of age, when the bulk of alveolarization has expectedly

occurred (sheep usually reach puberty and sexual maturity toward

6 months of age). This might be explained by the small number of

lambs in each group. Hence, we unfortunately cannot have a defini-

tive conclusion on the presence or not of differences in histological

lung development based on our current work.

4.3 | Study limitations

Although our study provides new information on the effects of a pre-

natally induced mild CWD on lung function and development, several

limitations must be mentioned. First, while the variable severity of

CWD observed herein in lambs reproduces what is seen in human

infants, our ovine model mostly generates mild CWD, as seen by the

small number of lambs with persistent CWD at 3 months of age. Of

note, however, in the 3 CWD lambs with a Cobb angle between 8 and

45� at 3 months of age, although rib cage dimensions were, on aver-

age, not more altered than in the whole CWD group, consequences

on respiratory mechanics were more marked. In vivo, measurements

indeed showed that the percent decrease in inspiratory capacity

(�25% vs. �16%), as well as dynamic (�17% vs. 0%) and static (�13%

vs. 0%) compliance of the respiratory system, was greater in these

three lambs than in the whole CWD group. The same was observed

with post-mortem measurements of the inspiratory capacity of the

right lung (�44% vs. �36%), the left lung (�38% vs. �26%) and both

lungs (�51% vs. �27%), as well as measurements of static compliance

of the right lung (�48% vs. �26%), the left lung (�39% vs. �25%) and

both lungs (�57% vs. �23%). Hence, we acknowledge that our ovine
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model in its current form does not allow studying the effect of various

treatment options to prevent the thoracic insufficiency syndrome, due

to the too small number of lambs with severe CWD.3 We believe

however that this work forms the groundwork to further improve this

model and to continue to study lung development in a large animal

model.

Although the ovine model is frequently used to study neonatal

lung function, there are limitations comparing quadrupedal animals to

bipedal humans. Quadrupeds such as lambs can move around minutes

after birth, which obviously is very different from the supine human

newborn who cannot stand during most of the first year of life. How

this influences lung growth and function is unknown.

Our accumulated experience in this prenatal ovine model leads us

to hypothesize that a CWD induced surgically in the immediate post-

natal period in lambs could generate severe CWD, conversely to the

later postnatal models designed by other teams.12 Secondly, the fact

that CT scans could be performed post-mortem only—due to logistical

challenges related to Q fever prevention—prevented us to measure

the evolution of thoracic volumes from birth to 3 months. We how-

ever were able to show a decrease in inspiratory capacity, as previ-

ously done in animal models.31 Finally, while it is conceivable that any

surgery on the fetus might be stressful enough to impede lung

growth, we attempted to decrease this potentially deleterious effect

by involving the twin fetuses in the control group.

A limitation of the CT scan analysis was the number of lambs ana-

lyzed. Given the logistical challenge related to Q-fever preventive

measures when performing postmortem CT scans in lambs, we

elected not to image the two CWD lambs who did not have measur-

able deformity and would likely be closer to controls.

5 | CONCLUSION

This is the first study that evaluates the effects of a prenatally induced

congenital spine and chest wall deformity on respiratory system

mechanics in an ovine model from birth to 3 months of age. This study

showed significant respiratory system mechanics alteration at birth.

These differences were not statistically significant at 3 months

in vivo, but were noted post-mortem for lung compliance. Moreover,

there was no difference in histomorphometry analysis at 3 months

between control and CWD lambs. Whether severe deformities gener-

ate a proportionally different effect on lung growth and respiratory

function remains to be defined.
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