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Athletes often seek to use dietary supplements to increase performance during exercise.

Among various supplements, much attention has been paid to beetroot in recent

years. Beetroot is a source of carbohydrates, fiber, protein, minerals, and vitamins;

also, it is a natural source of nitrate and associated with improved sports performance.

Nitrates can the modification of skeletal muscle contractile proteins or calcium handling

after translation. The time to reach the peak plasma nitrate is between 1 and 3 h

after consumption of a single dose of nitrate. Nitrate is metabolized by conversion

to nitrite and subsequently nitric oxide. Beetroot can have various effects on athletic

performance through nitric oxide. Nitric oxide is an intracellular and extracellular

messenger for regulating certain cellular functions and causes vasodilation of blood

vessels and increases blood flow. Nitric oxide seems to be effective in improving athletic

performance by increasing oxygen, glucose, and other nutrients for better muscle

fueling. Nitric oxide plays the main role in anabolic hormones, modulates the release

of several neurotransmitters and the major mediators of stress involved in the acute

hypothalamic-pituitary-adrenal response to exercise. Beetroot is an important source of

compounds such as ascorbic acid, carotenoids, phenolic acids, flavonoids, betaline,

and highly active phenolics and has high antioxidant properties. Beetroot supplement

provides an important source of dietary polyphenols and due to the many health benefits.

Phytochemicals of Beetroot through signaling pathways inhibit inflammatory diseases. In

this study, the mechanisms responsible for these effects were examined and the research

in this regard was reviewed.

Keywords: beetroot supplement, resistance exercise, skeletal muscle, nitrate, O2 cost, dietary supplements,

endurance exercise
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INTRODUCTION

In sports competitions, the winning margin is decreasing and, in
some cases the results of competitions may change by a fraction
of a second due to the performance of athletes. Therefore,
athletes are constantly looking for every benefit to improve sport
performance. Some athletes maybe resort to dietary supplements
(natural and organic resources) to provide these benefits (1).
Dietary supplements are a significant option for the elite and
recreational athletes to enhance their performance (2). Athletes
are exposed to a variety of food products marketed with the claim
of improving health, efficiency, and performance. However, few
studies confirm these claims, and the affection and safety of these
products are questioned (3).

There are many dietary supplements, however in recent years;
special attention has been paid to beetroot (BR) supplements. BR
is a source of carbohydrates, fiber, protein, vitamins, andminerals
(sodium, potassium, calcium, and iron) (as shown in Table 1)
(4–8) and among other foods rich in nitrate (NO−

3 ) including
spinach, celery, lettuce, and carrot juice has high NO−

3 (<250mg
per 100 g of fresh BR) (9). NO−

3 can be converted to nitrite
(NO−

2 ) by bacteria in the oral cavity and by certain enzymes
(e.g., xanthine oxidase) in the tissue (1) and, then the NO−

2 is
swallowed, absorbed in the intestine and nitric oxide (NO) and
other active nitrogen oxides are metabolized in the blood and
tissues (10, 11) (as shown in Figure 1). NO−

3 is absorbed through
plasma after consumption and its average half-life is 5 h. After
absorption into the bloodstream, about 25% return to the salivary
glands via active transfer and are concentrated in the saliva, with
the remainder exorcized by the kidneys (12–15). Daily doses of
4.1–16.8 mmol (∼150mg to 1 g) of NO−

3 consumed in 2–15 days
enhance the level of NO−

2 in the blood (12–15). The Jones study
showed that the typical mean used in the studies was 5–9 mmol
(300–550mg) (12); NO−

3 is usually taken between 1.5 and 3 h
prior to training in a single dose up to 5 times a day (16–20). The
time to reach the peak plasma NO−

3 is between 1 and 3 h after
consumption of a single dose of NO−

3 (21).
There are several pathways for the metabolism of NO−

2 to NO
and other nitrogen oxides biologically (22). NO is a signaling
molecule formed by the endothelial enzyme NO synthase in
the endothelium, which causes vasodilatation and increased
blood flow (23, 24). NO increases blood flow at rest (25) and
during training (26). NO seems to be effective in improving
athletic performance by increasing oxygen (O2), glucose and
other nutrients for better muscle fuel (1). Based on evidence
and research on the effects of NO−

3 , the International Olympic
Committee (IOC) classified it as a supplement that may improve
performance (alongside Creatine and caffeine) (27). Therefore,
in this study, we seek to assess the influence of BR supplement
consumption on the various dimensions of athletic performance
and effective mechanisms.

METHODS

Based on the purpose of the study, a search was conducted
in data bases (MEDLINE, PubMed, Scopus, Directory of
open access journals and Science direct databases); the

keywords used included Beetroot supplementation, Nitrate
supplementation, physical exercise, resistance exercise, aerobic
exercise, endurance training, strength training, oxidative stress,
O2 cost, skeletal muscle, hormonal response, nervous function,
and mitochondria. Our focus was on English articles published
from 2013 to 2020 (Figure 2).

THE INFLUENCE OF BR
SUPPLEMENTATION ON THE SKELETAL
MUSCLE

BR supplements have received less attention in resistance training
(28) (Table 2). In this case, we can refer to the research of Mosher
et al. who stated that taking BR supplement for 6 days increases
muscle endurance and number of repetitions (32). Moreover,
recent studies have shown that BR preferentially enhance blood
flow (58) andmuscle contraction (59) in the type II muscle fibers,
but has no effect on the type 1 fibers. Therefore, BRmay be able to
increase performance in exercises that use the type 2muscle fibers
(such as resistance training). In addition, a NO−

3 -rich supplement
can increase neuromuscular performance during strenuous
resistance training (28). Previous evidence suggested that sodium
nitrite (NaNO2) administration probably enhance cytosolic Ca2+

without changing force generation at a supraphysiological partial
pressure of oxygen (PO2) (60), or decrease cytosolic Ca2+ along
with less submaximal, but not maximal, force at a physiological
PO2 (61) (during isometric contractions stimulated in isolated
rat muscle fibers). However, during a repetitive and fatigue-
stimulating contraction protocol, administration of NaNO2

increases t exhaustion time by compensating for decreased Ca2+

pumping and Ca2+ sensitivity (62).
The mechanism by which NO−

3 can enhance contractile
performance in skeletal muscle is the adjustment of contractile
proteins or Ca2+ handling in skeletal muscle after translation (63)
(as shown in Figure 3). In fact, NO can respond with protein
thiols [e.g., groups containing sulfhydryl groups, protein thiol
(RSH) or thiolate anion (RS−)] to form nitrosothiols (RSNO)
groups in a reversible process called S-nitrosylation (64). S-
nitrosylation and denitrosylation alter the composition of the
structure and thus the function of proteins (65). For example,
NO reaction with heavy chains of myosin S-nitrosylate has
been reported in skeletal muscle, causing heightened contractile
force (66). Potential effect of S-nitrosylation on the stimulation-
contraction pair is complex given that different contraction-
related proteins can post translate into the cysteine residues on
the thiols such as myosin (67), troponin (68), sarcoendoplasmic
reticulum (SR) calcium transport ATPase (SERCA) (69), and
ryanodine receptors (RyRs) (70, 71) to undergo irreversible
changes; these post-translational protein changes probably
depend on the interactions between NO, the reactive oxygen
species (ROS), and the bioavailability of glutathione (72).
Furthermore, RyR proteins contain a significant quantity of
sulfhydryl groups in comparison with the other contractile
proteins, and this supports the hypothesis that modulation of
RyR and release of Ca+2 mediated NO can help increase muscle
contraction following the NO−

3 consumption. The important
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TABLE 1 | Nutrient composition of raw Beetroot (per 100 g).

Nutrients Beetroot (per 100g)

Water, g 87.58

Energy, kcal 43

Protein, g 1.61

Total fats, g 0.17

Carbohydrate, g 9.56

Fiber, g 2.8

Sugars, g 6.76

Flavonoid, mg/g 0.41–1.16

Riboflavin, mg 0.04

Betalain, mg 14.20

Carotenoids, mg 1.9

Minerals

Calcium, mg 16

Iron, mg 0.8

Magnesium, mg 23

Phosphorus, mg 40

Potassium, mg 325

Sodium, mg 78

Zinc, mg 0.35

Vitamins

C, mg 4.9

B1, mg 0.031

B2, mg 0.057

B3, mg 0.334

E, mg 0.04

K, mg 0.2

Essential and non-essential amino acid

Tryptophan, g 0.019

Isoleucine, g 0.048

Leucine, g 0.068

Tyrosine, g 0.038

Arginine, g 0.042

Glycine, g 0.031

Alanine, g 0.060

Glutamic acid, g 0.428

Baiao et al. (4); Chawla et al. (5); Chhikara et al. (6); Kale et al. (7); United States

Department of Agriculture Agricultural Research Service. Food Data Central: Food

and Nutrient Database for Dietary Studies with Standard Reference Legacy (2019)

www.fdc.nal.usda.gov (8).

point is that, these influences can be free of alterations in
the substance of Ca+2 -handling proteins (73). Further potential
alterations in the excitation-contraction coupling proteins, NO−

3
supplement consumption has been proposed to change the high-
energy phosphate turnover and phosphorus metabolites in the
skeletal muscle (20, 29). NO−

3 reduces the cost of high-energy
phosphates in the generation of skeletal muscle contraction
(20, 29) and the intramuscular accumulation of adenosine
diphosphate (ADP) and phosphate, factors that are expected
to reduce the expansion of fatigue in skeletal muscle (74).
Furthermore, NO−

3 supplementation increases the muscle blood
flow (58) and may help re-synthesize phosphocreatine (PCr)

between the sets (75, 76) and force recovery and performance
(77–79). Molecular mechanisms for the oxidative metabolism
in skeletal muscle and hypertrophy adaptations due to exercise
are diverse and possibly contradictory (80, 81). For example,
it has been reported that NO−

2 activates the AMP-activated
protein kinase (AMPK) (82), while the main regulatory factor
is adaptability of the skeletal muscle oxidative metabolism,
but interferes with mammalian target of rapamycin complex
1 (mTORC1) signaling, a major regulator of skeletal muscle
hypertrophy (83, 84).

Another physiological basis may be due to the effects of certain
types of muscle fibers on the NO−

3 supplement consumption
(85). Ferguson et al. stated that the BR consumption elevate
blood flow to limbs and skeletal muscle [preferably with fast-
twitch fibers (type 2)] (58). Due to the fact that oxygen supply
is a limiting factor in the adenosine triphosphate (ATP)-PC
regeneration, and lactate clearance perhaps affect the muscle
strength generation (86, 87), improving blood flow to type 2 fibers
may improve and maintain the muscle strength and ultimately
lead to improved performance in the resistance training (28).
Moreover, the results of Whitfield et al. showed that BR ingestion
enhance force generation at low excitation frequencies and in
the human skeletal muscle, this is independent of the change
in the redox stress or the expression of protein targets related
to calcium operation (33). It has been shown that the amount
of ATP turnover in myocyte contraction is largely determined
by the activity of actomyosin ATPase and ATPase-Ca+2 (88).
Also, NO causes lagging myosin cycling kinetics and increases
force production with each power stroke (66), and decreases
activity of the ATPase-Ca+2 (69). Increased NO production
after the BR supplementation may decreases ATP turnover by
declining the activity of actomyosin ATPase or ATPase-Ca2+.
Intracellular accumulation of ADP and Pi and PCr degradation
are also blunted following the NO−

3 supplement consumption
(20). Dietary NO−

3 supplementation appears to improve the
link between the ATP hydrolysis and muscle force generation,
and this is a significant determinant of oxygen uptake (VO2)
reduction during the exercise. Alterations in the ADP, Pi, and
PCr following the NO−

3 consumption were predicted to decrease
stimuli for the increased oxidative phosphorylation relying to the
existing respiratory control models (89–91).

Effective mechanisms for the effects of BR on the
performance of resistance training may be the result of increased
neuromuscular efficiency (31), decreased ATP-PC cost (92), and
alterations in the calcium handling (59). The results of Williams
et al. showed that the BR is a sound, natural and efficient
ergogenic supplement that has a positive effect on the speed,
strength and total repetitions during the chest press exercises
with free weights (36). Moreover, the results of research by
Flanagan et al. showed that the NO−

3 supplementation improves
neuromuscular efficiency of force generation and its effects
become more pronounced with fatigue. They suggested that the
observed improvement in the neuromuscular function may be
due to the increased sarcoplasmic reticulum Ca2+ release (31).
Hernandez et al. observed that the increase in the contractile
force in fast-twitch muscles due to NO−

3 supplementation was
related to the increase in the tetanic Ca2+ concentrations (59).
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FIGURE 1 | The pathways of NO production from Beetroot in humans. Source: Ormsbee et al. (1); Lundberg et al. (10); Weitzberg and Lundberg (11).

Furthermore, analysis of glucose kinetics after the NO−
3 intake

provides important insights into specifying the impacts of NO−
3

on glucose metabolism during the physical activity in humans.
In addition, quantitative studies have examined the influence of
NO−

3 /BR consumption on the AMPK signaling during training
(AMPK is the skeletal muscle energy sensor that is activated by
training) (93, 94). A study by Betteridge et al. on the effect of BR
on the glucose kinetics, muscle metabolism, AMPK signaling and
oxygen consumption, showed that the acute BR consumption
had no significant effects on the glucose disposal, Acetyl-CoA

carboxylase (ACC) phosphorylation, muscle metabolism, oxygen
consumption, or RER during the moderate-intensity physical
activity in healthy men (50).

In addition to muscle strength, improving muscle endurance
during the resistance training can be due to the role of NO,
because it participates in the regulation of blood pressure (95)
by vasodilatory, along with the capability to prevent blood
coagulation (96). Moreover, to the endogenous production of
L-arginine oxidation, there is a metabolic oxidation pathway,
NO−

3 -NO
−
2 -NO, which is independent of the NO synthases
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FIGURE 2 | Flow chart of the methodology for the search results.

(NOS) (97). Thus, in exercise that involve main components of
muscular endurance, helping the NO−

3 through BR supplement
is a more effective way to improve the NO generation, in favor
of greater blood volume and hence oxygen. This becomes even
more important when exercise specifically leads to an acidic and
hypoxic body environment, a condition in which a decrease in
the NO−

3 metabolism increases the NO precursor supplement
activity (97). More oxygen supply causes delay in the onset
of muscle fatigue in sportive performance (98) and leads to
enhanced energy generation in the form of ATP through the
aerobic metabolic pathways. In more intense and longer exercise,
delays in the onset of anaerobic metabolic pathways lead to
the increased oxygen consumption which is required for ATP
production (98). Consequently, the use of NO−

3 can improve
sport performance, because of the vasodilatory function and
providing more oxygen to the muscles enhances the maximum
oxygen consumption of individuals and decreases the oxygen
consumption for exercise. All these reduce the cost of ATP
and, therefore, alter intramuscular substrates and metabolic
generation (PCr, ADP, Pi), increasesmuscle oxygenation (12) and
delays the onset of muscle fatigue. As a result, decreased oxygen
consumption and lower ATP costs cause delay in the lactate
generation (98). Since lactate is an indicator of cooperation
of the glycolysis in the metabolism, after consuming BR with
the same concentrations of blood lactate, increasing the total
number of repetitions obtained can indicate energy efficiency

(99). Accordingly, Bailey et al. showed that ingestion of BR
decreases the cost of oxygen and the rate of PCr degradation
during the low and high intensity training without affecting
muscle pH and improving training performance (20).

In addition, studies have investigated the influence of BR
on the rating of perceived exertion (RPE); some studies have
suggested improved performance without a considerable effect
on the RPE (32, 100, 101) and other studies have shown a
decrease in the RPE values (37, 102). Mosher et al. stated that
RPE muscle endurance in resistance training was not affected by
6 days of NO−

3 consumption (32). In contrast, the results of Jodra
et al. showed that the BR consumption can reduce muscle RPE
(37). Possible mechanisms that may explain the effect of BR on
the RPE include higher blood flow to the brain frontal lobe, which
regulates motor control and decision-making, contributing to
a subjective perception of effort (103), and possibly increasing
athletic performance (37). In addition, it should be noted that
the maintenance of RPE after the BR supplement consumption
can be the result of decreased central motor command due to
the contractile operation maintained during the exercise (102),
as RPE displays a central feedback process in which a motor
order output is dispatched from the motor zones to the sensory
brain to allow conscious awareness of the actions relevant to
motor yield (103). During strenuous contractions, a gradual
enhance in the RPE may indicate an increment in the central
motor command required for training-induced deficiencies in
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TABLE 2 | Summary of studies investigating the effects of Beetroot supplementation on skeletal muscle, hormonal response, nervous function, O2 Cost, mitochondria,

and oxidative stress.

Studies Subject Aim Intervention Main outcome

BR supplementation and skeletal muscle

Fulford et al. (29) Healthy,

physically active

(N = 8)

Assess the role of dietary NO−
3 in

regulating force generation under normal

physiological conditions

-Received 0.5 l/day of BRJ for 15

days -Exercise protocol: 50 MVCs at

2.5 h, 5, and 15 days after the

beginning of the supplement

consumption period

↓PCr cost of force production

-Improved muscle efficiency

Hoon et al. (30) Healthy

participants

(n = 18)

Assess the effect of NO−
3 consumption

on muscle contraction

-Days 1–3: 525mg NO−
3 , day 4:

1,050mg NO−
3

=Maximal force, submaximal

contractile force

-Improved Ca2+ handling in the

muscle

↓Muscular fatigue

Flanagan et al. (31) RT men (n = 14) The effects of NR supplement

consumption on neuromuscular efficiency

-The NR Bar contained 3 g of

concentrated BR extract for 3 days

-Provided neuromuscular advantages

during metabolically taxing resistance

exercise

↑oxygen consumption

Mosher et al. (32) Recreational

active resistance

trained males

(n = 12)

Examine the effects of NO−
3 consumption

on performance of bench press

resistance exercise till failure

−6 consecutive days of 70ml of NO−
3

shot containing 6.4 mmol/L or

400mg of NO−
3 +resistance exercise

session (60%1RM)

↑Total work and repetitions until failure

↓Energy cost

= RPE, blood lactate

Whitfield et al. (33) Recreationally

active males

(n = 8)

Investigate the influence of 7 d of BRJ

ingestion on skeletal muscle contractile

characteristics and function

−7 days of BRJ supplement

consumption (280mL.d−1, 26

mmol NO−
3 )

- Performed 20min of cycling (10min

at 50 and 70% VO2peak ) 48 h before

“Pre” and “Post” 5 day of

supplement consumption

=Maximal voluntary force production

or electrically induced tetanic

contractions

↑Force production, maximal rates of

force development -Change in

calcium handling, the content of

associated proteins (SERCA1a,

SERCA2a, dihydropyradine receptor,

ryanodine receptor, and

calsequestrin)

de Oliveira et al.

(34)

Adult male

Brazilian jiu-jitsu

trained athletes

(n = 12)

Investigate the effect of BR-based gel

(BG) consumption on MVC, exercise time

until fatigue, muscle O2 saturation

(SmO2 ), blood volume (tHb), and plasma

NO−
3 and lactate in response to handgrip

isotonic exercise

−100g of BR-based nutritional gel

containing 12.2 ± 0.2 mmol of NO−
3 ,

8 days, 120min previous exercise

- Prevented force decrease after the

handgrip exercise

-Improved forearm muscl O2

saturation and delayed the

accumulation of blood lactate.

= Exercise time until fatigue

Papadopoulos

et al. (35)

Young males

(n = 16)

Investigate the effects of BRJ on in vivo

skeletal muscle VO2 and microvascular

reactivity at rest and muscle

performance, muscle oxygenation during

sustained isometric handgrip exercise

-NO−
3 -rich BRJ (500 mg/8.1 mmol

NO−
3 , BRJ NO−

3 ), After 2.5 h of BRJ

consumption participants performed

the tests

= Skeletal muscle microvascular

reactivity and basal oxidative efficiency

↑Muscle oxygenation

-Provided ergogenic benefits

Ranchal-Sanchez

et al. (28)

Healthy men

(n = 12)

Examine the acute influence of BRJ on

muscular endurance and movement

concentric velocity during RT

-Incremental RT test with three sets,

at 60, 70, and 80% 1RM. -One of the

drinks, 70mL of BRJ, 120min before

each visit

-Ergogenic effect on the muscular

endurance

↑Total repetitions performed

=RPE

Williams et al. (36) RT male

subjects (n = 11)

Assess the effects of acute BRJ ingestion

on power, velocity, and repetitions to

failure (RTF) during bench press exercise

−70ml of BRJ, 2 h before exercise ↑Mean velocity and mean power, total

RTF.

-Positively impacts velocity, power,

and total repetitions

Jodra et al. (37) Resistance

trained male

(n = 15)

Examine the effects of 6 NO−
3 rich BJ

consumption on POMS, RPE, and

performance in a 30 s Wingate cycle test

−3 h before initiating Wingate test

participant consumed 70ml of BRJ

↑Peak power output (Wpeak )

↓ Time taken to reach Wpeak

↑POMS prior to the Wingate test

↓RPE muscular immediately follows the

Wingate test

Jonvik et al. (38) Recreational

active males

(n = 14)

Examine the effect of BRJ ingestion on

maximal isometric strength and isokinetic

power, workload achieved during 30

reciprocal voluntary isokinetic

contractions and CMJ performance

−140 mL/d NO−
3 -rich (BR; 985

mg/d), 6-d supplementation periods

-Three h following the last

supplement, assessed indicators

= Maximal strength, CMJ

performance and muscular

endurance

(Continued)
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TABLE 2 | Continued

Studies Subject Aim Intervention Main outcome

Rodríguez-

Fernández et al.

(39)

Adult males

(n = 18)

Examine the impact of BRJ consumption

on power output during concentric and

eccentric muscle contractions during a

half-squat

−140mL dose of 2 × 70mL

concentrated NO−
3 rich BR shots

providing 400mg NO−
3 /70mL. Acute

ingestion BR 2.5 h before test

↑Mean and peak lower limb power

output in the concentric and eccentric

movement phases of a half-squat

BR supplementation and hormonal response

Singh et al. (40) Infantry soldiers

(n = 30)

Examined the effects of 15 days dietary

NO−
3 supplementation on High Density

Lipoprotein-Cholesterol and Oxidative

Stress in Physically Active Individuals

−400ml BRJ (consumed twice daily)

for 15 days

↓Cortisol levels

Roberts et al. (41) Healthy

non-obese

volunteers

(n = 19)

Assess the impact of inorganic nitrate on

markers of the adaptive response to

exercise in skeletal muscle

−2 × 70 mL/day BRJ (12 mmol

nitrate) for 7 days

↑Circulating growth hormone levels

Garnacho-Castaño

et al. (42)

Well-trained CF

(n = 12)

Asses the causal physiological

association between hormonal, metabolic

and mechanical responses, and CF

workouts performance after acute BJ

consumption

-Ingestion 140mL of BRJ (∼12.8

mmol NO−
3 ), 3 h before the start of

each test (CF workout)

↑Cortisol and testosterone levels

BR supplementation and nervous function

de Vries and

DeLorey (43)

Men (N = 12) Investigate the hypothesis that acute

dietary NO−
3 ingestion would attenuate

sympathetic vasoconstrictor

responsiveness at rest and during

exercise

-Consumption of NO−
3 rich BRJ

(∼12.9 mmol NO−
3 ), Exercise: 2.5 h

after consumption

=Plasma catecholamines, and

sympathetic vasoconstrictor at rest or

during exercise

Kozlowska et al.

(44)

Elite fencers

(n = 20)

Investigate of the long-term metabolic

effect of a diet with and without BRJ

supplement consumption

−4 weeks with 26 g/d of freeze-dried

BRJ consumption

-Significant changes in tyrosine and

tryptophan metabolism, mainly

associated with such

neurotransmitter’s metabolism as:

serotonin, noradrenaline, and

adrenaline

BR supplementation and O2 Cost and mitochondria

Kelly et al. (45) Healthy subjects

(n = 12)

Examine the influence of dietary NO−
3

ingestion on the concentration of plasma

NO−
2 , VO2 kinetics, and exercise

tolerance in normoxia and hypoxia

−140 ml/day of NO−
3 rich BRJ (8.4

mmol NO3; BR) for 3 days prior to

moderate-intensity and

severe-intensity exercise tests

↑VO2 kinetics

- Improving exercise economy and

exercise tolerance in hypoxia

Pinna et al. (46) Trained male

master

swimmers

(n = 15)

Investigate whether BRJ supplementation

can also improve performance

-Swimming test after 6 days of BRJ

(0.5 l/day organic BRJ containing

about 5.5 mmol of NO−
3 )

↓Energy cost

↑Workload at anaerobic threshold

Muggeridge et al.

(18)

Competitive

amateur male

cyclists (n = 9)

Assess the influence of a single dose of

BR ingestion on the physiological

responses to submaximal exercise and

TT performance

-Consumption of either 70mL of BR,

3 h before exercise

↓VO2 during submaximal exercise

↑TT performance of trained cyclists in

normobaric hypoxia

Arnold et al. (47) Male runners

(n = 10)

Investigated the effect of NO−
3 ingestion

upon endurance running performance at

altitude in well-trained runners

−7 mmol NO−
3 at 2.5 h before

exercise

= Oxygen cost, arterial oxygen

saturation, heart rate, and RPE

MacLeod et al. (48) Trained male

cyclists (n = 11)

Assess the influence of BR

supplementation on steady-state exercise

economy and 10-km TT performance in

normoxia and moderate hypoxia

(simulated altitude: ∼2,500m)

-Two h before exercise, subjects

consumed 70mL BR (∼6 mmol NO−
3 )

- VO2peak ≥ 60 ml·kg−1.min−1

= Oxygen cost of steady-state

exercise

= Economy, mean power output, or

10-km TT completion time

Whitfield et al. (49) Young active

males (n = 10)

Determine if BRJ altered various indices

of mitochondrial bioenergetics

−7 day supplement consumption

with BRJ (280ml day−1, 26

mmol NO−
3 ) -Performed 20min of

cycling (10min at 50 and 70%

VO2peak) 48 h before “Pre” and

“Post” 5 day of

supplement consumption

↓Oxygen cost

↑ H2O2

= Mitochondrial coupling and

respiratory efficiency

(Continued)
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TABLE 2 | Continued

Studies Subject Aim Intervention Main outcome

Betteridge et al.

(50)

Healthy

recreationally

active males

(n = 8)

Assess the influence of BRJ

supplementation on oxygen

consumption, glucose kinetics, or skeletal

muscle metabolism during submaximal

exercise

-BR; 8 mmol NO−
3 2.5 h later,

participants cycled for 60min on an

ergometer at 65% of VO2peak

= Oxygen consumption

↑Muscle creatine, lactate, and

phosphorylated acetyl CoA

carboxylase during exercise

Thompson et al.

(51)

Recreationally-

active subjects

(n = 36)

Investigated the independent and

combined performance and physiological

effects of SIT and NO−
3 ingestion

-BRJ; ∼6.4 mmol of NO−
3 per 70ml

for 28 days -Subjects consumed 2 ×

70ml of their allocated supplement

2.5 h before the exercise tests

↓ O2 cost

↑ Peak work rate

- SIT and BR ingestion provided

greater improvements in incremental

exercise performance compared to

either intervention alone and led to

greater improvements in some indices

of muscle metabolic adaptation

Santana et al. (52) Healthy

participants

(n = 16)

Influence of inorganic NO−
3 ingestion

combined to a short training program on

10-km running TT performance,

maximum and average power on a

Wingate test, and [La−] in recreational

runners

-Consumed 750 mg/day (∼12 mmol)

of NO−
3 plus 5 g of resistant starch,

for 30 days

- Improved 10-km TT performance

and kept blood [La−] steady

Pawlak-Chaouch

et al. (53)

Elite endurance

athletes (n = 17)

Investigated the effects of BR

consumption on enhances the tolerance

to SIE

−3day BR supplementation

(340 mg/day) -Exercise test: 15-s

cycling exercise bouts at 170% of the

maximal aerobic power interspersed

with 30-s passive recovery period

= Tolerance to SIE

= VO2 and local muscle O2 delivery

and extraction

Wickham et al. (54) Recreational

active females

(n = 12)

Determine the influence of acute and

chronic BRJ ingestion on submaximal

exercise VO2, TT performance

-Supplementation acutely (2.5 h) and

chronically (8 days) with 280mL

BRJ/d (∼26 mmoles NO−
3 ) -Cycled

for 10min at 50 and 70% VO2peak

= MVC, voluntary activation, peak

twitch torque, time to peak torque, or

half relaxation time.

- Not reduce O2 cost of submaximal

exercise

Behrens et al. (55) Adults with

obesity (body

mass index >30

kg/m2) (n = 16)

Investigate the effect of BRJ on ET, EE,

and cardiometabolic health

-NO−
3 rich BRJ (BRJ; ∼6.4 mmol of

NO−
3 per 70ml), 2.5 h before exercise

-Improved exercise efficiency during

submaximal exercise by 7%, and time

to exhaustion by 15% compared to

other conditions

BR supplementation and antioxidant

Roth (56) Recreationally

active (n = 30)

Examine the influence of acute versus

chronic BR supplement consumption on

oxidative stress, and antioxidant capacity

(SOD)

- Consuming BR for 7 days, 140ml or

0.8 g of NO−
3

↑ Antioxidant capacity (SOD)

Singh et al. (40) Infantry soldiers

(n = 30)

Investigated the influence of 15 days

dietary NO−
3 supplement consumption on

high density lipoprotein-cholesterol and

oxidative Stress

- 400ml BRJ (consumed twice daily)

for 15 days

↑ Plasma total antioxidant capacity ↓

Stress markers plasma

hydroperoxides

Whitfield et al. (33) Recreationally

active males

(n = 8)

Investigate the influence of 7 d of BRJ

ingestion on skeletal muscle contractile

characteristics and function

- 7 days of BRJ ingestion

(280mL.d−1, 26 mmol NO−
3 ) -

Performed 20min of cycling (10min

at 50 and 70% VO2peak ) 48 h before

“Pre” and “Post” 5 day of

supplement consumption

= GSH:GSSG ratio

Kozlowska et al.

(57)

Elite fencers

(n = 20)

Examine the effects of diet and active

substances in BRJ supplementation on

the oxidative stress, inflammation, and

muscle damage in elite fencers

- Received freeze-dried BRJ in the

amount of 26 g per day, which

corresponded to one glass of juice

(200ml), 4 weeks

↑Lipid peroxidation,GPx1 activity

↑ VO2max and changes of this

parameter were negatively related to

changes of LDH serum activity, as

well as to the concentrations of

β-carotene and MDA.

=, No significant difference; ↓, significantly decreased responses; ↑, significantly increased responses; BRJ, Beetroot juice; TT, Time trial; VO2, Oxygen uptake; NO−
3 , Nitrate, NO

−,
2

Nitrite; MVS, Maximum voluntary strength; EE, Exercise efficiency; O2, Oxygen; IO, Individuals with obesity; ET, Exercise tolerance; CF, CrossFit; ROS, Reactive oxygen species; RT,

Resistance training; RPE, Rating of perceived exertion; H2O2, Hydrogen peroxide; POMS, Profile of mood states; NR, Nitrate-Rich; La−, Lactate concentration;, SIE, Supramaximal

intensity intermittent exercise; CMJ, Countermovement jump; BR, Beetroot; SIT, Sprint interval training; GPx1, Glutathione peroxidase 1; TAC, Total antioxidant capacity; TP, Total

polyphenol; SOD, Superoxide dismutase; DNA, Deoxyribonucleic acid; GSH:GSSG, The ratio of reduced/oxidized glutathione; GST, Glutathione S-transferase; NQO1, NAD(P)H:quinone

oxidoreductase 1; NP-SH, Non-protein sulfhydryl; GSH, Glutathione; LDH, Lactic acid dehydrogenase; MDA, Malondialdehyde.
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the contractile muscle function to ensure that there is sufficient
output power to maintain work (104). In fact, decreased blood
flow to the brain during training is known to be a major
cause of fatigue (105). Therefore, increased cerebral blood
flow can play a role in reducing the muscle RPE and
improving function after the BR supplementation (37).
Based on studies (Table 2), acute (2–3 h) (28, 35–37, 39),
short-term (<15 day) (30–34, 38), and long-term (≥15
day) (29) BR supplementation is effective for building
muscle adaptations.

The results of Wylie et al. showed that the skeletal muscle
NO−

3 stores are sensitive to NO−
3 ingestion and probably

help to NO production during training. They reported that
skeletal muscle contains sialin (NO−

3 transporter) and xanthine
oxidoreductase and stated that skeletal muscle also plays an
main role in the transport, storage, and metabolism of the
NO−

3 . They also stated that baseline NO−
3 levels and NO−

2
concentrations in muscle are much higher than plasma, and
NO−

3 intake increases plasma and muscle NO−
3 concentrations

(106). Also, Srihirun et al. concluded that muscle cells rely on the
transport of NO−

3 from external sources for achieving sufficient
NO−

3 stores in order to convert sufficiently to NO−
2 and NO,

and that muscle cells normally cannot raise endogenous NO−
3

levels to high levels for supporting all routine and emergency
procedures. They also stated that sialin and chloride channel 1
(CLC1) (NO−

3 transporters) play an important role (107). During
skeletal muscle contraction, increased the NO storage supports
increased mitochondrial respiration, glucose uptake, and other
functions (64).

THE IMPACT OF BR SUPPLEMENTATION
ON THE HORMONAL RESPONSE

NO is an intracellular and extracellular messenger for the
adjustment of several cellular functions, such as changes in the
hormone secretion (108, 109) for anabolic and catabolic aim.
It is one of the major mediators of stress involved in the acute
hypothalamic-pituitary-adrenal (HPA) response to training. The
effects of NO on the pituitary and adrenal cortex have been
confirmed (110) and it has been suggested that the cortisol
secretion can be stimulated directly by the NO concentration
after tadalafil administration (111). Activation of the HPA axis
during the training greatly increases the cortisol levels (112),
which acts as a metabolic and catabolic hormone (113) by
mobilizing the glucose (114), endogenous stores of amino acids
(115), and fatty acids (116), enhances the availability of all fuel
substrates; as a result, BR improves performance (42).

In addition, NO plays the main role in anabolic hormones;
Valenti et al. reported that the NO has a biphasic effect on
testosterone secretion, NO inhibits testosterone secretion at
higher levels and stimulant at low concentrations; the stimulant
effect of NO is mediated by cGMP (117). Like NO, testosterone
perhaps stimulates the vasodilator effect (118, 119). However,
testosterone appears to cause vasodilatation at concentrations
above 10 µmol/L, but at low physiological concentrations, NO
appears to be involved in the vasodilatory effects of this hormone

(120). It appears that different concentrations of NO can alter the
hormonal response of cortisol and testosterone (42). Garnacho-
Castaño et al. concluded that cortisol and testosterone levels
were markedly increased in the BR juice and placebo intake
groups. They stated that most alterations observed in the cortisol
levels after the BR consumption maybe associated with the NO−

3 -
NO−

2 -NO pathway and more studies are needed to confirm
this hypothesis (42). Also, the results of Roberts et al. Show an
increase in growth hormone (GH) concentration in rats and
humans due to NO−

3 consumption. They state that peroxisome
proliferator–activated receptor gamma coactivator-1 (PGC-1)
and NO, by secreting muscle gamma-aminobutyric acid (GABA)
and peripheral GABA concentrations, may help release exercise-
stimulated GH (41).

THE INFLUENCE OF BR
SUPPLEMENTATION ON THE NERVOUS
FUNCTION

The NO is produced endogenously in a variety of cells In a
mammalian organism, such as nerve cells, endothelial cells, and
macrophages, by a category of three isozymes called NOS, and
uses L-arginine as a substrate (121). Endogenously synthesized
NO has been shown to not only act as an intercellular messenger,
but also to spread rapidly and affect NO target cells. Thus,
the released NO may affect nerve cells over a wide area (122).
The NO is a messenger molecule with numerous molecular
targets among other servo-regulatory control functions including
neurotransmission (123). Considering the modulation of nerve
cell function by the NO in vivo and in vitro studies, it has
been shown that in all brain structures, NO modulates the
release of several neurotransmitters. Regarding in vitro and in
vivo, NO donors enhance the release of noradrenaline from the
hippocampus (124). In the medial preoptic area (125) and the
striatum (126), serotonin release is increased by the L-arginine
and NO donors, respectively. NO donors have been shown to
increase serotonin secretion in the hypothalamus and in the
locus coeruleus. In addition, NO has a moderating role; high
levels of NO enhance serotonin values in the hypothalamus,
while slight concentrations of NO appear to decrease it (127).
Increased serotonin modulates fatigue in long-term activity
(128). Serotonin has metabolic and developmental effects on
the skeletal and cardiac muscles; it regulates energy balance
and glucose uptake by the skeletal muscle and prevents insulin
resistance (129). In a study conducted by Kozlowska et al.
significant changes in the signal intensity induced by the tyrosine
and tryptophan metabolites were observed, especially from the
noradrenaline, adrenaline pathways, and serotonin metabolism
as well as lipid peroxidation (44).

In the pathway of tyrosine metabolism, most of the
experimental metabolites identified come from the adrenaline
and noradrenaline degradation subpathway. L-tyrozine is
changed to L-dopa and further to dopamine with pyridoxal
phosphate as a cofactor (130). Dopamine may modulate skeletal
muscle activity (131) and affect mitochondrial activity. Improper
regulation of the dopamine stimulates oxidative mechanisms
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FIGURE 3 | Beetroot supplementation and the skeletal muscle. AMPK, AMP-activated protein kinase; PCr, Phosphocreatine; ADP, Adenosine diphosphate.

(132). Moreover, dopamine contributes in the synthesis of
noradrenaline and adrenaline as a precursor (130). In nerve cells
that use the dopamine as a transmitter, no enzymatic changes
occur, but neurons applying noradrenaline as a transmitter,
contain other enzymes that convert dopamine to noradrenaline
and oxygen, also ascorbic acid is the cofactor of this process.
Neurons that use adrenaline as a transmitter contain an another
enzyme that catalyzes the conversion of noradrenaline to
adrenaline (133).

Studies have reported that the brain stem NO bioavailability
maybe inhibit sympathetic nerve activity (134–136). In addition,
it has been shown that the NO derived from both endothelial
NO synthase and neuronal NO synthase inhibits sympathetic
vasoconstriction in human and animal specimens (37, 102, 137).
Reduction muscle sympathetic activity causes an increase in
vasodilation and skeletal muscle blood flow (138). Enhance
vasodilation is an important factor in regulating cardiac output,
and this is largely related to oxygen delivery (139). In general,
evidence has shown that inhibition of the NO generation
prevents inhibition of sympathetic vasoconstriction in the
skeletal muscle in contracted or rested forms in humans
and rodents (103). In contrast, findings of de Vries and
DeLorey showed that increasing the NO bioavailability through
acute (2.5 h) the BR supplement consumption does not
change the sympathetic vasoconstrictor responsiveness to
sympathoexcitation at rest or during training (43). In addition,
other components of BR can affect nerve function, including
flavonoids. Flavonoids exert complex functions on NO synthesis
and bioavailability that may increase or decrease NO levels

(140). Flavonoids activate the extracellular signal-regulated
kinase (ERK)—cAMP response element binding protein (CREB)
pathway and the phosphoinositide 3 (PI3) kinase mTOR
cascade, leading to changes in synaptic flexibility. Also they are
able to affect neurogenesis by activating PI3 kinase—protein
kinase B (Akt)—endothelial NOS (eNOS) (141, 142) (as shown
in Figure 4).

THE INFLUENCE OF BR
SUPPLEMENTATION ON THE O2 COST
AND MITOCHONDRIA

Dietary NO−
3 , which is studied as a supplement to the BR,

can increase adaptation to endurance exercise due to its ability
to enhance NO−

2 and NO in plasma (15). By increasing
mitochondrial efficiency (22), decreasing the cost of oxygen to
muscle contraction (20) and enhancement the contractile force
in the fast-twitch muscles (111), it can increase the intensity of
exercise (therefore the total work done in a training session)
(143). Increased mitochondrial biogenesis (stimulates PGC-1
activation through stimulation of NO by guanylate cyclase)
(144) and changes the muscle fiber type to a more oxidative
phenotype when combined with the SIT [through the role of
nuclear factor activated T cells (NFAT)—calcineurin] (51, 145–
147). This is possibly related to the increased mitochondrial
hydrogen peroxide (49).

Last evidence indicates that the dietary NO−
3 supplement

consumption perhaps decreases the cost of O2 exercise by
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FIGURE 4 | Influence Flavonoid on the nervous function. ERK, Extracellular signal-regulated kinases; CaMK II/IV, Calmodulin-dependent protein kinase II/IV; PKA,

Protein kinase A; PKC, Protein kinase C; PKB/AKT, Protein kinase B; CREB, cAMP-response element binding protein; mTOR, Mammalian target of rapamycin; eNOS,

Endothelial nitric oxide systems; NO, Nitric oxide; BDNF, Brain-derived neurotrophic factor; Arc/Arg3.1, Activity-regulated cytoskeleton-associated protein. Source:

Vauzour et al. (142).

reducing the cost of ATP skeletal muscle contraction (20, 33,
59, 148). The major costs of ATP during the skeletal muscle
contraction are via myosin ATPase and SERCA (88). One of
the main regulatory impacts of the NO is its capability to
competitively and reversibly bind to c oxidase (COX) and
therefore prevent mitochondrial respiration. This was first shown
by adding NO donors to the isolated mitochondria (149, 150)
and later by showing that NOS inhibition was associated with
enhancement of oxygen consumption in the resting muscles of
dogs and other organs (151, 152). Even if it is shown that the
NO prevents COX, this can automatically lead to a decrease in
the mitochondrial respiration. In humanmitochondria, COX has
a capacity of more than 8 times the maximum flux of the ETS
(electron transport system). Therefore, respiration may not be
affected to the extent that the COX limits speed. Although the
causes for this extra capacity are unclear, it has been proposed
that it may be needful to stop intense inhibition of the COX

by NO under natural physiological conditions. Additional COX
capacity is significant to maintain a sufficient increase in oxygen
affinity to the mitochondria (153).

COX must be severely inhibited before reducing oxygen
consumption throughout the body, because peripheral
mitochondrial respiratory capacity exceeds systemic oxygen
delivery. Actually, even when isolated mitochondria are
motivated by the ADP for full respiration at saturating oxygen
tension, only part of the total COX capacity is utilized (154).
It has been shown that when endogenous NO synthesis is
blocked, the body’s oxygen consumption increases frequently.
This indicates that the physiological level of NO around 20 nM
actually has an impact on the tissue oxygen consumption
(151, 152). Studies have shown that NO indirectly improves
oxidative phosphorylation efficiency by inhibiting COX (155).
COX transfers electrons to oxygen and eventually water is
formed, and, at the same time, protons are pumped through the
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inner membrane of the mitochondria. Although, electrons can
move via the COX protein free of pumping protons (156). At
the time of COX inhibition by the respiration and the NO is
somewhat diminished, documents show that ATP production is
sustained to a higher degree compared to the oxygen utilization,
resulting in an elevation in the amount of ATP produced per
oxygen consumption (P/O ratio) (155). This is supported by
the fact that inhibition of endogenous NO generation enhances
oxygen consumption without altering ATP production (157).
Binding of the NO to the COX can also cause intracellular
signaling events, including oxygen diversion to non-respiratory
substrates and ROS production with potentially destructive
effects (158). These NO-elicited events operate as triggers by
which mitochondria regulate signal transduction cascades
engaged in the excitation of defense mechanisms and adaptive
responses in cells (159).

One of the main components of BR is flavonoids. Flavonoids
can affect mitochondrial Ca2+ uniporter within the cell
and increase mitochondrial Ca2+ concentrations. Ca2+

regulates various pathways, including the pathway that
stimulates eNOS, helps increase NO production, stimulates
the flow of K2+ and Ca2+, and increases the polarization
of cell membranes in endothelial cells (160). These cause
the muscles in the blood vessels to relax, thereby lowering
blood pressure and enhancement blood flow (17, 161). Also,
an increase in mitochondrial Ca2+ may by upregulation
pyruvate dehydrogenase and increasing the potential of the
mitochondrial membrane, stimulate oxidative metabolism;
increasing the concentration of ATP produced reduces oxidative
stress and muscle damage, and ultimately increases productivity
power (162).

Results of Santana et al. (52) andWylie et al. (163) showed that
the NO−

3 can transfer energy source from anaerobic to oxidative
sources. They stated that the benefits of NO−

3 consumption
on the concentration of blood lactate in endurance running or
strenuous exercise depended on the period of supplementation,
and the level of physical fitness of the subjects. In addition,
the results of Papadopoulos et al. (35) and Whitfield et al.
(49) showed that the mechanical basis for reducing VO2 of
the whole body after receiving NO−

3 in the diet does not seem
to be an increase in the oxidative efficiency of the muscle
or mitochondria, but improving some other mechanisms is
inherent; for example, improved contractile performance (59),
which is associated with the reduced ATP contraction costs
(20). In contrast, the results of Pawlak-Chaouch et al. stated
that 3 day the BR supplementation had no effect on the VO2

and local muscle O2 delivery and extraction in elite endurance
athletes (53). Moreover, Wickham et al. showed that acute (2.5 h)
and chronic (8 day) BR consumption has no ergogenically
effect among the active women and does not improve aerobic
function (54). Furthermore, Arnold et al. concluded that the
acute (2.5 h) NO−

3 ingestion did not increase the performance
of endurance runners in normobaric hypoxia. They stated that
the dose used in this study was not sufficient to produce
positive effects. The effects of NO−

3 consumption on the athletic
performance in hypoxia depend on the duration, and intensity
of exercise (47). According to research (Table 2), acute (2.5–3 h)

BR supplementation (18, 48–50, 55, 56) does not seem to have
much effect on the O2 Cost and mitochondria, and seems
short-term (<15 day) (45, 46, 51, 54, 55) and long-term (≥15
day) (51, 52) BR supplementation to have a greater effect. The
level of exercise/fitness of the subjects are a very important
factor in the effect of the BR supplementation (21, 164). In
endurance-trained subjects, especially elite endurance athletes,
fewer adaptations occur as a result of the BR supplementation
(21). The BR supplementation is less effective in people who
are higher fitness level (164). Considering the fitness level of the
subjects, it can be said that acute supplementation (2.5–3 h) in
trained people probably has no effect (47, 48, 50) and requires
longer supplementation courses.

ANTIOXIDANT EFFECTS OF THE BR
SUPPLEMENTATION

BR is the main source of chemical compounds including:
ascorbic acid, carotenoids, phenolic acid, flavonoids (165–167),
and betalains (a group of bioactive pigments) (168, 169). Many
animal models have displayed that betalains contain vast anti-
inflammatory and antioxidant features properties (169–173). In
addition, highly active phenolics include caffeic acid, epicatechin,
and rutin are known as the organic antioxidants (165, 174) (as
shown in Figure 5). Also, the BR is a dense origin of inorganic
NO−

3 , as a substrate for the NO synthesis (175). Some studies
have reported that NO−

2 and NO to inhibit radical stablishment
and repel ROS and RNS; this is indicating the antioxidant effects
of NO−

3 (176, 177).
Betalains and betacyanins (betanin and isobetanin) are

complementary components of the BR juice that protect
against DNA, protein and lipid damage (178, 179). Physical
exercise releases oxidative stress and BR phytochemicals
prevent the formation of radicals (2,2-diphenyl-1-picrylhydrazyl
and 3-ethylbenzothiazoline-6-sulfonicacid) (180). According to
research, administration of the NO−

3 at a rate of 8ml per
kg of body weight per day reduces protein oxidation, DNA
damage and lipid peroxidation in rats (178). Wootton-Beard
and Ryan recognized the increment in simulated digestion,
by the consumption of BR juice as a function of antioxidant
and also affirm the juice components are phytochemicals
which show similar functions and their structure are changed
(167). BR supplement provides a significant source of dietary
polyphenols and due to the many health benefits of polyphenols,
supplements containing large amounts of it can be beneficial to
individuals (167). However, the BR shows possible antioxidant
properties via scavenging mechanism regarding radical species.
Phytochemicals of BR through signaling pathways inhibit
inflammatory diseases (181).

Among the betalains, betanin (betanidin 5-O-b-D-glucoside)
is a major phytochemical representative, a water-soluble nitrogen
heterocyclic compound that gives the BR a red-violet color
(182). In addition, the betanin could inhibit low-density
lipoprotein (LDL) and lipid membranes peroxidation because
of its bioactive composition, modulating ROS production and
gene expression to reduce the inflammatory release of cytokines
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FIGURE 5 | An overview of important chemical compounds in Beetroot that may have antioxidant properties. Source: Georgiev et al. (165); Kujala et al. (166);

Wootton-Beard and Ryan (167); Lee et al. (168); Vulic et al. (169).

and increase antioxidant enzyme activities (183). Some biological
effects shown by betanin are reduced in two redox-sensitive
pathways, nuclear factor kappa B (NFkB) and nuclear factor
erythroid-2-related factor (Nrf2)—antioxidant response element
(ARE) are the major transcription genes for inflammatory
responses, and are detoxifying/antioxidant (184, 185). The
betanin resists gastrointestinal digestion, is absorbed by intestinal
mucosal epithelial cells, and actively reaches plasma. With
the help of hydrogen or electrons, betanin preserves lipid
structures and LDL particles, while inducing the transcription
of antioxidant genes through the Nrf2 and also simultaneously
suppressing pre-inflammatory NFkB pathways, has the ability
to scavenger free radicals (186). Also, flavonoids are able to
scavenge free radicals directly by donating hydrogen atoms, a
capacity that depends on the total number of hydroxyl groups,
the pattern of substitution, and the order of the functional
groups in terms of nuclear structure (187). The presence of
a catechol group in the B-ring, due to its ability to donate
hydrogen, increases the formation of a relatively stable flavonoid-
derived radical, which is the most important determinant of
reactive oxygen and nitrogen species (RONS) inhibition (188).
Flavonoids are not only able to activate enzymatic defense,
also can regulate the oxidative status of cells by inhibiting
oxidative enzymes responsible for the generation of superoxide
(include: xanthine oxidase and protein K) (189). Has been
shown that flavonoids inhibit nicotinamide adenine dinucleotide
phosphate (NADPH) oxidase, cyclooxygenase, lipoxygenase, and
microsomal succinoxidase (190).

Kozlowska et al. stated that the chronic BR consumption
enhances lipid peroxidation, and improvement of VO2max after
the BR supplement consumption seems to be dependent on
baseline lactic acid dehydrogenase (LDH) activity, and also,
on the serum concentrations of malondialdehyde (MDA) and
β-carotene. It is suggested that alterations in the ergogenic
effect of BR are negatively dependent to alter in serum
concentration of MDA, β-carotene, and the activity of LDH
(57). Singh et al. stated that the BR ingestion significantly
declined the stress markers of plasma hydroperoxides and
improves the antioxidant status (40). Furthermore, Vidal et al.
showed a 32% decrease in the function of inflammatory enzymes
lipoxygenase and cyclooxygenase by the phenethylamine—
betaxanthin and detalan (173) (Table 2). The BR compounds can
(antioxidant phytochemicals, iron, vitamin A and vitamin B6)
protect the liver against the oxidative stress and inflammation
and increase regular detoxification activity (173). It not only
prevents oxidative stress, but also reduces anemia. The BR
is rich in iron and effectively improves tissue oxygenation
and reduces the symptoms of anemia (191). Moreover,
with its antioxidant and low fructose properties and high
sucrose content, it plays an important role in the diet of
athletes (191).

Studies showed that dietary NO−
3 exerts protective effects on

the kidneys, heart and arteries by increasing the bioavailability
of NO and reducing the oxidative stress (192, 193). NO−

3
significantly reduces the production of NADPH-dependent O2

in the kidney. It seems that the protective effects of NO−
3 and
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its antioxidant properties may be due in part to a decrease in
NADPH oxidase activity and O−

2 production (194). Additional
NO signaling mechanisms include the production of other
bioactive nitrogen mediators through nitrosation and nitration
of proteins and lipids, leading to changes in the protein function
and fat signaling (195, 196). Although extra generation of NO
and superoxide anions has toxic influences via the formation
of peroxynitrite, NO itself can operate as an antioxidant by
repressing other reactive radicals (195, 196).

CONCLUSION

Overall, evidence suggests that the NO−
3 supplementation [acute

(2–3 h), short-term (<15 day) and long-term (≥15 day)] can
modulate contractile function by modulating Ca2+ handling
and contractile proteins, improve skeletal muscle metabolic
control by reducing the cost of high-energy phosphates in the
contraction and accumulation of fatigue-related metabolites,
and improve skeletal muscle perfusion and may increase the
performance of resistance training. It may also improve and
maintain muscle productivity strength by improving blood flow
to the type 2 fibers, and ultimately improve the performance of
resistance training. BR due to its ability to increase NO−

2 and
NO in plasma can increase adaptation to endurance training.
By increasing mitochondrial function, decreasing the cost of
muscle contraction oxygen, and increasing the contractile force
in the fast-twitch muscles, it can increase the intensity of
exercise (short-term (<15 day) and long-term (≥15 day) BR
supplementation to be more effective). The amount of BR used
and the time of its consumption is one of the important and

influential factors on its effects on the athletic performance.
BR also affects anabolic hormones through NO. It seems
that different concentrations of NO can alter the hormonal
response of cortisol and testosterone. NO is an intracellular and
extracellular messenger for regulating certain cellular functions,
including changes in the hormone secretion for the anabolic and
catabolic purposes. Few researches have been done in this field
(Table 2) andmore research are needed for more accurate results.

In addition, the BR is the main source of compounds
including: ascorbic acid, carotenoids, phenolic acid and
flavonoids, and betalains. The betalains have high antioxidant
and anti-inflammatory properties. In addition, highly active
phenolics such as caffeic acid, epicatechin, and rutin are known
as the organic antioxidants and protect against DNA, protein,
and lipid damage. In addition, in terms of RPE, the BR can
play a role in reducing muscle RPE and improving function
by increasing cerebral blood flow, but the results of research in
this regard have been contradictory. Regarding the BR neuronal
function, the role of NO can be mentioned, which has numerous
molecular purposes among other servo-regulatory control
functions, including neurotransmission. In all brain structures,
NO appears to regulate the release of several neurotransmitters;
NO donors increase the release of noradrenaline from the
hippocampus. Further studies are needed to draw more accurate
conclusions in this regard.
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