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The mechanistic target of Rapamycin (mTOR) is essential for multiple cellular processes.
The unique roles of mTOR complex 1 (mTORC1) or mTOR2 in regulating immune
functions are emerging. NK cells are the major lymphocyte subset of innate immunity,
and their development and effector functions require metabolic reprogramming. Recent
studies demonstrate that in NK cells, conditionally disrupting the formation of mTORC1
or mTOR complex 2 (mTORC2) alters their development significantly. Transcriptomic
profiling of NK cells at the single-cell level demonstrates that mTORC1 was critical for
the early developmental progression, while mTORC2 regulated the terminal maturation.
In this review, we summarize the essential roles of mTOR complexes in NK development
and functions.
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INTRODUCTION

The identification and characterization of the mechanistic target of Rapamycin (mTOR) are closely
associated with the discovery of Rapamycin (Sirolimus). In 1964, a Canadian expedition discovered
Rapamycin from the soil samples from the South Pacific island of Rapa Nui (Easter Island), which
possessed high anti-fungi, anti-tumor, and immunosuppressive effects (Vezina et al., 1975; Martel
et al., 1977; Eng et al., 1984). Georges Nogrady, a microbiologist, collected the soil samples from
different parts of the Easter Island to search for why the barefoot islanders did not get tetanus.
In 1975, it was found that the Streptomyces hygroscopicus produced an anti-fungal compound
that was able to inhibit the growth of Candida albicans, Microsporum gypseum, and Trichophyton
granulosum (Sehgal et al., 1975; Vezina et al., 1975). In 1982, the immunosuppressive and anti-
tumor functions of Rapamycin were discovered (Eng et al., 1984). Chung et al. (1992) found that
Rapamycin forms complexes with peptidyl-prolyl isomerase FKBP1A (also known as FKBP12) to
mediate its anti-proliferative functions (Kuo et al., 1992). The genetic screening of Rapamycin-
resistance led to the identification of the TOR/DRR gene. In 1994, the mTOR-FKBP12 complex in
mammalian cells was identified (Brown et al., 1994; Sabatini et al., 1994; Sabers et al., 1995). For the
past 25 years, numerous researchers have worked on mTOR protein and defined its essential role
in cell growth and functions (Sabatini, 2017).

Mechanistic target of Rapamycin is an evolutionarily conserved 289 kDa serine/threonine kinase
of phosphoinositide 3-kinase-related protein kinases (PIKK, Figure 1A) (Saxton and Sabatini,
2017). mTOR forms two structurally distinct complexes, mTOR complex 1 (mTORC1) and mTOR
complex 2 (mTORC2) with unique substrate specificities and functions (Saxton and Sabatini,
2017). mTORC1 consists of mTOR, Raptor (regulatory protein associated with mTOR), mLST8
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FIGURE 1 | mTOR complexes. (A) Protein domain structure of mTOR, Raptor, Rictor, and mSin1. HEAT repeats, tandem repeats of the anti-parallel α-helices
important for protein–protein interaction; FAT, a domain found common in PIK-related kinases subfamilies FRAP, ATM, and TRRAP subfamilies; FRB,
FKBP12-rapamycin-binding (FRB) domain; FATC, FAT C-terminus; RNC, Raptor N-terminal conserved domain; WD40 repeats, tandem repeats of a structural
domain composed about 40 amino acids terminating with tryptophan and aspartic acid (WD); CRIM, conserved region in the middle; RBD, Ras-binding domain; PH,
pleckstrin homology domain. The functional domains of Rictor are unknown, with some structure domains that are conserved among species. (B) The composition
of mTOR complex 1 (mTORC1) and mTOR complex 2 (mTORC2). DEPTOR and mLST8 are the shared components of the two complexes. Raptor and PRAS40 are
unique to mTORC1, while Rictor, mSin1, and Protor1/2 are unique to mTORC2.

(mammalian lethal with Sec13 protein 8), PRAS40 (proline-
rich Akt substrate of 40 kDa), and DEPTOR (DEP domain-
containing mTOR interacting protein, Figure 1B) (Saxton and
Sabatini, 2017). Genetic studies have demonstrated that Raptor
is the essential component in the formation of mTORC1
(Hara et al., 2002; Kim et al., 2002). mTORC2 comprises
mTOR, Rictor (rapamycin-insensitive companion of mTOR),
mSin1 (mammalian stress-activated protein kinase interacting

protein 1), Protor1/2 (protein observed with Rictor-1/2), mLST8,
and DEPTOR (Figure 1B) (Saxton and Sabatini, 2017). Both
Rictor and mSin1 are essential for the formation of mTORC2
(Jacinto et al., 2004, 2006; Sarbassov et al., 2004; Frias et al., 2006;
Yang et al., 2006).

There are five major structural domains of mTOR. This
includes the tandem HEAT domain, the FAT (FRAP, ATM,
and TRRAP, all PIKK family members) domain, the FRB
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(FKBP12/rapamycin binding) domain, and the FATC (FAT
C-terminus) domain (from N-terminus to C-terminus,
Figure 1A) (Yang and Guan, 2007). The tandem HEAT
domain mediates the protein–protein interaction between
mTOR and Raptor, and the homodimerization of mTORC1
(Yip et al., 2010; Aylett et al., 2016; Baretic et al., 2016). Raptor
contains a conserved domain in the N-terminus and seven
WD40 repeats, which may facilitate the interactions with mTOR
or mTORC1-associated proteins. Rictor is also predicted to
contain HEAT repeats and WD40 domains (Zhou et al., 2015).
Pleckstrin homology (PH) domains present in Rictor help
mediate signal transduction and subcellular localization (Zhou
et al., 2015). Another mTORC2 component, mSin1, has a central
conserved domain, a Ras-binding domain, and a C-terminal PH
domain (Schroder et al., 2004, 2007). The PH domain of mSin1
interacts with the kinase domain of mTOR (Liu et al., 2015).
The different composition of the accessory proteins determines
that only the FRB domain in mTORC1, but not mTORC2, is
accessible to the FKBP12/Rapamycin complex. This results in the
inhibition of mTORC1, but not mTORC2. However, prolonged
incubation of cells with Rapamycin does inhibit mTORC2
function primarily due to compromised formation of mTORC2,
as rapamycin-bound mTOR protein cannot be incorporated into
mTORC2 (Sarbassov et al., 2006). Significant progress has been
made in defining the essential roles played by mTOR complexes
in NK cells (Donnelly et al., 2014; Marcais and Walzer, 2014;
Marcais et al., 2014, 2017; Nandagopal et al., 2014; Yang et al.,
2016, 2018). In this review, we summarize the relevance of these
findings in the context of NK cell development and functions.

γC-UTILIZING CYTOKINE RECEPTORS
LINK MTORC1 TO NK CELL
DEVELOPMENT

NK cells develop in the BM (Kondo et al., 1997). Common
lymphoid progenitors (CLPs) give rise to the early innate
lymphoid progenitors (EILPs) that differentiate into all three
ILC lineages and conventional NK cells (Yang Q. et al., 2015).
Development of NK cell is regulated by multiple common-
gamma chain-containing cytokine (γc, CD132) receptors that
utilize PI(3)K, as a major signaling link to mTOR complexes
(Figure 2). There are five members in the γc family (IL-2, IL-4,
IL-7, IL-15, and IL-21), all transduce their signaling via PI(3)K
and thereby mTOR complexes (Boulanger and Garcia, 2004).
The distinctions among the γc chain receptor family come from
the unique α-chain utilization and the differential activation of
unique STATs. The earliest indication of the commitment to
the NK lineage is defined by the expression of the IL-15/IL-2
receptor β chain (CD122) (Rosmaraki et al., 2001). Thus, the
initial commitment of NK cells is tightly associated with the
optimal functions of mTOR complexes.

Both IL-15 and IL-2 can bind to the receptor complex formed
by IL-2/15R and γc chain and transduce the signals primarily
via PI(3)K (Bamford et al., 1994; Giri et al., 1994; Grabstein
et al., 1994). The essential role of γc revealed by the fact
that individuals with common gamma chain mutations develop

severe immunodeficiency with nearly complete loss of NK cells
(Noguchi et al., 1993). IL-2 binds to the heterotrimeric receptors
composed of CD122, CD132, and IL-2Rα (CD25) with high
affinity (Rickert et al., 2005; Stauber et al., 2006). In contrast,
IL-15 has a similar high-affinity binding with IL-15Rα (CD215)
alone (Giri et al., 1995). Among these two cytokines, IL-15
has been shown to be critical for NK cell development and
effector functions (Becknell and Caligiuri, 2005; Marcais et al.,
2013). A low dose of IL-15 is sufficient to sustain survival
signaling in NK cells, while a high dose of IL-15 promotes
NK cell proliferation and effector molecules expression (Marcais
et al., 2013, 2014). Through the genetic ablation of individual
cytokine members or receptors, the importance of IL-15 in
the development of NK cells is now well established. CD132
deficiency in mice also eradicates the NK compartment (DiSanto
et al., 1995). Genetic deletion of Il15 or Il15ra but not Il2 results
in a similar loss of mature NK cells seen in the γc chain-
deficient mice, firmly establishing the central role of IL-15 in the
development of NK cells (Lodolce et al., 1998; Kennedy et al.,
2000; Vosshenrich et al., 2005). As the expression of IL-15 and
IL-15Rα occurs in the same cells, this high-affinity interaction
results in membrane-bound IL-15/IL-15Rα complex (Giri et al.,
1995). Thus, the IL-15 signaling initiates through the trans-
presentation of IL-15 anchored by IL-15Rα in the neighboring
cells to the IL-2/15Rβ/γc complex-bearing cells (Dubois et al.,
2002; Mortier et al., 2008). The role of mTOR in the IL-15-
dependent developmental progression and priming of NK cells
are well established (Marcais et al., 2014; Nandagopal et al., 2014;
Mah et al., 2017), which we discuss in the following section.

IL-15R UTILIZES PI(3)K TO ACTIVATE
MTORC1 IN NK CELLS

Three major pathways, including the Jak1/3-Stat5a/b, the PI(3)K-
mTOR, and the MAPK (Boyman and Sprent, 2012), exist
downstream of IL-15R. The first pathway involves Jak-mediated
activation of Stats. Upon IL-15 binding, IL-2/15Rβ/γc complex
recruits Jak1 and Jak3 (Boussiotis et al., 1994; Miyazaki et al.,
1994; Russell et al., 1994; Zhu et al., 1998). Jak1 and Jak3
phosphorylate Tyr392 and Tyr510 at the H-region, which serves
as critical docking sites for downstream functional proteins,
including transcription factors Stat5a and Stat5b (Truitt et al.,
1994; Fujii et al., 1998). Serving as the proximal signaling module,
it is not surprising that the loss of Jak3 results in the absence
of NK cells in mice (Park et al., 1995). Downstream of Jak1/3,
both Stat5a and Stat5b are essential to maintain the homeostasis
of NK cell pool in mice. Thus, Stat5b deficiency results in a
severe loss of NK cells (Imada et al., 1998; Eckelhart et al., 2011).
Recent work has demonstrated a correlation between the absolute
number of splenic NK cells and the copy number of Stat5a/b.
The second pathway initiated downstream of the IL-15 receptor
involves the PI(3)K-mTOR axis. Class IA PI(3)Ks include p100α,
p100β, and p100δ, that are recruited to the membrane via
the regulatory subunit PI(3)K-p85α (Okkenhaug, 2013). Both
p100β and p100δ are essential for the development of NK cells,
although the detailed mechanisms require further investigations
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FIGURE 2 | Signaling pathways up and downstream of mTOR complexes. Upon growth factors- or cytokine-mediated activation, three major pathways are initiated:
the Jak-Stat5 pathway, the PI(3)K-Akt-mTOR pathway, and the Ras-Raf-Mek-Erk1/2 MAPK pathway. Specific to the mTORC1 pathway, the tuberous sclerosis
complex (TSC) functions as a GTPase-activating protein (GAP), which inhibits the activity of Rheb, a small GTPase absolutely required for the activation of mTORC1.
Thus, TSC is a central negative regulator of mTORC1 signaling. The activated Akt or Erk, downstream of PI(3)K-Akt or MAPK pathway, respectively, phosphorylates
TSC and inhibits its GAP activity resulting in the activation of mTORC1. In addition, amino acids are required for anchoring mTORC1 on the lysosomal membrane
where Rheb locates. This is achieved through the RagA/C.

(Kim et al., 2007; Tassi et al., 2007; Guo et al., 2008). Downstream
of PI(3)K, mTOR initiates the functions of distinct transcription
factors that govern the development and functions of NK cells
(Marcais et al., 2014).

The activation of mTORC1 is tightly controlled by the
availability of nutrients as mTORC1-mediated anabolism
requires sufficient energy and metabolites for the synthesis
of macromolecules. Growth factor and mitogen-defendant
pathways are potent stimuli for the activation of mTORC1
(Figure 2). A central regulatory mechanism that governs the
activation of mTORC1 through pro-growth signaling is the
heterotrimeric tuberous sclerosis complex (TSC) comprising
TSC1, TSC2, and TBC1D7 (Dibble et al., 2012). TSC functions
as a GTPase activating protein (GAP) that inhibits the activity
of small GTPase Rheb, which binds and activates mTORC1
(Inoki et al., 2003; Tee et al., 2003; Long et al., 2005). Both
PI(3)K-PDK1-Akt and the third pathway downstream of IL-15R
involving MAPK promote the phosphorylation of TSC2 and
inhibit the function of TSC (Inoki et al., 2002; Manning et al.,
2002; Roux et al., 2004; Ma et al., 2005). The inhibition of TSC

allows the GTP-bound Rheb to activate mTORC1. Recent studies
have shown that TSC1, a negative regulator of mTORC1 and
mTORC2, was not required for the terminal maturation and
survival of NK cells (Yang et al., 2016). Also, the cytotoxic
potentials and the ability to generate inflammatory cytokines
were intact in the absence of TSC1. However, TSC1 was needed
to limit the exhaustive proliferation of developing immature
NK (iNK) cells downstream of IL-15R. Exposure of iNK cells to
IL-15 significantly upregulated the expression of TSC1. These
findings validate the essential role played by TSC1 in regulating
the functions of mTORC1 in iNK cells.

Besides the cytokine-mediated stimuli, sensing the levels of
amino acids in the cytoplasm also activates mTORC1. The
presence of amino acids in the cytosol anchors mTORC1
to the lysosomal membrane through the heterodimeric Rag
GTPase (Kim et al., 2008; Sancak et al., 2008). This enables
activation of mTORC1 by Rheb, which is also present in
the lysosomal membrane (Menon et al., 2014). Under cellular
stress, the activation of mTORC1 is suppressed mainly through
AMPK-mediated phosphorylation and activation of TSC2 or
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direct phosphorylation of Raptor (Shaw et al., 2004; Gwinn et al.,
2008). Indeed, a higher level of KLRG1 receptor expression
induced the activation of AMPK that negatively regulated NK
cell effector functions (Muller-Durovic et al., 2016). Inhibition
of Rag GTPases blocks mTORC1-mediated functions (Kalender
et al., 2010). As activation of mTORC1 promotes NK cell growth
and proliferation, the downstream targets of mTORC1 are often
involved in the syntheses of proteins, lipids, and nuclear acids.
The best-characterized downstream targets of mTORC1 are
4EBPs and S6K1, both of which are highly involved in the protein
synthesis. The 5′cap-dependent mRNA translation requires the
formation of the eIF4F complex (Merrick, 2004). One vital
component in the eIF4F complex is eIF4E, which recognizes
the 5′-cap of mRNA (Merrick, 2004). 4EBPs bind eIF4E and
inhibit the assembly of the eIF4F complex, which in turn
inhibits the 5′cap-dependent mRNA translation (Richter and
Sonenberg, 2005). mTORC1 sequentially phosphorylates multi-
sites on 4EBPs and dissociate 4EBPs from eIF4E to promote
5′cap-dependent mRNA translation (Brunn et al., 1997; Gingras
et al., 1999). Studies have also demonstrated that the mTORC1-
4EBPs axis mostly affects a group of mRNAs named 5′-TOP
mRNA, which contains the 5′-terminal oligopyrimidine motif
(Meyuhas, 2000; Thoreen et al., 2012). The majority of protein
products translated from the 5′-TOP mRNA are involved in
protein synthesis (Meyuhas, 2000).

Another well-established mTORC1 target, S6K1, also regulates
protein translation. mTORC1 phosphorylates the hydrophobic
motif of S6K1 at Thr389 that results in conformational changes
leading to the phosphorylation by PDK1 (Pearson et al., 1995;
Alessi et al., 1998; Pullen et al., 1998). The phosphorylated and
activated S6K1 promotes 5′cap-dependent mRNA translation by
phosphorylating eIF4B, a critical component of eIF4F complex
(Holz et al., 2005). S6K1 can also phosphorylate and promote the
degradation of PDCD4, a negative regulator of mRNA translation
(Dorrello et al., 2006). Besides promoting protein synthesis, S6K1
also phosphorylates and promotes degradation of PDCD4, a
negative regulator of mRNA translation (Dorrello et al., 2006).
Besides promoting protein synthesis, S6K1 also phosphorylates
and activates sterol regulatory element-binding protein 1 and 2
(SREBP and SREBP2), which promotes de novo lipid synthesis
that is critical for cell growth and proliferation (Duvel et al.,
2010). In addition to S6K1, mTORC1 has also been shown to
promote the SREBP pathway through the regulation of lipin 1
(Peterson et al., 2011). In addition to lipid metabolism, recent
studies have established the mTORC1-S6K1 axis in regulating the
de novo purine and pyrimidine synthesis (Ben-Sahra et al., 2013,
2016; Robitaille et al., 2013). How mTORC1 regulates to achieve
optimal NK cell development needs to be explored in the future.

IL-2R AND IL-15R INITIATE MTORC2
ACTIVATION IN NK CELLS

The precise molecular mechanism by which mTORC2
regulates NK cell development and functions and the interplay
between mTORC1 and mTORC2 in NK cells are under active
investigations. Recent studies have established the requirement

of mTORC2 function in NK cell development (Marcais and
Walzer, 2014; Marcais et al., 2014, 2017; Yang et al., 2018,
2020). Under homeostatic conditions, both mTORC1 and
mTORC2 are activated at relatively higher levels in iNK cells
compared to mature NK cells (Marcais et al., 2017). Unlike the
specific inhibition of mTORC1 by Rapamycin, currently, there
is no mTORC2-specific inhibitor, which hinders the study of
mTORC2. The inhibition of mTORC2 activity by wortmannin,
a specific PI(3)K inhibitor, has led to the speculation that
mTORC2 is downstream of the PI(3)K pathway (Sarbassov et al.,
2005), which implies its activation downstream of γc-chain
cytokine receptors such as IL-15R (Figure 2). Liu et al. (2015)
have found that the PH domain of mSin1 interacts with the
kinase domain of mTOR and inhibits the kinase activity of
mTORC2. The PtdIns(3,4,5)P3 generated by PI(3)K interacts
with the PH domain and releases the inhibition of the kinase
domain of mTOR. Besides this allosteric activation of mTORC2,
Akt, downstream of PI(3)K, phosphorylates mSin1 at Thr86
site and promotes the activation of mTORC2 (Yang G. et al.,
2015). Whether this phosphorylation also relieves the inhibition
mediated by the PH domain remains unknown. Also, Zinzalla
et al. (2011) have reported that PI(3)K signaling promotes the
association of mTORC2 with the ribosomes, and this spatial
regulation also induces the activation of mTORC2, although the
mechanism is unknown.

The well-characterized downstream target of mTORC2
is Akt. The phosphorylation of Akt at the Ser473 site
is exclusively mediated by mTORC2 and therefore is the
standard measurement of mTORC2 activity (Frias et al., 2006;
Guertin et al., 2006). Although Akt is upstream of mTORC1,
phosphorylation of Ser473 on Akt does not seem to affect the
activation of mTORC1 (Guertin et al., 2006). Mechanistically,
phosphorylation of Thr308 mediated by PDK1, instead of Ser473,
is critical for the kinase activity of Akt (Alessi et al., 1997; Hill
et al., 2001), while the Ser473 phosphorylation seems to dictate
the substrate specificity of Akt (Jacinto et al., 2006). Akt-mediated
phosphorylation of FoxO1/FoxO3a requires mTORC2, and this
axis is vital in regulating apoptosis and proliferation (Guertin
et al., 2006; Jacinto et al., 2006). mTORC2 also phosphorylates
PKCα that regulates cytoskeletal remodeling (Jacinto et al., 2004;
Sarbassov et al., 2004). Subsequently, more members of the PKC
family were found to be the targets of mTORC2 and involved
in the regulation of cytoskeleton (Gan et al., 2012; Li and Gao,
2014). This reveals why perturbing the mTORC2 pathway has a
significant negative impact on the cytotoxic potentials of NK cells
that depends on cytoskeletal remodeling and vesicular trafficking.

The knowledge related to the interplay between mTORC1
and mTORC2 in NK cells is emerging. Interestingly, mTORC1
can indirectly influence the activation of mTORC2 through a
negative feedback loop through S6K1-Grb2 or S6K1-IRS1 axis
to inhibit insulin-mediated PI(3)K activation (Harrington et al.,
2004; Shah et al., 2004; Hsu et al., 2011; Yu et al., 2011). Other
studies have shown that mTORC1 positively regulates mTORC2
function by sustaining IL-15R-mediated signaling. In contrast,
mTORC2 represses mTORC1-mediated effector functions of
NK cells by repressing STAT5-mediated SLC7A5 expression
(Wang et al., 2018). Further studies are warranted to determine
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both the independent and interdependent functions of mTORC1
and mTORC2 in NK cells.

MTOR-DEPENDENT METABOLIC
REPROGRAMMING IN NK CELLS

Mechanistic target of Rapamycin complex 1-mediated glycolysis
has been related to the function of NK cells (Donnelly et al., 2014;
Mah et al., 2017). Marcais et al. (2014) demonstrated the critical
role of mTOR in the proliferation and granzyme B expression-
mediated by IL-15 during viral infection using an NK cell-specific
Mtor knockout mouse. In addition, the development of NK cells
is significantly impaired in these mice (Marcais et al., 2014). Most
of the functional defects have been attributed to mTORC1 due
to comparable impairments induced by rapamycin (Donnelly
et al., 2014; Nandagopal et al., 2014). TGF-β suppresses the
effector functions of NK cells through inhibition of mTORC1
(Viel et al., 2016). Earlier studies have shown that IL-2-mediated
stimulation of NK cells in the presence of TGF-β significantly
reduced levels of oxidative phosphorylation, maximal respiration,
and glycolytic capacity; but, not glycolysis (Viel et al., 2016).
Presence of TGF-β also reduced the expression of CD69, CD71,
IFN-γ, and granzyme B. Treatment of these cells with TGFβR1
inhibitor reversed these effects except granzyme B. Lack of the
TGFβR2 in NK cells reduced the levels of granzyme B in NK
cells, validating the link between TGF-β and mTORC1. It is
predicted that the effect of TGF-β is mediated by a non-Smad
pathway that involves PI(3)K/Akt signaling. Besides cytokines-
mediated signaling, mTOR is also activated downstream of NK
cell activating receptors, and its activity is associated with the
responsiveness of the cells (Marcais et al., 2017).

The link between mTORs and mitochondrial functions is
emerging (Cong et al., 2018; Summer et al., 2019). mTOR-
mediated metabolic reprogramming is linked to mitochondrial
and cell respiration (Zheng et al., 2019). The presence of NK cells
within the tumor microenvironment has been well-established
(Habif et al., 2019). However, the mechanistic basis for their
inaction against the tumor cells is yet to be understood. Recent
studies have shown that a hypoxic condition established by the
tumor initiates and sustains the activation of mTOR-GTPase
dynamin-related protein-1 (mTOR-Drp1) (Zheng et al., 2019).
Phosphorylation is an essential event for the mitochondrial pro-
fission function of Drp1. This study revealed that a hypoxic
environment leads to sustained mTOR activation via AKT-
TSC1/2 signaling in human NK cells. This hyperactivation of
mTORC1 augmented the phosphorylation and activation of
mTOR-Drp1, leading to mitochondrial fragmentation and failure
in their anti-tumor effector functions. The sustained activation
of Drp1 was mediated by an mTORC1/4EBP1-dependent
translation and expression of mitochondrial fission process-1
(MTFP1) protein. MTFP1 mediates the phosphorylation of Drp1
potentially via a retrograde signaling pathway and the respective
kinases. Recruitment of Drp1 to the mitochondria leads to its
fragmentation and prevents their branching and hyperfusion
(Morita et al., 2017). Thus, persistent activation of mTORC1
due to hypoxia can lead to a failure of NK cells. While these

findings identify novel therapeutic targets, additional studies can
help to define the mechanisms of NK cell impairments under
non-hypoxic conditions.

TRANSCRIPTIONAL REGULATION OF
NK CELL DEVELOPMENT BY MTORC1
AND MTORC2

The evolving transcriptome of developing mouse and human
NK cells has recently deciphered (Crinier et al., 2018; Yang
et al., 2018, 2019, 2020). These studies provide the opportunity
to identify the transcriptional activation or repression during
NK cell ontology. Generation of Ncr1iCre-based conditional
knockout mice for Raptor (Rptor; Rptorfl/flNcr1Cre/WT) and
Rictor (Rictor; Rictorfl/flNcr1Cre/WT)-encoding genes provided
unique opportunities to perform focused analyses of NK cells
(Figure 3). These murine models, combined with single-
cell RNA sequencing (scRNA-seq) technology, have allowed
investigators to define the unique role of mTOR complexes in the
transcriptional regulation of NK cell development and functions
(Yang et al., 2018). Single-cell RNA-sequencing technology has
provided us an unprecedented insight into the transcriptomic
profiles of NK cell heterogeneity and development (Crinier
et al., 2018; Yang et al., 2019; Dogra et al., 2020). Using this
approach, the transcriptional regulations mediated by mTORC1
and mTORC2 were recently determined (Yang et al., 2020).

In the bone marrow of the WT mice, single-cell transcriptome
analyses reveal five distinct NK developmental subsets. They
are an iNK cluster, three transitional NK (transNK1, transNK2,
and transNK3) clusters, and a terminally mature NK (termNK)
cluster. The iNK cluster represented the most immature stage
with high expression of Cd27 and low expression of Itgam
(CD11b) and Ly49s (Klra1/3/4/7/8/9), and high expression of
Ltb, Thy1, Cd3d/g, and Cd7. In contrast, the termNK cells were
defined by the low expression of Cd27 and high expression of
Itgam Gzma, Gzmb, and Klrg1. The transNK1 cluster possessed a
high expression of genes encoding proteins involved in ribosomal
biogenesis, including ribonucleoproteins (Nop10, Nhp2, Gar1,
Npm1, Npm3), RNA modification enzymes (Mettl1, Ddx21,
Fbl), and GTPase related to nucleocytoplasmic transport (Ran,
Ranbp1). Notably, some of the major metabolic pathways
that are regulated by mTORC1, including glycolysis, oxidative
phosphorylation, and fatty acid metabolism, were upregulated in
the transNK1 cluster. This confirmed a direct role of mTORC1 in
the early developmental stages of NK cells.

Lack of Raptor (mTORC1) resulted in significant NK cell
developmental defects as the early stages (Yang et al., 2018).
Conditional ablation of mTORC1 by the deletion of Raptor
resulted in the blockade of NK cell development at the CD27
single-positive stage in the BM of Rptorfl/flNcr1Cre/WT mice.
mTORC1 is required for the expression of Eomesodermin
(Eomes) and the transition from CD27 SP to DP NK stage,
while mTORC2 is required for the terminal CD11b SP NK
cell maturation through the mTORC2-AktS473-FoxO1 axis (Yang
et al., 2018). Eomes and T-bet belong to the T-box family of
TFs, which control multiple aspects of NK cell development
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FIGURE 3 | Independent roles of mTORC1 and mTORC2 during the development of NK cells. Distribution of all five NK clusters along the pseudotime trajectory
from the bone marrow of wild-type C57BL/6 mice. The relative maturity of the developmental trajectory is displayed across pseudotime. Distribution of each NK
clusters along the pseudotime trajectory. Data presented are adapted from Yang et al., 2020.

and maturation (Townsend et al., 2004; Intlekofer et al.,
2005; Gordon et al., 2012). Both contain highly conserved
DNA-binding domains, indicating they bind to the same
transcription factor-binding motifs. However, the interacting
partners of Eomes and T-bet vary (Naiche et al., 2005; Zhang
et al., 2018). IL-15 receptor, which activates the mTORC1
complex, plays an essential role in the early commitment
and development of NK cells by promoting the transcription

of E4BP4 (Kamizono et al., 2009). In turn, E4BP4 induces the
expression of Id2 and Eomes, two essential transcription factors
for the early NK cell development (Yokota et al., 1999; Boos
et al., 2007; Gordon et al., 2012; Male et al., 2014; Delconte
et al., 2016). The single-cell transcriptomic profiles of NK cells
from Rptor cKO mouse reveal that the iNK cell stage (CD27
single positive) failed to progress into the termNK cells (CD11b
single positive).
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Reduced NK cell number in the periphery, reduced
steady-state proliferation, and impaired migration in vitro
demonstrate that the disruption of homeostatic NK cellularity
is disrupted in Rptor cKO mice. Moreover, loss of mTORC1
significantly impaired NK cell maturation, as demonstrated
by the accumulation of CD27 SP population and reduced DP
and CD11b SP populations. This defect may directly contribute
to the accumulation of NK cells in the BM, as they gradually
obtain migratory capacity following CD11b expression (Mayol
et al., 2011). Despite these findings, Ncr1Cre-mediated deletion of
Pdpk1 or Tsc1 did not show any defects in NK cell development
(Yang M. et al., 2015; Yang et al., 2016). This demonstrates that
following Ncr1 expression, mTORC1 is activated through an
alternative mechanism instead of the canonical PI(3)K-PDK1-
Akt-TSC1/2-mTORC1 pathway. mTORC1 regulates protein
translation through various mechanisms. One of which directly
affects the translation of proteins comprising the translational
machinery such as eIFs, and ribosomal proteins (Meyuhas, 2000;
Thoreen et al., 2012).

In contrast, mTORC1, lack of mTORC2 in Rictorfl/fl

Ncr1Cre/WT mouse resulted in a blockade that did not
allow CD27/CD11b double-positive NK cells to progress into
terminally mature CD11b single-positive stage. scRNA-seq data
demonstrate that in the absence of Rictor, NK cells possessed
a high expression of upregulated genes of the iNK cluster,
confirming this blockade (Figure 4). Importantly, lack of
functional mTORC2 resulted in the significant upregulation of
Forkhead transcription factors of the O class-1 (FoxO1). This
family contains a winged-helix DNA-binding domain and the
forkhead domain (Obsil and Obsilova, 2008). Earlier studies have
shown that among the four members of this family (FoxO1, 3, 4,
and 6), FoxO1 is highly expressed in NKPs and iNKs compare to
mNKs. FoxO3 is expressed at all stages of NK cell development,
albeit at a low level (Wang et al., 2016). Both FoxO1 and FoxO3
suppress the development of NK cells. Thus, mTORC2 performs
a crucial function of suppressing the hyperactivation of FoxO1
(and potentially FoxO3a), via Akt-mediated phosphorylation
and degradation of FoxO1, to allow the iNK cells to progress
into the final maturation process. This function of mTORC2-
Akt-FoxO1 cascade is validated by the observation that both
Ncr1-Cre -FoxO1fl/fl and -FoxO3fl/fl mice possess much larger
CD27−CD11b+ mNK, a moderately increased CD27+CD11b+,
and comparable CD27+CD11b− iNK cell populations (Deng
et al., 2015). Thus, the link between mTORC2 and FoxO1 is
essential in the early stage of NK cell development. A higher
expression of FoxO1 at the immature CD27 single-positive
stage is to suppress any untoward expression of transcription
factors responsible for the transition into mature NK cells. This
is to safeguard an ordered process of gene expression and a
faithfully executed NK cell maturation process. One of these
transcription factors that is suppressed by FoxO1 is T-bet, which
is essential for the terminal maturation and functions of NK cells
(Townsend et al., 2004).

T-bet expression and protein levels progressively increase as
the iNK cells advance into mature and termNK cells. Studies into
the regulation of T-bet expression have provided exciting new
insights about the interdependent cooperation and reciprocal

suppression by Eomes or FoxO1 (Figure 4). FoxO1 exerts
strong transcriptional repression on the Tbx21 gene during the
early NK cell maturation (Deng et al., 2015). While Runx3
(Levanon et al., 2014), E4bp4 (Male et al., 2014; Seillet et al.,
2014), Ets-1 (Ramirez et al., 2012), and Tox2 (Vong et al.,
2014) support the expression of Tbx21, FoxO1 interacts with
Sp1 to bind to the Tbx21 proximal promoter to repress its
transcription (Deng et al., 2015). Thus, apart from the positive
regulation of Eomes by mTORC1, the negative suppression by
mTORC2 plays a crucial role in maintaining the gene signature
of immature CD27 single positive NK cells. Further validation
of this phenomenon is provided by our laboratory, where
we reported that FoxO1 suppresses the transition of iNK to
mNK cells through the axis of mTOR2-AktS473-FoxO1-T-bet
(Yang et al., 2018). Also, FoxO1 suppresses the proliferation
of developing NK cells by augmenting the transcription of
genes that encode cell-cycle inhibitors (Deng et al., 2015).
The continued interplay between FoxO1 and T-bet has been
reported even after NK cells are fully matured (Deng et al.,
2015). Activation of NK cells with IL-15, IL-2, or IL-12 resulted
in the phosphorylation of FoxO1 at Ser256, resulting in its
inability to be translocated into the nucleus and sequestrated into
the cytoplasm for degradation. In concordance, loss of FoxO1
(Ncr1-Cre-FoxO1fl/fl) increased anti-tumor cytotoxicity and the
production of inflammatory cytokines, including IFN-γ from NK
cells (Deng et al., 2015).

Terminal maturation of NK cells requires Tsc1-dependent
negative regulation of IL-15-triggered mTORC1 activation (Yang
et al., 2016). IL-15R recruits and activates Jak1/3 that, in
turn, phosphorylates and activates Stat5a/b. Besides, activation
receptors and IL-15R can initiate the PI(3)K-p110δ/p85α in
NK cells (Awasthi et al., 2008; Guo et al., 2008) to link
mTORC1 to downstream signaling (Yang et al., 2016). In
CD8+ T cells, Stat5a/b can initiate transcription of both T-bet
and Eomes (Grange et al., 2013), and combined action of
T-bet and Eomes at the Il2rb promoter region initiates the
transcription IL-2Rβ (CD122). The role of Stat5 in activating
4EBP1 has been postulated and thereby linking Stat5 to
protein translation. However, an interplay between the IL-
15R-Jak1/2-Stat5a/b to IL-15R-PI(3)K-p110δ/p85α-mTORC1 is
not well-established. In this context, it is important to note
that inhibitors of PI(3)K-mTOR pathway significantly reduced
the phosphorylation of Stat5, demonstrating a potential link
(Bartalucci et al., 2017). Other cytokine receptors such as IL-
12R can also upregulate T-bet expression primarily toward
to production of IFN-γ and the role of IL-12 during the
development of NK cells is yet to be established (Klose et al., 2014;
Zwirner and Ziblat, 2017).

Our recent work has unraveled a link between T-bet and
FoxO1 downstream of mTORC2 (Figure 4). Lack of Rictor in NK
cells resulted in augmented expression of FoxO1 and a significant
decrease in the transcription of Tbx21. Congruently, lack of
T-bet significantly augmented expression of FoxO1, indicating a
reciprocal relationship between these two transcription factors.
Importantly, the conditional deletion of FoxO1 in Rictor-
deficient mice resulted in the normal expression of T-bet
and an increase in the number of termNK cells. These
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FIGURE 4 | Transcriptional regulations downstream of mTOR complexes. The essential regulation of crucial transcription factors downstream of mTORC1 and
mTORC2 are shown employing the observations made with distinct knockout mice. mTORC1 regulates the expression of Eomes and thereby the early
developmental stages of NK cells. mTORC2 regulates the reciprocal repressive activity between FoxO1 and T-bet. FoxO1 represses the expression of T-bet, thereby
maintaining the immature gene signature. T-bet suppresses the expression of FoxO1 to make the NK cells progress to the terminally mature NK cell stage.

results were substantiated by the fact that T-bet-deficient mice
largely phenocopied the developmental defects of NK cells in
Rictor-deficient mice and the NK cells from FoxO1-deficient
mice contained a significantly reduced level of T-bet. Thus, the
suppression and degradation of FoxO1 by the mTORC2-Akt
pathway is an essential mechanism for T-bet expression at the
transitional stage 2 and 3 of NK cells allowing them to mature
and functionally competent.

The ability of T-bet to directly bind to the intronic region
and the regulatory region upstream of transcription starting
site of Foxo1 locus strongly supports this notion. Thus, while
the Foxo1, which has the highest expression in the CD27 SP
subset (Deng et al., 2015), is essential for driving the expression
of iNK signature genes, the activation via mTORC2 to shut
down FoxO1 function to relieve the repression of T-bet is
crucial for the final maturation process. The effector functions
of NK cells depend on multiple transcription factors, including
T-bet. The anti-tumor cytotoxicity and cytokine production
are the major functions of mature NK cells. Lack of Rictor
resulted in impaired anti-tumor functions of NK cells in vivo
(Yang et al., 2018). Several transcription factors regulate the
production of IFN-γ and T-bet is one of the major regulators that
directly binds to the ifng promoter and initiates its transcription
(Beima et al., 2006; Miller et al., 2010). This involvement
by the fact that T-bet-deficient NK cells have significantly
reduced the ability to produce IFN-γ (Townsend et al., 2004;

Gordon et al., 2012). Besides, T-bet-deficient NK cells do not
sustain the production of IFN-γ (Szabo et al., 2002; Townsend
et al., 2004; Gordon et al., 2012). Also, T-bet can bind to
Gzmb, prf1, and Runx1 promoter regions in NK cells (Townsend
et al., 2004; Gordon et al., 2012). T-bet-deficient NK cells
are impaired in their anti-tumor effector functions (Townsend
et al., 2004; Intlekofer et al., 2005; Gordon et al., 2012).
Thus, mTORC2 plays an integral role in NK cell-mediated
effector functions.

SUMMARY AND FUTURE OUTLOOK

Mechanistic target of Rapamycin complexes play an essential
and complex role in the development and functions of NK
cells. The mechanism they utilize to regulate the metabolic
reprogramming and transcriptional regulation in NK cells hold
promise in identifying novel molecular targets to formulate
better immunotherapies. Advanced technologies, including
single-cell RNA sequencing, are allowing us to define these
mechanisms downstream of mTORC1 and mTORC2. The
transcriptional regulations mediated by these complexes are
emerging. A novel new pathway via the mTORC2-AktS473-
FoxO1-T-bet axis regulates the expression of iNK genes during
NK cell development. mTORC1-Eomes pathway downstream
of IL-15 regulates the early developmental stages of NK cells,
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while an mTORC2-AktS473-FoxO1-T-bet pathway is critical for
the terminal maturation of NK cells. Reciprocal activation or
repression of Eomes/T-bet and FoxO1/T-bet are two major
examples of how mTOR complexes coordinate a complex
gene transcription process to mature NK cells. Irrespective of
this progress, critical questions remain open. What are the
independent roles of mTORC1 and mTORC2 in distinct stages
of NK cell development? What roles do mTORC2 play in IL-15-
mediated NK cell priming? Are mTORC1 and mTORC2 essential
for the downstream signaling of activating receptors? Answers to
these questions will help better define the unique roles played by
mTOR complexes in human NK cells and help in targeting novel
signaling proteins for therapeutic purposes.
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