
F1000Research

Open Peer Review

, University of EdinburghNeil Chue Hong

UK

, Harvard University USA, Mercè Crosas

, Harvard University USAVito D'Orazio

, University of California,Carl Boettiger

Santa Cruz USA

Discuss this article

 (2)Comments

3

2

1

RESEARCH ARTICLE

 ActivePapers: a platform for publishing and archiving
 computer-aided research [version 3; referees: 3 approved]

Konrad Hinsen1,2

Centre de Biophysique Moléculaire (UPR4301 CNRS), Rue Charles Sadron, Orléans, 45071, France
Synchrotron SOLEIL, Division Expériences, St Aubin, Gif sur Yvette, 91192, France

Abstract
The lack of replicability and reproducibility of scientific studies based on
computational methods has lead to serious mistakes in published scientific
findings, some of which have been discovered and publicized recently. Many
strategies are currently pursued to improve the situation. This article reports the
first conclusions from the ActivePapers project, whose goal is the development
and application of a computational platform that allows the publication of
computational research in a form that enables installation-free deployment,
encourages reuse, and permits the full integration of datasets and software into
the scientific record. The main finding is that these goals can be achieved with
existing technology, but that there is no straightforward way to adapt legacy
software to such a framework.

1,2

1

2

 Referee Status:

 Invited Referees

version 3
published
14 Jul 2015

version 2
published
02 Mar 2015

version 1
published
24 Nov 2014

 1 2 3

report

report

report

report

report

report

 24 Nov 2014, :289 (doi:)First published: 3 10.12688/f1000research.5773.1
 02 Mar 2015, :289 (doi:)Second version: 3 10.12688/f1000research.5773.2

 14 Jul 2015, :289 (doi:)Latest published: 3 10.12688/f1000research.5773.3

v3

Page 1 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

http://f1000research.com/articles/3-289/v3
http://f1000research.com/articles/3-289/v3
http://f1000research.com/articles/3-289/v3
http://f1000research.com/articles/3-289/v2
http://f1000research.com/articles/3-289/v1
http://dx.doi.org/10.12688/f1000research.5773.1
http://dx.doi.org/10.12688/f1000research.5773.2
http://dx.doi.org/10.12688/f1000research.5773.3
http://crossmark.crossref.org/dialog/?doi=10.12688/f1000research.5773.3&domain=pdf&date_stamp=2015-07-14

F1000Research

 Konrad Hinsen ()Corresponding author: konrad.hinsen@cnrs-orleans.fr
 Hinsen K. How to cite this article: ActivePapers: a platform for publishing and archiving computer-aided research [version 3; referees:

 2015, :289 (doi:)3 approved] F1000Research 3 10.12688/f1000research.5773.3
 © 2015 Hinsen K. This is an open access article distributed under the terms of the , whichCopyright: Creative Commons Attribution Licence

permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Data associated with the article
are available under the terms of the (CC0 1.0 Public domain dedication).Creative Commons Zero "No rights reserved" data waiver

 The development of ActivePapers and the first research project in which it as applied were supported by the French "AgenceGrant information:
Nationale de la Recherche'' (Contract No. ANR-2010-COSI-001-01).
The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

 Competing interests: No competing interests were disclosed.

 24 Nov 2014, :289 (doi:) First published: 3 10.12688/f1000research.5773.1

Page 2 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

http://dx.doi.org/10.12688/f1000research.5773.3
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/publicdomain/zero/1.0/
http://dx.doi.org/10.12688/f1000research.5773.1

            Amendments from Version 2

The discussions of metadata, security, and bit-level replicability
were expanded. The ActivePapers requirement list is referred
to in the discussions of existing technology and of the design
choices of the two implementations presented in this paper. The
references to the literature were updated.

See referee reports

REVISED

Introduction
In the course of a few decades, computers have become essential
tools in scientific research and have profoundly changed the way
scientists work with data and with theoretical models. Until now,
these changes have had little impact on the scientific record, which
still consists mainly of narratives published in articles that are
limited in size and type of contents, and linked to each other through
citations. Some particularly data-intensive fields of research also have
their own digital repositories. An early example is the Protein Data
Bank1, which publishes and archives structures of biological macro-
molecules. Some scientific institutions also propose digital reposi-
tories for their members, e.g. as part of the Dataverse community2.
However, for most domains of research and most scientists, no suit-
able repositories have existed until very recently, and most datasets
are still neither published nor archived.

While the technology used for publishing and archiving the scien-
tific record has shifted from the printing press and libraries to PDF
files and Web servers, the kind of information that is being stored
has hardly changed. Some scientific journals offer the possibility of
submitting “supplementary material” with articles, as a way to cir-
cumvent the habitual length restrictions, and for providing unprint-
able information such as videos. In principle, the data underlying
an article can be published as supplementary material as well but
this remains an exception and is in fact of little practical interest.
The reasons are the various restrictions on file formats and file sizes
imposed arbitrarily by different scientific journals, but also the
often difficult access to these electronic resources, which usually
requires a careful study of each journal’s Web site. Only the recent
advent of digital repositories accepting any type of scientific data3–5
and peer-to-peer networks6 for scientific data has finally made the
publication of scientific data accessible to any scientist willing to
do so, all the more since these repositories generally do not charge
any fees for publication.

The increasing number of mistakes found in published scientific
findings based on non-trivial computations7,8 has made evident the
necessity of making computational science more transparent by
publishing software and datasets along with any descriptions of
the results obtained from them. The fundamental problem intro-
duced by computing is an enormous increase in the complexity of
both theoretical models and computational methods, and a similar
increase in the size of experimental datasets. These models, meth-
ods, and datasets can no longer be handled without a computer, and
must therefore be published in computer-readable formats. At the
same time, this material must be presented in form that facilitates
human understanding as much as possible. The tacit convention in

science is that published results are assumed correct unless there
is clear evidence suggesting a mistake. As C.A.R. Hoare famously
said9, “There are two ways of constructing a software design: One
way is to make it so simple that there are obviously no deficiencies,
and the other way is to make it so complicated that there are no
obvious deficiencies.” This observation applies equally to computa-
tional science, where the vast majority of published results have no
obvious deficiencies, but are obtained using software that is much
too complicated for anyone, authors and readers alike, to be certain
about its correctness.

While publishing software and other electronic datasets is now
technically possible, and initiatives have been started to create
incentives for scientists to invest the additional effort required for
making such material available10, much more work remains to be
done to ensure that published software and datasets can actually
be understood, verified, and reused by other scientists. This is par-
ticularly important because computational methods are becoming
an essential aspect of all scientific research, including experimental
and theoretical work in which computations are not the main focus
of activity. It is therefore more appropriate to discuss these issues
in the context of “computer-aided research” rather than the more
narrow specialty called computational science.

Most current efforts in this direction (see e.g. Ref. 11–13) start
from the status quo of computation in science and propose small-
step improvements in order to facilitate adoption by the scientific
community. The work presented in this article takes the oppo-
site approach of starting from the requirements of the scientific
record and exploring how software and electronic datasets need to
be prepared in order to become useful parts of this record. Both
approaches are complementary: while ease of adoption is important
for rapid improvement, it is also important to have a clear idea of
the goal that should ultimately be reached, in order to avoid getting
stuck in technological dead-ends.

This article presents the lessons learned from developing a new
computational framework, called ActivePapers14, and from using it
for several research projects in the field of biomolecular simula-
tion. The first section discusses the conditions that electronic data-
sets, including software, must fulfill in order to be fully integrated
into the scientific record. Next, the concept of an ActivePaper as
a collection of electronic datasets with references and provenance
information is introduced. A brief overview of tools developed
by the Reproducible Research and Open Science communities
explores similarities to and differences from the definition of an
ActivePaper. Two concrete realizations of the ActivePapers idea are
presented, and experience with their use in several research projects
is reported.

The main contribution made by this work are the following obser-
vations and insights:

• The preservation of scientific software is important for
maintaining the scientific record.

• Ease of software deployment is important for verifying
the replicability of computer-aided research.

Page 3 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

• Preservation and ease of deployment are related problems
that can be solved together.

• The required technology exists today, but is not popular
in the scientific community.

• Effective use of such approaches requires a separation of
“computational tools” and “computational models and
methods”. Models and methods can be archived in the
scientific record, whereas tools can be verified to imple-
ment these models and methods and need not necessarily
be preserved.

• Preservation and ease of deployment are very difficult
to ensure for existing scientific software. They must be
taken into account from the design stage.

The scientific record
The term “scientific record” refers to the totality of published scien-
tific findings in history. It started to become organized in 1665 with
the creation of the first scientific journal, the Philosophical Trans-
actions of the Royal Society. A scientific journal publishes articles,
which are narratives explaining the motivation for a specific study,
the methods being applied, the observations made, and the conclu-
sions drawn. The exact observations are provided in the form of
tables and figures.

The scientific record plays two main roles in the process of scien-
tific research. The first role is to ensure the transparency and repro-
ducibility of scientific results, which is an important measure of
protection against both mistakes and fraud. The second role is to
permit future research to build on the results of the past, to “see
further by standing on the shoulders of giants”, as Isaac Newton
expressed it.

One of the main characteristics of the scientific record is its per-
manence. Once an article is published in a journal, a permanent
reference is attached to it, and the publisher accepts the moral obli-
gation to make the information accessible through this reference
for as long as possible. Traditionally, this reference is a citation
taking a more or less standardized format. With the transition to
electronic publishing, the role of the permanent reference is ful-
filled by a Digital Object Identifier (DOI)15, which is defined by the
international standard ISO 26324:2012. For published articles, per-
manence also applies to the contents: once published, they cannot
change. Mistakes detected after publishing can be corrected only by
publishing a separate short article called “erratum”. More recently,
the idea of versioning has been applied by some publishers, e.g.
F1000Research: a DOI refers permanently to a specific version of
an article, but multiple versions of this article remain accessible
permanently in order to document the evolution of the publication.

The permanence of the scientific record applies only to the pres-
ervation of the original expression of each information item, but
not to its semantics. A published article can become unintelligible
because of changes in terminology and in the scientists’ educa-
tion. A modern physicist would not recognize the theory of clas-
sical mechanics in Newton’s “Philosophiæ Naturalis Principia
Mathematica”16 without prior training in Latin and in the history
of science. Scientific work that has been recognized as important is

reformulated and summarized in the course of time in the form of
review articles, monographs, and textbooks for education. For this
reason, the slow decline in intelligibility of the original publications
is in general not a problem.

With the widespread adoption of computer-aided research methods,
the size and complexity of scientific data has exploded, making a
publication in the form of tables and figures both impracticable and
useless. Digital repositories have therefore become an important
second pillar in several domains of research, next to the traditional
journals. These repositories store electronic datasets submitted by
researchers and attach metadata such as author names, date of sub-
mission, file formats, or citations of related journal articles. These
datasets are made available to the scientific community, usually free
of charge, for use in other studies, including the application of data
mining techniques in meta-analysis studies.

Permanent references to electronic datasets take the same form
as for electronically published journal articles, i.e. a DOI, and the
repositories have the same moral obligation as journal publishers
to keep the datasets accessible as long as possible. Concerning the
permanence of the contents, each repository applies its own policy.
Zenodo5, for example, does not allow any modification of published
datasets, but allows a dataset to be marked as obsolete with a refer-
ence to its successor. The Protein Data Bank (PDB)1 updates its
electronic records to correct mistakes in the representation of the
data and to adapt the data to changes in the PDB’s data model.
However, changes to the scientific contents are not permitted and
require the submission of a new entry, which like in the case of
Zenodo can be labeled as making a prior entry obsolete.

The most important difference between traditional articles and
electronic datasets from the point of view of the scientific record
is the semantic context required for the interpretation of the stored
information. For articles, the semantic context consists of a human
language and the jargon and conventions of a specific scientific dis-
cipline, which change very slowly, on a timescale of centuries. For
electronic datasets, the semantic context is ultimately defined by
the computers and programs that read and write the data, which can
change, intentionally or by accident, in a few seconds. The longev-
ity of electronic datasets therefore relies on a careful documentation
of the data models and data formats being used, on careful test-
ing of software to ensure that this documentation is respected, and
on proper curation of submissions by the repository managers to
ensure adherence to these formats.

Science librarians have developed tools (e.g. 17) and documented
best practices for the preservation of digital artifacts. However,
applying these methods implies an additional processing step for
converting the files produced during research to formats suitable for
archiving. This step represents an additional effort and increases the
risk of introducing mistakes. Many scientists prefer to use the lat-
est generation of uncurated digital repositories3–5, which accept any
computer file with no requirements concerning data formats or their
documentation. It is to be expected that much of the information in
these repositories will remain accessible for a long-time but quickly
become unusable. Ideally, scientists should therefore use archivable
data formats in all phases of computer-aided research. This is one
of the goals of the ActivePapers project.

Page 4 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

The challenge of software preservation
Among the electronic datasets used in computer-aided research,
software poses the most difficult challenges for preservation
because of its semantic complexity. What exactly a piece of sci-
entific software does is defined by (1) its source code, (2) the pro-
gramming language it is written in, and (3) all its dependencies:
libraries, other programs called as subprocesses, etc. Since many
of today’s popular programming languages are not defined with
precise semantics (see e.g. Ref. 18 for the languages C and C++),
(1) must in practice be replaced by the specific compiler or inter-
preter being used. Moreover, compilers, interpreters, and depend-
encies are in constant evolution. Preserving a piece of scientific
software with its exact semantics would thus require preserving its
complete computational environment down to the hardware.

For this reason, many practitioners consider the idea of preserv-
ing scientific software for many years unrealistic, and some even
argue that it is unnecessary because computational methods change
so rapidly that their long-term preservation is of no interest. The
latter argument is manifestly not valid in general. As an example,
the DSSP method for defining secondary-structure elements in
proteins19 was published more than thirty years ago and is still
widely used today. The example of DSSP is also interesting in that
the most widely used software implementing DSSP today20 does
not in fact implement the exact method published in the original
paper. The differences are not documented anywhere at this time,
and scientific papers using the modern software systematically cite
the original paper without further comment. It can thus be assumed
that most DSSP users are not aware of the fact that they are using a
modified method. If the original method had been published in exe-
cutable form and preserved until today, such discrepancies could
have been avoided.

Software preservation has only recently become a topic of research
in its own right. One focus is the definition of the features of
software that can or should be preserved21. Various technologies
for preserving software can then be evaluated with reference to
this feature list. Other projects (e.g. 22) start by trying to preserve
the software behind a given scientific study in order to explore the
issues that need to be addressed. The ActivePapers project pursues
the inverse approach: rather than working on the preservation of
today’s scientific software, it explores how tomorrow’s scientific
software could be written in a way that facilitates preservation.

It is interesting to note that software preservation is strongly related
to software distribution and deployment, which are generally rec-
ognized as important and difficult technical problems. Deployment
means making a specific piece of software available for use in a
given computational environment, whereas distribution addresses
the question of packaging software in a way that facilitates deploy-
ment. Deployment and preservation are difficult for the same
reason: the enormous diversity and fast rate of change of com-
putational environments. It can thus be expected that progress in
software preservation will also lead to simpler deployment, a change
that computational scientists would certainly welcome.

Replication, reproduction, and reuse
One reason for maintaining the scientific record is to support the
fundamental error-correction mechanism of the science, which

consists of allowing anyone to verify prior scientific studies by try-
ing to reproduce them. Reproducibility is indeed one of the corner-
stones of the scientific methods. It is what distinguishes a scientific
study from an anecdotal report.

The reproducibility of computational approaches in science has
received significant attention recently as a consequence of several
highly visible computational studied that turned out to be mistaken7,8,
causing a credibility crisis in computational science. The most
basic requirement for building confidence in computational results
is total transparency: the publication of all datasets and software
used during a scientific study. This is the main goal of the Reproduc-
ible Research movement, which has been gaining traction over the
last years23–25. The focus of these activities is transparency but not
preservation, which most members of the Reproducible Research
community consider desirable but unrealistic. The tacit assumption
is that reproduction attempts should be done rapidly while compu-
tational environments similar to those in the original work are still
easily available. Nevertheless, the developments in Reproducible
Research have shaped a more precise picture of the role of software
and computation in scientific research, which is important when
considering how to integrate this information into the permanent
scientific record.

An important distinction in this respect is the one between replica-
tion and reproduction. Replication refers to an attempt to repeat a
computational protocol under conditions that are as similar as pos-
sible to the original setting. It is essentially a quality-control meas-
ure: if scientist B can replicate scientist A’s computation, this shows
that A has provided a sufficiently precise, complete, and correct
record of the original work. Replicability is far from trivial because
a precise and complete description of a computational study is a
dataset that is both large and complex. Moreover, it is often difficult
to obtain in today’s computing environments. Reproduction refers
to an attempt to repeat a computational study following the general
principles of the original work but using different tools. Reproduc-
ibility plays the same role as in other branches of science: it estab-
lishes which aspects of a computational protocol are important for
reaching specific conclusions, and identifies unintended dependen-
cies of results on technical details of the procedure.

Replicability and reproducibility are not completely independent.
For all but the simplest computational methods, reproducibility
requires replicability. If a reproduction attempt leads to significantly
different results, the cause of the differences must be explored. This
is in practice only possible if the original results can at least be rep-
licated. Otherwise, the most probable explanation for the difference
is that the original study was insufficiently documented.

Since replicability is a purely technical aspect, it would ideally be
verified upon submission of a computational study, as part of the
reviewing process. In practice this does not happen yet, because the
difficulty of software deployment puts an important cost on repli-
cation attempts. Assuming that these problems will be overcome
either by reducing the cost or by accepting to pay it, replication will
become a one-time process and there is no reason to perform rep-
lication attempts on published scientific studies. The preservation
of electronic datasets, including software, in the scientific record
therefore has reproducibility as its main goal. The second important

Page 5 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

goal is to permit reuse of both data and computational methods.
This corresponds to the second role of the scientific record, which
is to allow future research to build on work from the past.

Both reproduction and reuse add an important requirement to the
technical criterion of replicability: the original computational pro-
tocol must be understandable by the scientist who sets out to explore
the failure of a reproduction attempt, or to apply the protocol to a
different problem. Experience has shown that understanding a com-
putational protocol is based both on inspection of the source code
and on experimentation, i.e. observation of the programs’ behav-
ior for various input data. Any software preserved in the scientific
record must therefore allow both inspection and execution.

Unfortunately, today’s scientific software tends to be even more
complex than the methods it implements because it also needs to
take into account complex technical issues such as performance and
resource management. This conflation of scientific and technical
aspects makes the software both more difficult to inspect and more
difficult to preserve because of platform-specific optimizations.
Ideally, these two aspects should be separated. The scientific con-
tents, i.e. models and methods, should be preserved in the scientific
record as specifications written with readability by humans in mind.
Software tools should then read these specifications and perform
optimized computations based on them. The state of the art in com-
putational technology does not permit such a separation at this time,
but I have outlined possible solutions to this problem in Ref. 26.

The ActivePapers project
The goal of the ActivePapers research and development project is
to design a platform for publishing and archiving computer-aided
research whose first priority is to ensure the utility of electronic
artifacts as items in the scientific record. Such a platform should
ideally meet all of the following requirements:

1. A published electronic dataset, in the following called an
ActivePaper, should be allowed to contain a combination
of data, code, and narrative related to a research project.

2. An ActivePaper can reuse data items from previously pub-
lished ActivePapers via references. These references can
also be used for attributing credit to everyone involved in
producing the information that is reused.

3. The representation of executable code inside an Active-
Paper should be well-defined, stable, and sufficiently
simple to allow implementation on future computing sys-
tems with minimal effort. The execution of any piece of
code from an ActivePaper should always produce exactly
the same results at the bit level.

4. Any code stored in an ActivePaper should be safe to exe-
cute, i.e. it should not be able to cause any harm to the
computing environment it is executed on.

5. An ActivePaper should contain metadata for provenance
tracking and reproducibility.

In view of the planned use of this platform for biomolecular sim-
ulations, additional requirements follow from the needs of high-
performance computing on big datasets:

6. An ActivePaper should support large datasets by ensuring
compact storage and high-performance data access.

7. No data conversion should be required to prepare an
ActivePaper for long-term preservation, or to reuse data
from an archived ActivePaper.

While the first requirement states that an ActivePaper should be
able to combine data, code, and narrative in a single package, this
does not preclude a more fine-grained organization of the results of
a scientific study in the form of multiple ActivePapers. In particular, it
is possible to publish individually raw data sets and software librar-
ies, the two research outputs that are the most suitable for reuse.

The utility of bit-level replicability is controversial in the scientific
communities that make heavy use of numerical computations. It
is difficult to achieve in practice today, because replicability was
not a priority in the design of today’s computing technology. The
most widely known difficulty is compiler optimizations of floating-
point operations that tend to introduce uncontrollable approxi-
mations into a computation. However, a change in any external
dependency (library, development tool, ...) can modify the output
of a program as a result of mistakes or well-intentioned improve-
ments. Bit-level replicability is also not strictly necessary for any
given simulation, whose result is inaccurate anyway. In principle,
it is sufficient that the results from different executions agree to the
precision at which the result is considered accurate. However, any
criterion for defining if results are “close enough” for replication
depends on the nature of the problem being solved. At the level of
a computational platform, the only possible guarantee is bit-level
replicability. Moreover, bit-level replicability is indispensable for
software testing27.

The fourth requirement, security of execution, could be satisfied
outside of the ActivePapers platform, by embedding the platform’s
run-time support software into a suitable sandboxing mechanism.
However, this puts the burden and risks of implementing security
on the user of the platform.

It is important to note that it is not required that all software used
for a computational study be stored in ActivePapers. On the con-
trary, it is to be expected that important software tools remain for-
ever outside of the ActivePaper universe and work on ActivePapers
as data. This includes everything requiring user interaction, from
authoring tools to data visualization programs, and also highly
machine-specific software such as batch execution managers. It is
also possible to write external code accelerators that take code from
an ActivePaper and execute it after optimization and/or paralleliza-
tion, guaranteeing identical results. While the current state of the
art does not provide techniques for making such code accelerators
both general and efficient, it is possible and even straightforward to
write problem-specific code accelerators, which are simply efficient
reimplementations (in a language like Fortran or C) of algorithms

Page 6 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

stored in an ActivePaper, with the equivalence of the results verified
by extensive tests.

The requirement of metadata for provenance tracking and replica-
bility implies that an ActivePaper must contain sufficient informa-
tion to reconstruct the full dependency graph of all datasets. Each
dataset that is the result of a computation must have a reference to
the program that generated it plus a reference to all other datasets
that this program has used as input.

The notion of an ActivePaper bears many resemblances with the
concept of a Research Object that has recently been proposed28. In
fact, an ActivePaper can be considered a realization of the Research
Object idea with particular emphasis on the computational aspects
of research.

Evaluation of existing technology
Some of the requirements listed above overlap with requirements
from other domains, suggesting a potential for reuse of existing
technology. A brief survey is given in the following.

Tools for reproducible research
The Reproducible Research movement addresses many of the needs
of publishing computational science, with the notable exception of
long-term preservation. It is therefore interesting to consider the
tools that have been developed for making computational research
more reproducible.

The computational notebook approach13, pioneered by Mathematica29
and recently popularized by the Jupyter project (formerly known
as the IPython notebook)30, builds on earlier developments in liter-
ate programming31, which have also been applied to computational
science directly32,33. It aims to integrate computational methods
expressed as working code with input/output data and the scientific
narrative. It permits a seamless transition from interactive explora-
tory work to a documented computational method that can be shared
and published. Compared to traditional scripts, computational note-
books represent an important advance in improving reproducibility
through improving human understanding. However, none of the
existing notebook implementations fulfill any of the requirements
listed above for an ActivePaper. Like a script, a notebook depends
on the computational environment in which it was generated. This
environment is neither preserved nor even documented in the note-
book. After a few years, a notebook still provides a human-readable
and rather detailed description of the method, but re-running
it is likely to be difficult or impossible. Moreover, the notebook
approach does not take into account datasets, unless they are small
enough to be included as literal data into the notebook itself. All
other data is accessed by usually non-permanent references such as
filenames or Universal Resource Locators (URLs).

Similar remarks apply to workflow management systems such as
Kepler34, Taverna35, or VisTrails36. In fact, workflows, scripts, and
notebooks all refer to the same basic concept: the outer algorithmic
layer that defines a specific computational study in terms of more
generic components. The differences lie in the user interface and
in the kind of components that can be used (libraries, executables,
Web services, etc.). Some workflow managers can archive these

components partially, and also some kinds of datasets, but such
support is neither complete nor exhaustive. The one aspect in which
workflow managers improve on notebooks is the fifth ActivePapers
requirement, i.e. provenance tracking.

Attempts to record a computational environment in a form that can
be restored on a different computer are still rare. Ref. 37 describes
how this goal can be achieved for programs in the R language,
extending that language’s package and repository mechanisms
by package libraries, package cohorts, and validated repositories.
There are many similarities with the ActivePapers approach to
software preservation and deployment (requirement 3 in the list
given above). It is also interesting to note the main difference: the
tools switchr and GRANbase described in Ref. 37 start from the
R language’s existing mechanisms and extend it with functionality
required by the scientific record, whereas ActivePapers starts from
existing mechanisms for publishing electronic artifacts and extends
them to include software.

The most comprehensive approach to archiving scientific software
in an executable form is based on virtual machine technology38–41.
The authors of a computational study produce a virtual machine
image that contains their complete computational environment,
starting with the operating system, in addition to the problem-
specific data and workflows. A published virtual machine can be
used safely by others for replication, fulfilling requirement 4 and par-
tially requirement 3 of the list given above. However, this approach
also has some significant disadvantages. The resulting archives are
in general too big to be deposited in today’s general-purpose digital
repositories. Moreover, it is not possible to refer to or reuse indi-
vidual pieces of software or data inside a virtual machine image,
nor is it straightforward in general to analyze the software or data
except by the tools explicitly provided by the authors of the virtual
machine. Virtual machine technology effectively creates a technical
barrier to fulfilling requirement 2. The longevity of archived virtual
machine images is uncertain, making requirement 3 impossible to
fulfill in the long run. Executing such an image requires complex
and sophisticated software, which for the moment is produced and
maintained by non-scientific organizations for reasons completely
unrelated to science. Once technological progress makes these
efforts obsolete, it must be expected that computations archived as
virtual machine images will become unusable. In summary, virtual
machines are a good solution to facilitate deployment for replica-
tion attempts, but are not a suitable data format for preservation.

Finally, the Exec&Share server42 and Elsevier’s Collage Author-
ing System43 propose the creation of “companion sites” to journal
articles, which contain both software and datasets. A Web interface
permits users to run the software on the authors’ input data or on
their own data sets. In terms of the ActivePapers requirement list,
a companion site fulfills points 1, 3, and 4. The main advantage of
this approach is the ease of deployment for replication or reuse,
which requires no software installation. It is the server adminis-
trators’ responsibility to maintain the computational environment
for the deposited software. For this reason, there are severe restric-
tions on the kind of software that can be deposited, and similar
restrictions apply to the format and size of the deposited datasets.
Long-term preservation is technically possible, but at this time none

Page 7 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

of the operators of these services has made any promise of long-
term engagement for keeping the contents available in a functional
state.

Bytecode platforms
The term bytecode (sometimes also called p-code) describes an
instruction set for a hypothetical processor. A compiler that gener-
ates bytecode instead of machine code for a hardware processor
typically produces smaller compiled code which moreover does not
depend on a specific hardware platform. However, since bytecode
cannot be executed directly by a physical processor, it requires an
additional processing step, either interpretation or a second compi-
lation phase, which tends to reduce overall performance. The prin-
ciple of compilation to bytecode has been used for almost 50 years,
initially with the goal of generating compact and portable code, the
loss of performance being accepted as a trade-off. More recently,
just-in-time (JIT) compilation techniques have significantly reduced
the performance issues related to bytecode to the point that there is
often no significant performance difference to programs compiled
to native machine code.

The use of bytecode is often an implementation detail of a specific
programming language, with no directly visible consequence to its
users. But bytecode can also be the starting point for the definition
of a bytecode platform, such as the Java Virtual Machine (JVM)44 or
the Common Language Infrastructure (CLI)45. A bytecode platform
is a specification that combines a bytecode instruction set with a
runtime library that provides access to system resources (memory,
threads, files, network, etc.). A program written for a bytecode
platform that relies only on this standard library for interacting
with its environment is fully portable in the sense that it can run
unmodified on any computer for which an implementation of this
platform exists. In addition to portability, bytecode platforms also
offer interesting security features. The runtime system processing
the bytecode can offer much more fine-grained access control to
system resources than today’s operating systems, making byte-
code platforms a good choice wherever there is a risk of mali-
cious code distribution (viruses etc.). In summary, a well-designed
bytecode platform implements points 3 and 4 of the ActivePapers
requirements list.

The notion of a platform as a precise and complete specification of
the computational environment that a piece of software relies on
is of particular importance for software preservation. In fact, soft-
ware preservation requires preservation of the files containing the
software plus preservation of the platform the software was cre-
ated for. Most of the well-known difficulties with software distri-
bution, deployment, and preservation have their roots in the lack
of well-defined computational platforms, as does the frequent non-
replicability in computer-aided research. As an example, the plat-
form for software distributed as source code consists of the language
specification, if it exists, or of the compiler or interpreter otherwise,
but also of the specific versions of specific libraries used by the pro-
gram. Frequently the operating system is also part of the platform
specification, because the program itself or one of its dependen-
cies relies directly on operating-system services to access system
resources. With such platform specifications being complex, infor-
mal, and numerous, most software authors target not one platform

but a family of related platforms (e.g. “Unix-like systems with a C99
compiler”), and leave the work of getting all the pieces work together
to packaging experts, systems administrators, and end users.

Because of the importance of stable platforms for both replicabil-
ity and software preservation, it is useful to look in some detail at
the track record of today’s most successful bytecode platform, the
JVM. It was originally defined as a support for running software
written in the Java language, but by now the JVM hosts a variety
of languages and ensures a high level of interoperability between
them. The goal of the JVM developers was to enable the distribu-
tion of executable code via the Web, which users could run in their
browsers without any prior installation or configuration. The main
challenge resulting from this goal was the distribution and deploy-
ment problem: executable code deposited on a Web server had to
“just work” on any computer equipped with a JVM implementation
and a Web browser. This goal has overall been reached successfully,
and with remarkable stability: JVM bytecode produced in 1995 can
still be run without modification.

The JVM’s approach to distribution and deployment is that both
libraries and application programs are packaged as JAR files, which
can contain JVM bytecode files but also additional resources such
as data files read by the software46. Executing a JVM applica-
tion requires specifying explicitly all the JAR files it consists of.
In practice, most application programs are distributed as a single
JAR file that contains all dependencies other than the JVM and its
standard library. A JVM application is thus a plain file that can be
distributed and archived just like any other file. In contrast, the tra-
ditional approach to managing software is to consider libraries and
application programs as extensions to the operating system that are
“installed” one by one, with each new package being allowed to rely
on previously installed packages. Many of the difficulties encoun-
tered in deployment have their origin in this requirement of every
software package being part of a single installation, which doesn’t
leave enough flexibility for solving conflicts between the require-
ments of different software packages. The JVM approach neither
prevents nor resolves such conflicts, but shifts the responsibility for
dealing with them from the systems administrators and end users to
the person packaging an application program for distribution.

It is instructive to look in more detail at the two aspects in which the
JVM platform failed to attain universal portability: (1) interfacing
to certain operating-system services, such as user interface layers or
concurrency management, and (2) floating-point computations.

The limited portability of access to certain aspects of the computa-
tional environment is due to a combination of high diversity among
different operating systems and the difficulty of making compro-
mises. For graphical user interfaces, any compromise leads to a bad
user experience, and thus a lower acceptance of the software. For
concurrency, compromises lead to bad performance, with similar
consequences. Another problem specific to concurrency is the dif-
ficulty of providing an exact specification of a system’s behavior in
all imaginable circumstances.

Fortunately, neither of these is an issue for pure computations, i.e.
software that transforms input data into output data but does not

Page 8 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

interact with its environment in any other way. This observation
is important because the scientific aspects of software are always
pure computations. The definition of “scientific aspect” here is
“everything that has an influence on the results of computations”.
Any result is represented in the computer as finite sequence of
bits, which can be considered the value of a mathematical function
of all the input data, which are finite bit sequences as well. This
implies that all results can be obtained from pure computation. This
fact is not obvious because in most of today’s scientific software,
the scientific aspects are closely entangled with technical aspects
such as user interaction or resource management. As an example,
a typical visualization tool entangles the mapping from input data
to graphics primitives, which is a pure computation, with the code
for displaying these primitives on a computer screen and letting the
user interact with the display. A carefully designed software archi-
tecture can separate the scientific contents from the user interface
aspects and ensure replicability and preservation for the scientific
aspects.

The limited portability of floating-point operations on the JVM is
due to a deliberate decision to give up their precise initial speci-
fication in favor of a less rigid one that permits a more efficient
implementation on today’s most widely used hardware architec-
ture, Intel’s x86 series of processors. It is still possible to choose
the original precise floating-point semantics, but few programmers
make that choice. This illustrates one of the main reasons for the
lack of rigorous specifications of computational platforms: the
desire to leave implementers as much room as possible for opti-
mizing performance on the currently relevant hardware platforms.
In the case of floating-point operations, which are particularly
important in scientific computing, the widespread but wrong belief
that they are inherently imprecise has contributed by making most
computational scientists accept the status quo without discussion.
This attitude is slowly changing because of the problems becoming
ever more visible in several domains of scientific research (see e.g.
47–49). Reproducibility in floating-point arithmetic has become an
active topic in computer science research (see e.g. 50–52).

The second popular bytecode platform, the ECMA standard CLI45,
can be considered a more modern implementation of the basic JVM
idea, with a change in priorities. The CLI platform was designed by
Microsoft and implemented as the .NET framework for Windows.
The .NET framework, which also contains libraries that are not part
of the CLI platform, remains the dominant CLI implementation,
to the point that much software described as CLI-compliant has in
fact never been tested with any other implementation. Portability
of .NET/CLI applications is therefore more limited than with the
JVM. Software developers use .NET because of its security fea-
tures, ease of deployment, and safe interoperability between multi-
ple programming languages. It is in particular the last point where
the CLI platform has clear advantages over the JVM, which was
originally designed for a single language, Java.

A third bytecode platform, Google’s Portable Native Client (PNaCl)
system53, is so recent that it cannot be evaluated based on practical
experience. Its design goal is to permit the execution of application
software inside a Web browser, which resembles the original goal of
the JVM. However, PNaCl uses a more low-level code representa-
tion than the JVM or CLI, which is defined by the LLVM project54,

and a less precisely defined runtime environment, in order to facili-
tate the adaptation of software written in traditional programming
languages such as C and C++.

The ActivePapers JVM edition
The original ActivePapers architecture55, which was subsequently
implemented in the “ActivePapers JVM edition”, was a proof-of-
concept design intended to show that it is possible with existing
technology to meet all the requirements defined above. The key
design and implementation choices were

• An ActivePaper is a file in HDF5 format56. The HDF5
format ensures flexibility, compactness, and high-perfor-
mance data access (requirements 6 and 7).

• Any data item inside a published ActivePaper can be ref-
erenced by the combination of the ActivePaper’s DOI and
the HDF5 path to the dataset (requirement 2).

• Executable code is stored as JVM bytecode. Any other code
representation, in particular human-readable source code
in any language, is admissible if a compiler or interpreter
exists in the form of JVM bytecode (requirement 3).

• The JVM security model is used to prevent executable
code in an ActivePaper from accessing any data outside
of the ActivePapers platform, enforcing security at the
platform level (requirement 4).

• HDF5 dataset attributes are used to store metadata,
including a dataflow graph that records provenance
(requirement 5), but also creation time stamps and a data
type indicator distinguishing references and executable
code from “plain” datasets.

• Individual programs inside an ActivePaper are labeled as
either pure computations (“calclets”), or as data import-
ers (“importlets”). The latter have unrestricted read access
to anything, including local files and network resources.
They share the write restrictions of pure computations,
meaning that they cannot modify anything outside of
the ActivePapers universe. Moreover, they are never run
automatically, but only on explicit user request.

The original design included a third kind of programs, “viewlets”,
intended for visualization or more generally for letting users inspect
the results of computations, possibly interactively. This idea was
abandoned, at least for the initial implementation, because of the
difficulty of achieving efficient yet portable user interaction on the
JVM platform.

An implementation of the original ActivePapers platform is avail-
able from the ActivePapers Web site14. Its only dependencies are
(1) a Java Virtual Machine implementation, (2) the HDF5 library,
and (3) JHDF557, a Java interface to the HDF5 library. The Active-
Papers software provides a command-line interface for creat-
ing ActivePapers, inspecting their contents and metadata, and for
running the embedded executable code. This is clearly a minimal

Page 9 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

working environment. For production use by a wide community of
computational scientists, many convenience functions would have
to be added: a code and data editor, data visualization, data manage-
ment, etc.

The use of the JVM bytecode platform by itself ensures that most
of the requirements listed in the beginning of this section are met.
In fact, many of these requirements could be met by using JAR files
as ActivePapers, adding just a set of conventions for storing data,
metadata, and references inside JAR files. The use of the HDF5
format rather than the JAR format for ActivePapers is motivated by
the requirement of efficient handling of large datasets. The JAR for-
mat, which is a variant of the ZIP format, is designed to be compact
and provide efficient read access to individual files, but it does not
provide efficient write access nor efficient random access to parts
of files. The HDF5 format is much more general, and in particu-
lar allows performance tuning for various data access patterns. The
HDF5 library also offers much useful functionality for structuring
data access in scientific software. Finally, HDF5 is already widely
used in scientific computing. One of the dataset types offered by
HDF5 is a one-dimensional array of bytes, which is exactly the data
model for files in today’s operating systems. An ActivePaper can
therefore store arbitrary file contents in a dataset, a feature which it
uses to store JAR files for executable code.

A disadvantage of the HDF5 format is the increased complexity
of the ActivePapers platform, which includes HDF5 and JHDF5 as
dependencies. It would be preferable to be able to access HDF5
files from pure JVM code, reducing the additional dependency to
one more JAR file. It is possible in principle to reimplement HDF5
in Java, and partial implementations already exist, but they are
insufficient for practical use at this time.

Two of the requirements for an ideal ActivePapers platform require
a more detailed discussion with respect to the choice of the JVM.
The representation of executable code was supposed to be simple,
in order to facilitate implementation on future computing systems,
and all results were supposed to be replicable at the bit level. A
modern JVM implementation with a JIT compiler and a complete
runtime library is a large and complex piece of software, and its cur-
rent imprecise floating-point semantics do not allow full bit-level
replicability. However, the complexity of today’s JVM implementa-
tions is mostly due to performance optimizations. JVM bytecode is
rather simple, and a working but inefficient implementation is not
difficult to realize. As for bit-level replicability, it could be ensured
in two ways: (1) allow only JVM bytecode in which all func-
tions are compiled in strictfp mode, or (2) use a special JVM
implementation that always uses the initial strict floating-point
semantics.

An important design decision is related to the management of the
metadata that tracks dependencies and provenance. The ActivePa-
pers platform creates and updates this metadata automatically during
program execution. From the user’s point of view, an ActivePaper
is a collection of datasets and programs, of which the latter can
be run individually just like traditional executables or scripts. The
ActivePapers platform tracks all data accesses from programs and
generates the dependency graph from them. When a program is

re-run, typically after modification, all the datasets it generated
earlier are deleted automatically. Moreover, when a program reads
data generated by another program which has been modified since it
was last run, the modified program is re-run automatically to ensure
coherence of all data. This automatic dependency handling has
worked well in practice. It is the inverse of the approach taken by
automation tools such as make58, which execute programs accord-
ing to a manually prepared definition of the dependencies between
their results. Note that the difference concerns only how the
metadata is created. The resulting dependency graph is the same
with both approaches, and the choice between them is not a funda-
mental one, but mainly a user interface design aspect.

The ActivePapers implementation for the JVM provides an auto-
matic replication tool. It analyzes the dependency graph of an
ActivePaper and re-runs all computations in the required order. The
result is a new ActivePaper file that can be compared to the original
using the tool ‘h5diff‘ from the HDF5 distribution. Ideally, the two
files should have identical contents except for the time stamps. This
has worked very well for all tested examples, even in the presence
of floating-point computations. However, all tests were performed
on machines with a processor from the x86 family, for lack of
access to any significantly different machine. Automatic replication
is a promising approach for validating computer-aided research at
submission time.

The JVM security model was integrated into ActivePapers with
the goal of protecting the user’s computing environment against
damage done by erroneous or malicious code. The platform was
never used widely enough to generate any experience with mali-
cious code, but the security mechanisms have proven very help-
ful in detecting errors. A typical situation is the transfer of code
written for stand-alone use into an ActivePaper. The original code
thus accesses local files and network resources for input and output.
These access must be modified to work exclusively on ActivePaper
datasets. The JVM access control mechanisms were very helpful in
locating these accesses and in ensuring that every single one was
taken care of.

While the ActivePapers JVM edition satisfies all the initial require-
ments, it is very difficult to use in real research projects, because of
a critical lack of scientific software compatible with its constraints.
All code running inside of the ActivePapers platform must exist as
JVM bytecode. All code storing data in an ActivePaper must use
the HDF5 library. All code that falls into both categories, which
includes in particular the workflow of a specific research project,
must exist as JVM bytecode accessing the HDF5 library. There is
almost no publicly available code that meets these requirements,
due to the lack of popularity of the JVM in scientific computing.

The ActivePapers Python edition
In order to gain experience with the ActivePapers approach in
practice, a second implementation was developed for the Scientific
Python ecosystem59. Its dependencies are the Python language60, the
HDF5 library, the h5py library61 for interfacing HDF5 to Python,
and the NumPy library62 which is a dependency of h5py. For the
Python edition of ActivePapers, all executable code must exist in the
form of Python scripts, which access the datasets through the h5py

Page 10 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

library. Python libraries that contain extension modules (which is
Python jargon for modules written in a compiled language such as C)
cannot be placed inside an ActivePaper, but can be declared as
an external dependency. This effectively means that the platform
required for using an ActivePaper with such a dependency includes
that library in addition to the packages listed above. Adding exter-
nal dependencies is clearly not desirable, but it provides a short-
term workaround to the fundamental problem that most scientific
software is not ready for installation-free deployment and long-
term preservation.

The Scientific Python ecosystem provides a large choice of libraries
that can be used within these constraints, and the Python language
is already very popular for scientific computing, making the Active-
Papers Python edition a good vehicle for testing the ActivePapers
approach on real research projects. On the other hand, the Python
edition cannot fulfill requirements 3 and 4 listed above. In particular,
the Python language lacks sufficiently strong security mechanisms
to implement a useful level of user protection (requirement 4).
A more subtle problem is the stability of the platform itself. The
Python language has no formal specification and in fact evolves
together with its principal implementation. The scientific libraries,
in particular NumPy, also evolve rather rapidly, with only moder-
ate efforts to maintain compatibility with older versions. For exam-
ple, version 1.9 of NumPy removed a compatibility layer for use
with older Python code that was written for NumPy’s predecessor
Numeric. It is difficult to estimate how much published research
code was affected by this change, but it includes everything I have
published between 1997 and 2012. The ActivePapers platform
records the version of all libraries that were used in the preparation
of an ActivePaper, but the long-time usability of these versions is
questionable, as in general only the current versions can be expected
to work in current computing environments. Requirement 3
is therefore only partially fulfilled.

The ActivePapers Python edition has been used for several research
projects in the field of biomolecular simulation, some of which
have already been published63–65. Each publication has one or more
ActivePaper files deposited as supplementary material, but all the
files are also available in digital repositories with DOIs. Among the
published ActivePapers, there are software libraries66,67, a database
of protein structures68, and combinations of datasets and code that
document computational studies69–71. Additional published Active-
Papers contain obsolete versions of the pyMosaic library72–74. These
files remain permanently available because other ActivePapers
depend on them. They also remain usable for as long as the under-
lying platform remains compatible.

Many of the published ActivePapers reuse code or data from other
published ActivePapers through references. Each reference consists
of the DOI of the ActivePaper file that contains the data plus the
HDF5 path that identifies the dataset inside the file. The ActivePa-
pers management software automatically downloads ActivePapers
that are required for satisfying references. This download mecha-
nism supports Zenodo5 and figshare4 at the moment. It would be
desirable to support any DOI-granting digital repository, but unfor-
tunately the DOI infrastructure does not yet provide the required

functionality. DOI resolution produces a URL pointing to a human-
readable landing page. This page typically contains links to the data
files, but its layout is not standardized, making it impossible to find
these links automatically and reliably.

The possibility of packaging code and data together has turned out to
be very useful. In deciding how to divide the complete information
resulting from the research projects into ActivePapers, the major
considerations were the following:

• What makes a useful package for reuse?

• Which information must be consulted together for under-
standing the computational methods?

• Which items are required to back up the claims of a jour-
nal publication?

The application of these criteria led to three kinds of packages:

• Software libraries.

• Datasets packaged with the software that produced them,
and sometimes also with software that facilitates access
to or analysis of the data.

• “Supplementary material” packages for a journal article,
containing the top-level workflow up to the generation of
all figures and tables.

We did not encounter any situation where it would have been use-
ful to publish datasets without any accompanying software. For all
datasets, there was some software that logically belonged to the
data as an aid in its interpretation. However, this observation may
be related to the fact that all the computational studies performed
within the ActivePapers framework were of methodological nature,
i.e. contained the development of new computational methods. As
an example, reference 68 is a database of partial protein structures.
They were constructed by downloading complete protein structures
from the Protein Data Bank1 and selecting parts that have specific
structural features. The ActivePaper file includes the script that per-
forms the download and the substructure extraction. This script is a
detailed documentation of the selection criteria, and therefore valu-
able for anyone wishing to use the database.

One problem encountered in the course of these research projects is
the relatively low size limit that today’s digital repositories impose
on archived files. Zenodo5 provides the most generous limit of
2 GB per file. However, the input data for one study71 contains ten
Molecular Dynamics (MD) trajectories for lysozyme in solvent,
and requires 10 GB of storage even in compressed form. Since
these data were not essential for the subsequent analysis step,
which requires only the rigid-body motion of the protein, they were
removed from the published files. The alternative would have been
to publish each MD trajectory separately as an ActivePaper, and
use DOI-based references in the analysis step to refer to this data.
The main drawback to this approach is the additional effort required
for dividing the data into small packages and publishing them
separately.

Page 11 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

ActivePapers proposes another mechanism to reduce file sizes: the
deletion of recomputable datasets. Any dataset that was generated
by a program stored in an ActivePaper can be replaced by a dummy
dataset that retains only the dependency metadata. The full data-
set can be recomputed on demand, or automatically when another
program tries to read it. Recomputation consists in re-running the
program that generated the dataset initially. This mechanism makes
sense only if the replicability of a dataset is guaranteed. In practice,
this applies to any program that does not use floating-point opera-
tions and whose input data is read exclusively from the ActivePa-
pers universe. The ActivePapers implementation tests the second
condition but cannot verify the first.

Future developments
The existence of two distinct ActivePapers platforms is a historical
accident that is clearly not desirable. The envisaged solution is a
split of the ActivePapers platform definition into two parts: a data
publishing system, which defines the HDF5 conventions for Active-
Papers, in particular the metadata, and a code execution system that
defines how specific datasets in ActivePapers are interpreted as
executable code. Only the second part would differ between the
current two implementations, and its separation also opens the way
for additional execution systems for other code representations.

One line of future development is an integration of a narrative into
the computational methods stored in an ActivePaper. Work on inte-
grating the ActivePapers Python edition with the Jupyter project30
(formerly the IPython notebook) is underway. Unfortunately, non-
fundamental technical issues make this a non-trivial project: the
various components (HDF5, Python, Jupyter) have different and
conflicting requirements and restrictions concerning concurrency.
Aside from these software engineering issues, the main question
to be solved is how to reconcile the interactivity of the notebook
approach with the permanence requirements of the scientific record.
The coherence of code and results in a notebook is guaranteed only
if it has been executed linearly from start to end. Any interactive
manipulation results in general in a non-replicable state. Two solu-
tions are currently explored. The first solution marks notebooks as
non-replicable except when they have been executed linearly with
no subsequent modification. No ActivePaper containing such non-
replicable notebooks should be accepted by a digital repository.
The second solution is to record all interactive code execution in a
log, which is stored in the ActivePaper and can be re-executed later.
After a complete linear execution of the notebook code, the log of
interactive executions can be deleted.

Another direction for future developments explores how to provide
a realistic transition from today’s scientific computing environments
to future ones that take into account the needs for publishing and
archiving computations. One important advantage of the ActivePa-
pers approach in this context is that the minimal requirements for
adopting it are modest: any software tool that can work with the
ActivePapers file format, which is HDF5 plus a small set of con-
ventions, can read and write publishable datasets. With a very small
additional effort, software tools can be adapted to handle ActivePa-
pers metadata and thus ensure dependency and provenance tracking.
None of this requires that the software live inside the ActivePapers
platform. The challenge for future ActivePapers developments is

to facilitate the transition of computational models and methods
from subroutines hidden inside software tools to specifications that
become part of the scientific record.

Conclusion
Experience with the two current implementations of the ActivePa-
pers idea has shown that all of the requirements defined at the outset
can be fulfilled and that the approach of publishing data and code
packages works in practice. In particular, the ActivePapers project
has shown that installation-free software deployment and long-time
software preservation are possible, contrary to a common belief
in the scientific computing community. ActivePapers can achieve
these goals because the scientific contents of software take the form
of pure computations, which are possible identically in all computa-
tional environments. The technological basis is a precise and stable
definition for a computational platform, which includes a represen-
tation for executable code and a runtime library for interaction with
the computational environment.

Experience with ActivePapers in real research projects has led to
further important observations:

• Once software has a well-defined representation, it
becomes a piece of data that can and should be handled
exactly like any other scientific dataset.

• Packaging data and software together is natural in many
situations because of the close relation between them.

• Installation-free deployment turns replication into a
mechanical procedure that can be automated.

• Reuse of published data, including software, is the com-
putational equivalent of a citation. It can be implemented
using technology developed for citation (DOIs), and thus
easily integrated into science metrics.

However, the ActivePapers experience has also shown that the
majority of today’s scientific software does not fulfill the condi-
tions for inclusion in the ActivePapers framework, nor in any simi-
lar framework based on the same design goals. There is in fact a
significant gap between the requirements for the preservation and
installation-free deployment of software and the dominant software
development technologies in use today. The only existing com-
putational platform that is clearly sufficient for implementing the
ActivePapers approach is the JVM, which is not very popular in
computational science, partly for real technical deficiencies, but
partly also due to false perceptions of its performance. The CLI
platform, which is currently evolving towards improved portability,
is a second candidate. However, both of these platforms are based
on a security model that requires automatic memory management.
This is incompatible with the basic premises of the C and C++
languages, in which much of today’s scientific software is written.
While compilation of C to JVM bytecode is possible (see e.g. 75),
porting real C code represents an important effort and the results are
often not satisfactory in terms of performance. Unless new platform
candidates such as Google’s PNaCl turn out to be workable solutions,
it seems like the scientific community will have to make a choice

Page 12 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

between the continued use of legacy software and the transition to a
software development infrastructure that supports the replicability,
reproducibility, and preservation of computational research.

Independently of the choice of a suitable computational platform,
the separation of computational models and methods from software
tools mentioned above is an important step towards reproducibil-
ity (through improved human understanding) and preservation of
computer-aided research. Computational tools must in fact evolve
with the progress of technology in order to remain useful to the
communities that develop and apply them76. The documentation
and preservation of models and methods is much easier if they can
evolve on the slower timescale of scientific progress. Such a sepa-
ration is also completely analogous to how other digital content is
handled. We archive articles in PDF/A format, movies in MPEG3
format, or protein structures in mmCIF format because these

formats are well documented and allow anyone, at any point in
time, to interpret the archived contents, even if today’s software
tools are no longer usable because of the inherent instability of
computational environments.

Competing interests
No competing interests were disclosed.

Grant information
The development of ActivePapers and the first research project
in which it as applied were supported by the French “Agence
Nationale de la Recherche” (Contract No. ANR-2010-COSI-001-01).

The funders had no role in study design, data collection and analysis,
decision to publish, or preparation of the manuscript.

References

1. Berman H, Henrick K, Nakamura H: Announcing the worldwide Protein Data 
Bank. Nature Struct Biol. 2003; 10(12): 980.
PubMed Abstract | Publisher Full Text

2. The Dataverse project. 2015.
Reference Source

3. Dryad. 2014.
Reference Source

4. figshare. 2014.
Reference Source

5. Zenodo. 2014.
Reference Source

6. Academic torrents. 2014.
Reference Source

7. Merali Z: Computational science: ...Error. Nature. 2010; 467(7317): 775–777.
PubMed Abstract | Publisher Full Text

8. Joppa LN, McInerny G, Harper R, et al.: Computational science. Troubling trends 
in scientific software use. Science. 2013; 340(6134): 814–815.
PubMed Abstract | Publisher Full Text

9. Hoare CAR: The emperor’s old clothes. Commun ACM. 1981; 24(2): 75–83.
Publisher Full Text

10. Priem J, Taraborelli D, Groth P, et al.: altmetrics: a manifesto. 2014.
Reference Source

11. Stodden V, Miguez S: Best Practices for Computational Science: Software 
Infrastructure and Environments for Reproducible and Extensible Research.
Soc Sci Res Network. 2013; 2322276.
Reference Source

12. Stodden V, Leisch F, Peng RD: Implementing Reproducible Research. Chapman
and Hall/CRC. 2014.
Reference Source

13. Shen H: Interactive notebooks: Sharing the code. Nature. 2014; 515(7525):
151–152.
PubMed Abstract | Publisher Full Text

14. Hinsen K: ActivePapers - computational science made reproducible and 
publishable. 2014.
Reference Source

15. The DOI system. 2014.
Reference Source

16. Newton I: Philosophiae Naturalis Principia Mathematica. R Soc. 1686.
Reference Source

17. Archivematica. 2015.
Reference Source

18. Regehr J: A guide to undefined behavior in C and C++.
Reference Source

19. Kabsch W, Sander C: Dictionary of protein secondary structure: pattern 

recognition of hydrogen-bonded and geometrical features. Biopolymers. 1983;
22(12): 2577–2637.
PubMed Abstract | Publisher Full Text

20. Hekkelman M: DSSP 2.1.0.
Reference Source

21. Matthews B, Shaon A, Bicarregui J, et al.: A Framework for Software 
Preservation. Int J Digit Curation. 2010; 5(1): 91–105.
Publisher Full Text

22. Haiyan M, Matthias W, Peter I, et al.: A Case Study in Preserving a High Energy 
Physics Application. DASPOS Technical Report #2. 2014; 1–9.
Reference Source

23. Peng RD: Reproducible research in computational science. Science. 2011;
334(6060): 1226–1227.
PubMed Abstract | Publisher Full Text | Free Full Text

24. Donoho DL: An invitation to reproducible computational research. Biostatistics.
2010; 11(3): 385–388.
PubMed Abstract | Publisher Full Text

25. Stodden V: Reproducible research: Tools and strategies for scientific 
computing. Comput Sci Eng. 2012; 14(4): 11–12.
Publisher Full Text

26. Hinsen K: Computational science: shifting the focus from tools to models. [v2; 
ref status: indexed, http://f1000r.es/3p2]. F1000Res. 2014; 3: 101.
PubMed Abstract | Publisher Full Text | Free Full Text

27. Hinsen K: The approximation tower in computational science: Why testing 
scientific software is difficult. Comput Sci Eng. 2015; 17(4): 72–77.
Publisher Full Text

28. Research Object Community. 2015.
Reference Source

29. Wolfram Research, Inc. Mathematica 2.0. 1991.

30. Project Jupyter. 2014.
Reference Source

31. Knuth DE: Literate programming. The Computer Journal. 1984; 27(2): 97–111.
Reference Source

32. Schulte E, Davison D: Active documents with Org-mode. Comput Sci Eng. 2011;
13(3): 66–73.
Publisher Full Text | Free Full Text

33. Xie Y: Dynamic Documents with R and knitr. Chapman & Hall. 2013.
Reference Source

34. The Kepler Project.
Reference Source

35. The Taverna workflow management system.
Reference Source

36. VisTrails.
Reference Source

Page 13 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

http://www.ncbi.nlm.nih.gov/pubmed/14634627
http://dx.doi.org/10.1038/nsb1203-980
http://dataverse.org/
http://datadryad.org/
http://figshare.com/
http://zenodo.org/
http://academictorrents.com/
http://www.ncbi.nlm.nih.gov/pubmed/20944712
http://dx.doi.org/10.1038/467775a
http://www.ncbi.nlm.nih.gov/pubmed/23687031
http://dx.doi.org/10.1126/science.1231535
http://dx.doi.org/10.1145/358549.358561
http://altmetrics.org/manifesto/
http://papers.ssrn.com/sol3/papers.cfm?abstract_id=2322276
http://www.crcpress.com/product/isbn/9781466561595
http://www.ncbi.nlm.nih.gov/pubmed/25373681
http://dx.doi.org/10.1038/515151a
http://www.activepapers.org/
http://www.doi.org/
http://www.dhspriory.org/kenny/PhilTexts/Newton/PhilosophiaeNaturalisPrincMath.pdf
https://ww.archivematica.org/en/
http://blog.regehr.org/archives/213
http://www.ncbi.nlm.nih.gov/pubmed/6667333
http://dx.doi.org/10.1002/bip.360221211
http://swift.cmbi.ru.nl/gv/dssp/
http://dx.doi.org/10.2218/ijdc.v5i1.145
https://daspos.crc.nd.edu/images/workshop_reports/workshop2/DASPOS_Technical Report_2.pdf
http://www.ncbi.nlm.nih.gov/pubmed/22144613
http://dx.doi.org/10.1126/science.1213847
http://www.ncbi.nlm.nih.gov/pmc/articles/3383002
http://www.ncbi.nlm.nih.gov/pubmed/20538873
http://dx.doi.org/10.1093/biostatistics/kxq028
http://dx.doi.org/10.1109/MCSE.2012.82
http://f1000r.es/3p2
http://www.ncbi.nlm.nih.gov/pubmed/25309728
http://dx.doi.org/10.12688/f1000research.3978.2
http://www.ncbi.nlm.nih.gov/pmc/articles/4184301
http://dx.doi.org/10.1109/MCSE.2015.75
http://www.researchobject.org/
http://www.jupyter.org/
http://www.literateprogramming.com/knuthweb.pdf
http://doi.ieeecomputersociety.org/10.1109/MCSE.2011.41
http://www.cs.unm.edu/~eschulte/data/CISE-13-3-SciProg.pdf
https://www.crcpress.com/Dynamic-Documents-with-R-and-knitr/Xie/9781482203530
https://kepler-project.org/
http://www.taverna.org.uk/
http://www.vistrails.org/

37. Gabriel B, Cory B, Robert G, et al.: Enhancing reproducibility and collaboration 
via management of R package cohorts. arXiv.org. 2015.
Reference Source

38. Van Gorp P, Grefen P: Supporting the internet-based evaluation of research 
software with cloud infrastructure. Softw Syst Model. 2012; 11(1): 11–28.
Publisher Full Text

39. Gent I, Kotthoff L: recomputation.org home page. 2014.
Reference Source

40. Boettiger C: An introduction to Docker for reproducible research, with 
examples from the R environment. arXiv.org. 2014.
Reference Source

41. Meng H, Kommineni R, Pham Q, et al.: An invariant framework for conducting 
reproducible computational science. Journal of Computational Science. 2015; 9:
137–142.
Publisher Full Text

42. exec&share. 2014.
Reference Source

43. Collage Authoring Environment. 2015.
Reference Source

44. Lindholm T, Yellin F: The Java Virtual Machine Specification. Prentice Hall. 1999.
Reference Source

45. ECMA Standard 335: Common Language Infrastructure CLI.
Reference Source

46. JAR file specification.
Reference Source

47. Diethelm K: The limits of reproducibility in numerical simulation. Comput Sci
Eng. 2012; 14(1): 64–72.
Publisher Full Text

48. Gronenschild EHBM, Habets P, Jacobs HIL, et al.: The effects of FreeSurfer 
version, workstation type, and Macintosh operating system version on 
anatomical volume and cortical thickness measurements. PLoS One. 2012;
7(6): e38234.
PubMed Abstract | Publisher Full Text | Free Full Text

49. Glatard T, Lewis LB, Ferreira da Silva R, et al.: Reproducibility of neuroimaging 
analyses across operating systems. Front Neuroinform. 2015; 9: 12.
PubMed Abstract | Publisher Full Text | Free Full Text

50. Jézéquel F, Langlois P, Revol N: First steps towards more numerical 
reproducibility. ESAIM: Proceedings and Surveys. 2014; 45: 229–238.
Publisher Full Text

51. Demmel J, Nguyen HD: Fast reproducible floating-point summation. In 21st
IEEE Symposium on Computer Arithmetic, Austin, Texas, USA. 2013;
163–172.
Publisher Full Text

52. Revol N, Theveny P: Numerical reproducibility and parallel computations: 
Issues for interval algorithms. IEEE Trans Comput. 2014; 63(8): 1–1.
Publisher Full Text

53. Portable Native client: The “pinnacle” of speed, security, and portability. 2014.
Reference Source

54. Lattner C, Adve V: LLVM: A compilation framework for lifelong program 
analysis and transformation. In Proceedings of the 2004 International Symposium
on Code Generation and Optimization, San Jose, CA, USA, 2004; 75–88.
Reference Source

55. Hinsen K: A data and code model for reproducible research and executable 

papers. Pro Comput Sci. 2011; 4: 579–588.
Publisher Full Text

56. The HDF Group. Hierarchical data format version 5.
Reference Source

57. Scientific IT Services of ETH Zürich. JHDF5, HDF5 for Java.
Reference Source

58. Wikipedia. Make (software)— Wikipedia, the free encyclopedia. 2014.
Reference Source

59. Millman KJ, Aivazis M: Python for scientists and engineers. Comput Sci Eng.
2011; 13(2): 9–12.
Publisher Full Text

60. Python Software Foundation. The Python language. 2014.
Reference Source

61. Collette A: Python and HDF5. O’Reilly Media. 2013.
Reference Source

62. NumPy development team. NumPy. 2014.
Reference Source

63. Hinsen K, Hu S, Kneller GR, et al.: A comparison of reduced coordinate sets for 
describing protein structure. J Chem Phys. 2013; 139(12): 124115.
PubMed Abstract | Publisher Full Text

64. Chevrot G, Hinsen K, Kneller GR: Model-free simulation approach to molecular 
diffusion tensors. J Chem Phys. 2013; 139(15): 154110.
PubMed Abstract | Publisher Full Text

65. Hinsen K: MOSAIC: a data model and file formats for molecular simulations.
J Chem Inf Model. 2014; 54(1): 131–137.
PubMed Abstract | Publisher Full Text

66. Hinsen K: ImmutablePy 0.1 in ActivePapers format. figshare. 2013.
Reference Source

67. Hinsen K: pyMosaic 0.3.1. Zenodo. 2014.
Reference Source

68. Hinsen K: ASTRAL-SCOPe subset 2.04 in ActivePapers format. Zenodo. 2014.
Reference Source

69. Hinsen K, Shuangwei Hu, Kneller GR, et al.: A comparison of reduced coordinate 
sets for describing protein structure. figshare. 2013.
Reference Source

70. Chevrot G, Hinsen K, Kneller GR: Model-free simulation approach to molecular 
diffusion tensors: Water. figshare. 2013.
Reference Source

71. Chevrot G, Hinsen K, Kneller GR: Model-free simulation approach to molecular 
diffusion tensors: Lysozyme. figshare. 2013.
Reference Source

72. Hinsen K: pyMosaic 0.1.1 in ActivePapers format. figshare. 2013.
Reference Source

73. Hinsen K: pyMosaic 0.2.0. Zenodo. 2014.
Reference Source

74. Hinsen K: pyMosaic 0.3.0. Zenodo. 2014.
Reference Source

75. Nested VM - binary translation for Java. 2015.
Reference Source

76. Katz DS, Choi ST, Lapp H, et al.: Summary of the first Workshop on Sustainable 
Software for Science: Practice and experiences (WSSSPE1). J Open Research
Software. 2014; 2: e6.
Publisher Full Text

Page 14 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

http://arxiv.org/pdf/1501.02284.pdf
http://dx.doi.org/10.1007/s10270-010-0163-y
http://recomputation.org/
http://arxiv.org/abs/1410.0846
http://dx.doi.org/10.1016/j.jocs.2015.04.012
http://www.execandshare.org/
https://collage.elsevier.com/
http://docs.oracle.com/javase/specs/jvms/se6/html/VMSpecTOC.doc.html
http://www.ecma-international.org/publications/standards/Ecma-335.htm
https://docs.oracle.com/javase/8/docs/technotes/guides/jar/jar.html
http://dx.doi.org/10.1109/MCSE.2011.21
http://www.ncbi.nlm.nih.gov/pubmed/22675527
http://dx.doi.org/10.1371/journal.pone.0038234
http://www.ncbi.nlm.nih.gov/pmc/articles/3365894
http://www.ncbi.nlm.nih.gov/pubmed/25964757
http://dx.doi.org/10.3389/fninf.2015.00012
http://www.ncbi.nlm.nih.gov/pmc/articles/4408913
http://dx.doi.org/10.1051/proc/201445023
http://dx.doi.org/10.1109/ARITH.2013.9
http://dx.doi.org/10.1109/TC.2014.2322593
http://blog.chromium.org/2013/11/portable-native-client-pinnacle-of.html
http://www.cgo.org/cgo2004/papers/06_76_lattner_c.pdf
http://dx.doi.org/10.1016/j.procs.2011.04.061
http://www.hdfgroup.org/HDF5
http://wiki-bsse.ethz.ch/pages/viewpage.action?pageId=26609113
http://en.wikipedia.org/wiki/Make_(software)
http://dx.doi.org/10.1109/MCSE.2011.36
http://www.python.org/
http://shop.oreilly.com/product/0636920030249.do
http://www.numpy.org/
http://www.ncbi.nlm.nih.gov/pubmed/24089758
http://dx.doi.org/10.1063/1.4821598
http://www.ncbi.nlm.nih.gov/pubmed/24160503
http://dx.doi.org/10.1063/1.4823996
http://www.ncbi.nlm.nih.gov/pubmed/24359023
http://dx.doi.org/10.1021/ci400599y
http://dx.doi.org/10.6084/m9.figshare.692144
https://zenodo.org/record/11648
http://dx.doi.org/10.5281/zenodo.11086
http://dx.doi.org/10.6084/m9.figshare.798825
http://dx.doi.org/10.6084/m9.figshare.808595
http://dx.doi.org/10.6084/m9.figshare.808594
http://dx.doi.org/10.6084/m9.figshare.705829
http://dx.doi.org/10.5281/zenodo.7648
http://dx.doi.org/10.5281/zenodo.10735
http://nestedvm.ibex.org/
http://dx.doi.org/10.5334/jors.an

F1000Research

Open Peer Review

 Current Referee Status:

Version 3

 14 July 2016Referee Report

doi:10.5256/f1000research.7297.r15014

 Neil Chue Hong
Software Sustainability Institute, University of Edinburgh, Edinburgh, UK

Thank you for the changes you have made in the two subsequent revisions to this article. I believe they
have addressed my major comments from my review of the first version of this paper, and I therefore now
approve this paper.

Thank you as well for your detailed responses to reviewers comments.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 The author and I have both participated in the "Code as a Research Object"Competing Interests:
community which is referenced in this article. I am a co-organiser of the WSSSPE community which is
mentioned in the article.

 15 July 2015Referee Report

doi:10.5256/f1000research.7297.r9500

 Carl Boettiger
Center for Stock Assessment Research, Department of Applied Mathematics and Statistics, University of
California, Santa Cruz, Santa Cruz, CA, USA

The author's comments and revisions appropriately address the issues I have raised. I'm happy to
recommend this for approval.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Version 2

Page 15 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

http://dx.doi.org/10.5256/f1000research.7297.r15014
http://dx.doi.org/10.5256/f1000research.7297.r9500

F1000Research

 28 May 2015Referee Report

doi:10.5256/f1000research.6638.r8525

 Carl Boettiger
Center for Stock Assessment Research, Department of Applied Mathematics and Statistics, University of
California, Santa Cruz, Santa Cruz, CA, USA

The paper by Hinsen seeks to describe the ActivePapers project. The paper is clearly written and
technically sound, and I am happy to recommend it for indexation. None the less I think the paper could
be improved considerably in two areas. The first would be to improve the focus of the paper on the
ActivePapers approach and motivation and less on much broader issues.The ActivePapers approach
does many things in common with similar approaches, and some things differently. Having such case
studies that identify both areas of consensus and highlight disagreement in approaches to reproducibility
are very valuable, but this paper does not identify which is which. Second and closely related is a more
thorough acknowledgement of related technology with more direct comparison of the similarities and
differences. I explain both of these concerns in more detail below.

The primary weakness of this paper is one of scope or focus. While I appreciate the importance of placing
the paper in a broad context, the paper should spend somewhat less time discussing very generic issues
more appropriate to a review (though given the rapidly changing landscape I am not sure that an
up-to-date review of current technology and thinking in this area exists). More importantly, the paper
should do much more to identify the particular challenges that the ActivePapers approach seeks to
address that are either not addressed or approached very differently by other work in this area.This is
most obvious in the conclusions. The Introduction summarises the main contribution in six bullet points,
the Conclusion does so with four somewhat different bullet points. Some of these are statements in which
there is broad consensus in the reproducible research community or even the scientific community more
broadly; others represent areas of important divisions. Similarly, some of these conclusions highlight
challenges that are tackled very directly by the ActivePapers technology while not being addressed as
widely elsewhere, while others highlight issues addressed by a wide array of existing approaches. As the
author is reporting on a case study and not a broader survey or meta-analysis, some of the more
sweeping generalizations seem out of place here (however much I also agree with them!) I suggest the
paper would be stronger if the author more clearly outlined what conclusions come from the ActivePapers
implementation directly, along with the evidence that supports those conclusions, and what conclusions
represent opinion or position statements.

The emphasis of the ActivePapers approach appears to be on the value provided by bytecode platforms
such as the JVM for scientific computational ; while also recognizing that the JVM approachreproducibility
does not provide the necessary and sufficient tools for scientific computational , which typicallyresearch
uses software not available for a JVM. For instance, this approach provides portability across platforms
and bytecode written for a JVM has remained executable for decades, while compromising on details
such as architecture-specific nature of performing floating-point computations. The author seeks to
address this in part through an alternative Python implementation, but laments that external library
dependencies required to do research in Python and the difficulties in tracking strong versioning available
in the bytecode implementation. While I appreciate the author raising this often-overlooked issue of
external library dependencies, which impacts Python, R, and many commonly used research languages, I
worry that the paper may be overstating the concern. For one, the author does not present any evidence
as to how often changes in these system dependencies really impact the reproducibilty of the code. More
to the point, this is a problem which is 'turtles all the way down': just as capturing only the python layer

misses possible changes in the system dependencies, even the JVM abstraction doesn't capture

Page 16 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

http://dx.doi.org/10.5256/f1000research.6638.r8525

F1000Research

1.

2.

3.

4.

misses possible changes in the system dependencies, even the JVM abstraction doesn't capture
differences in very low-level elements or machine hardware. These differences are no doubt irrelevant to
most researchers, (though perhaps not those studying the performance of algorithms on different
architectures) but then from the perspective of most researchers the system level libraries are equally
irrelevant. I suggest the author clarify when the focus on bytecode is essential and when it is less likely to
be important than just capturing the layers that are more dynamic and closer to the researcher, as in both
the python implementation and in many other similar efforts.

The ideal requirements of an ActivePaper are neither precisely defined nor adequately motivated.
Depending on the interpretation of these, I might name many examples of research implementations that
meet these objectives or none at all. Similarly, there are many other key features that are captured by the
implementation of the ActivePapers project (and other efforts) that are not enumerated here. Taking them
in turn:

"... should contain a combination of data, code, and narrative"

What does "contain" mean? Is a link to external data sufficient? Elsewhere we learn that
ActivePapers can import data from the network -- a very sensible thing as research frequently
depends on previously published data and best-practices emphasize the importance of accessing
the canonical, raw data. When should "contain" mean only a link, and when should it mean a
bitwise representation in the HDF5 object?

"... always produce exactly the same result at the bit level"

Much work in this area has not focused on the bit level, and it is unclear to me if the bit level is
really the ideal criterion. As the author notes, this is not met by the Python implementation of
ActivePapers, which nonetheless may have many advantages in meeting the needs of more users.

"Any code stored in an ActivePaper should be safe to execute"

The paper does well to raise security concerns, but these are largely orthogonal to the other issues
discussed here. However, the discussion is far too limited to illustrate what security concerns are
and are not addressed. Moreover it is not clear that such solutions need to be part of the platform
that provides these other objectives, rather than being managed within existing security
best-practices for a particular context. (i.e. if the emphasis is on isolation from the rest of the
computing environment, containers, jails, virtualization, or a host of other options can be used;
moreover it is not clear that such isolation is always necessary in this context any more than in the
rest of the computing environment).

"Contain metadata for provenance & reproducibility"

This is quite vague. What metadata is and is not captured by the ActivePapers implementation is
never clearly specified. Moreover, there is no mention of providing this metadata in any of the
several existing standards that would facilitate its reuse.

These objectives would be made both more precise and more interesting if discussed in the context of
similar efforts to provide technology for reproducible computation. For instance, the practice of combining
data, code, and narrative in context of scientific papers goes back at least to Gentleman and Temple Lang

 where the Sweave/R package approach has been frequently applied in published research. The(2004),
discussion of virtualization makes no mention of the role of DevOps approach in addressing many of
these issues, as described by or by more recent, lightweight alternatives to virualizationClark (2014)et al.

such as containerization (as implemented by Docker but also by others in the scientific context, see the

Page 17 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

http://biostats.bepress.com/bioconductor/paper2/
http://biostats.bepress.com/bioconductor/paper2/
https://berkeley.app.box.com/s/w424gdjot3tgksidyyfl

F1000Research

such as containerization (as implemented by Docker but also by others in the scientific context, see the
approach taken at CERN:). Understandably this paper need not review allhttp://arxiv.org/abs/1407.3063
other technology, but where it does so it would be useful to map these more clearly to the four criteria
above. What criteria are being met by the other approaches the author has considered? What are being
only partially met? What are missing? The current section "Tools for reproducible research" is too cursory
an overview and is not tied back to the criteria or strengths/weaknesses of the ActivePapers approach.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 No competing interests were disclosed.Competing Interests:

Author Response 05 Jun 2015
, Centre de Biophysique Moléculaire (CNRS), FranceKonrad Hinsen

There are many valid and useful remarks in this review, which I will take into account in a revision.

The one issue where I don't expect to be able to improve much is the scope and focus of the paper,
which I have already tried to improve in the second version. The fundamental problem is that the
field of reproducible research methodology is young, changing rapidly, and pursued independently
in several domains of computational research which in addition have differing requirements. I am
not aware of any review I could refer to for background information, and unlike the referee I am not
sure that one can safely speak of any concensus beyond the general principle that reproducibility
is important.

I might consider splitting the paper into two, one review and one dedicated to the ActivePapers
project. However, to be really useful, a review would have to be co-authored by researchers from
different background.

Concerning the issue of the stability of external library dependencies, a study of the importance of
this problem would indeed be interesting, but again this would have to be done in collaboration by
researchers from diverse background to be representative. The most telling personal anecdotical
evidence that I can provide is the fact that a single change in NumPy 1.9 broke all the research
code that I have published between 1997 and 2012. I have documented this issue in a .blog post

As for the "turtles all the way down", this is exactly what needs to be fixed in order to solve the
software preservation and reproducibility problem. There needs to be a stable layer somewhere in
the tower of code representations. The JVM designers tried, succeeded, and then changed their
minds for obtaining a short-term market share benefit. In my opinion, this shows that the problem
can be solved, but only if it is treated as a priority in the computational science community.

I do not agree that this is a matter of relevance to specific user communities. I suspect most
scientists consider the problem irrelevant until it touches their own code. In the absence of a stable
computational platform at a sufficiently low layer to cover all scientific code, nobody is safe from
such problems. What happened to me with NumPy can happen to anyone who relies on code that
is maintained by someone else.

As for the ideal requirements of an ActivePaper, I will try to improve on the motivations, but I doubt
that the requirements can be precisely defined at this time. They evolved significantly since the

Page 18 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

http://arxiv.org/abs/1407.3063
https://khinsen.wordpress.com/2014/09/12/the-state-of-numpy/

F1000Research

that the requirements can be precisely defined at this time. They evolved significantly since the
beginning of the project. This is probably another reason for the lack of focus in some parts of the
paper: a narrative in historical order is desirable to explain the motivations behind each choice, but
messy because at different points in time the requirements were not the same.

As for the reviewer's point 1, "should contain" should actually read "should be allowed to contain".
Both inclusion and linking are important to have as an option, and both are supported by the
ActivePapers platform, but the choice between them remains with the author of each published
work.

As for point 2, bit-level reproducibility is the only form of reproducibility that can be guaranteed at
the level of a computational platform. A concrete computational study may not require that much,
but any "close enough" criterion is necessarily application-specific. Interestingly, most of today's
computational platforms do not make any promise about floating-point reproducibility, creating the
same problem as with external libraries: the reproducibility of my code relies on something that is
completely out of my control.

Point 3, security issues, and point 4, metadata, do indeed require a better treatment in the paper. In
short, the JVM edition has good security support (inherited from the JVM libraries), whereas the
Python edition has almost none, because the Python platform has none. Metadata handled by the
ActivePapers platform will be documented in detail in the revision. Note that users can add any
metadata they like, following any standards they consider useful. The metadata defined by the
platform is limited to what can be automatically generated from the history of an ActivePaper.

 noneCompeting Interests:

 18 March 2015Referee Report

doi:10.5256/f1000research.6638.r7867

, Mercè Crosas Vito D'Orazio
 Institute for Quantitative Social Sciences, Harvard University, Cambridge, MA, USA
 Harvard University, Cambridge, USA

This article has been thoroughly revised. Its purpose is clear, and its finding are supported by a mixture of
literature and software review and experience with ActivePapers. We have two minor suggested
revisions.
First, the four bullets in the conclusions could also be worked into the introduction. We see these as
well-stated, important points to make early in the paper. For example, the first bullet---thinking of a
software representation as a dataset and archiving it accordingly---is a simple, intuitive way to think about
much of what is discussed in this paper.

Second, on page 4, the author says "many practitioners consider the idea of preserving scientific software
for many years unrealistic, and some even argue that it is unnecessary because computational methods
change so rapidly that their long-term preservation is of no interest." This statement needs citations.

We have read this submission. We believe that we have an appropriate level of expertise to

1 2

1

2

Page 19 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

http://dx.doi.org/10.5256/f1000research.6638.r7867

F1000Research

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard.

 No competing interests were disclosed.Competing Interests:

Version 1

 26 January 2015Referee Report

doi:10.5256/f1000research.6172.r6988

, Mercè Crosas Vito D'Orazio
 Institute for Quantitative Social Sciences, Harvard University, Cambridge, MA, USA
 Harvard University, Cambridge, USA

Summary of the Paper
This article summarizes arguments in support of reproducibility for scientific research, specifically with
respect to computational science. It raises important issues about scholarly communication and
reproducibility of previous research work, and it presents ActivePapers as a solution to many problems
associated with reproducibility.

Reaction
Upon reading the article, our reaction is twofold. First, we do not understand the author's primary
purpose. Is this a review article or a research article? Is this an article summarizing arguments in support
of reproducibility? Is it making the case for ActivePapers? Second, regardless of the primary purpose, we
believe the work misses key existing technologies and practices.

Structural Issues
Is this a review article or a research article? If this is a review article, replicability and reproducibility
should be discussed in more detail, and ActivePapers in less. If this is a research article, we suggest less
review of the ActivePapers platform, and more on its contribution and the ways it addresses problems that
other systems do not.

The introduction states, "the work presented in this article takes the opposite approach of starting from the
requirements of the scientific record and exploring how software and electronic datasets need to be

 What are the requirements of the scientificprepared in order to become useful parts of this record."
record? They seem scattered throughout the next few sections, such as "the most basic requirement for

 (p. 3). The philosophy of sciencebuilding confidence in computational results is total transparency"
literature might be helpful in summarizing the basic requirements.

Based on our reading, we do not think the main contributions of this paper are the bulleted items in the
introduction, but rather the ideal platform requirements on page six. These logically flow from a discussion
of the requirements of the scientific record followed by a discussion of tools for reproducible and
replicable research.

On Data Reuse
There are preservation practices and tools, which follow the approach widely used in Libraries, that help

to make a dataset reusable in the longer term:

1 2

1

2

Page 20 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

http://dx.doi.org/10.5256/f1000research.6172.r6988

F1000Research

to make a dataset reusable in the longer term:

First, researchers are encouraged to use and share datasets in formats commonly used by their
discipline, and when possible, formats that do not depend on proprietary software. When the data file
format depends on a specific software (or is not considered a preservation format), there exist software
tools that convert the proprietary format to a preservation format. For example, for tabular data in SPSS
and STATA format which depend on a specific statistical package, the files can be converted to a plain
text (tab-delimited or CSV file) plus a metadata file (in XML or JSON format) that contains information
about the columns in the original tabular data file. Information is not lost and it can be re-combine to
generate an SPSS or STATA file.
This preservation feature can be found in public data repositories such as the Dataverse repository
software (). There are software projects that focus on other similar automated preservationdataverse.org
tools to re-format data files into preservation formats and provide additional preservation metadata. One
example is Archivematica.

These preservation tools are important for data repositories if they want to make their data accessible and
reusable in the future, when the original software might be obsolete.

On Methods/Code/Software
One approach on sharing the code used to model/analyze a research work is by using an open-source
language like R, where the models and packages are shared and disseminated through a common R
package repository (CRAN). Some R packages have explored solutions for reproducibility by tracking the
detailed information on what model/code ran and the computing configuration (see

).http://arxiv.org/pdf/1501.02284.pdf

Also, there are on-going efforts in reproducibility that support hosting code and provide executable
functionality to run in the cloud ().http://researchcompendia.org/

Minor Issues
The word should be replaced with . Conservation generally implies the carefulconservation preservation
maintenance of a finite resource, while preservation implies the protection of a thing in order to keep that
thing as is.

We recommend reviewing the work and guidelines provided by the Data Citation Principles:
 which can apply to software as well, and should help towards givinghttps://www.force11.org/datacitation

due importance to software and providing formal long term access and reuse, if the principles are
followed.

In the conclusion: "the main reason is that most of the computing technology used by scientists was
 Isdeveloped outside of scientific research, for domains of application where replicability is not important."

this statement supported?

Indexability
This article requires considerable work to be indexed. First, clarify the type of article that is being written,
and restructure accordingly. Second, the author misses some key existing technologies and practices that
should be discussed.

We have read this submission. We believe that we have an appropriate level of expertise to

Page 21 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

https://fasmail.harvard.edu/OWA/redir.aspx?C=TY_7SrK_oEyaPkvu6XzsPor6eIMdCdII1Drl926TvrZ5GwPov-6OkyEgcd4YfbhnEKJBvahu2Ps.&URL=http%3a%2f%2fdataverse.org
https://fasmail.harvard.edu/OWA/redir.aspx?C=TY_7SrK_oEyaPkvu6XzsPor6eIMdCdII1Drl926TvrZ5GwPov-6OkyEgcd4YfbhnEKJBvahu2Ps.&URL=http%3a%2f%2farxiv.org%2fpdf%2f1501.02284.pdf
https://fasmail.harvard.edu/OWA/redir.aspx?C=TY_7SrK_oEyaPkvu6XzsPor6eIMdCdII1Drl926TvrZ5GwPov-6OkyEgcd4YfbhnEKJBvahu2Ps.&URL=http%3a%2f%2fresearchcompendia.org%2f
https://fasmail.harvard.edu/OWA/redir.aspx?C=TY_7SrK_oEyaPkvu6XzsPor6eIMdCdII1Drl926TvrZ5GwPov-6OkyEgcd4YfbhnEKJBvahu2Ps.&URL=https%3a%2f%2fwww.force11.org%2fdatacitation

F1000Research

We have read this submission. We believe that we have an appropriate level of expertise to
confirm that it is of an acceptable scientific standard, however we have significant reservations,
as outlined above.

 No competing interests were disclosed.Competing Interests:

Author Response 24 Feb 2015
, Centre de Biophysique Moléculaire (CNRS), FranceKonrad Hinsen

The article has been completely restructured in order to make its primary goal stand out: report the
lessons learned from developing and using a platform for publishing and archiving computational
science. The revised article starts with an analysis of the needs of the scientific record, deduces
technical requirements for a platform designed to meet these needs, and then describes the
concrete technical choices made in the two implementations of ActivePapers, followed by a report
of the lessons learned from its use. The review of existing technology and the description of the
ActivePapers platform are still quite long, but inevitable because I am not aware of any other work I
could refer the reader to for this essential background information. Even for fundamental issues
such as the requirements of the scientific record, I did not find any publication discussing the
specific problems of software and datasets. Software in science is almost always discussed
exclusively from the point of view of its utility, ignoring its role as an encoding of scientific
knowledge.

I fully agree with the reviewers' point of view on data reuse and how to improve it, but I don't see
much adoption of these techniques in my scientific environment. Scientists prefer the simplicity of
just publishing the files they have on their Web site or on a no-questions-asked digital repository.
It's encouraging to see that other domains have succeeded in establishing better habits.

I was not aware of the work by Becker et al. on the tools switchr and GRANbase, which are based
on very similar ideas as ActivePapers. A short comparison has been added to the revised article. I
was aware of Research Compendia, which however does not address software preservation or
even execution in its current version. I do mention the two cloud-hosting sites with on-line
execution that I know of: Exec&Share () and Elsevier's Collagehttp://www.execandshare.org
system ().http://collage.elsevier.com

The term "conservation" has been replaced by "preservation" in the revision, and the related issues
of software preservation and software deployment are now the common thread around which the
presentation is organized. Existing work on the preservation of electronic artifacts has been
integrated into the discussion.

 No competing interests were disclosed.Competing Interests:

 09 December 2014Referee Report

doi:10.5256/f1000research.6172.r6774

 Neil Chue Hong
Software Sustainability Institute, University of Edinburgh, Edinburgh, UK

I, Neil Chue Hong, have reviewed this research article following the principles set out in the Open Science

Page 22 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

http://www.execandshare.org
http://collage.elsevier.com
http://dx.doi.org/10.5256/f1000research.6172.r6774

F1000Research

1.
2.

I, Neil Chue Hong, have reviewed this research article following the principles set out in the Open Science
Peer Review Oath v1 (DOI:). 10.12688/f1000research.5686.1

This article by Konrad Hinsen discusses the very important issue of how we capture the detail of the
dependencies and environment surrounding the software tools that we use, such that we can guarantee
that the tools may be used in the future to replicate research and reuse the tools. Overall, it is a
comprehensive summary of most of the area.

However as it stands, I believe that the article could be significantly improved by deciding whether the
paper is to be a fully comprehensive "state of the art" summary, looking at the specific advantages and
disadvantages of each approach; or one which sets out a shorter summary of the state of the art (as is
present in the article in this version), and then goes on to describe the lessons learned from the
ActivePapers work, in which case I would suggest a change in title to reflect the emphasis on
ActivePapers as a primary example of a platform for publishing and archiving computer aided research.
Therefore I am marking this as "Approved with reservations" as it requires a structural change, rather than
because I believe the work contained in it is not technically sound.

In both scenarios for how the article could be rewritten, I believe the article would benefit from the use of
more devices to highlight key points and comparisons, for instance by use of tables to compare the effect
of different types of platforms on the ability to define environmental dependencies, or linkage with input
data.

There is one important area of research that should be covered in the discussion of the state of the art -
that around "significant properties" of software. In particular, the work of Brian Matthews at STFC in this
area has previously considered the issue of capturing and prioritising details of both the environment, and
how a computational tool is expected to function, thus forming a theoretical basis for describing the way
that many current implementations ranging from dependency managers like Maven, through configuration
management tools like Docker, Vagrant and Conda, to virtualisation. See:

http://www.jisc.ac.uk/media/documents/programmes/preservation/spsoftware_report_redacted.pdf
http://ijdc.net/index.php/ijdc/article/view/148

In terms of other areas where I felt that additional discussion would have provoked more debate, these
would be around the trade-offs surround floating point operations, a discussion of other bytecode
platforms, and around the long lifetime of successful pieces of software, in particular around trust and how
it is mechanically/technically checked.

This last point is illustrated in this example from random sampling:
https://cryptogenomicon.wordpress.com/2014/10/13/cryptic-genetic-variation-in-software-hunting-a-buffered-41-year-old-bug/

As minor points that I believe would improve the papers I would suggest the following:
The term "Web repositories" for platforms like FigShare and Zenodo is not commonly used -
indeed, it is more commonly used to refer to repositories of web pages. I would suggest the more
commonly used "digital repositories" term, or perhaps "web accessible third party digital
repositories"?

On page 3, it would be useful to describe what makes "Web repositories" better. I would suggest it
is cost (most are free for openly licensed deposits) and the ability to generate citable DOI s

On page 3, when talking about the versioning used by , it should be clarified that "aF1000Research

Page 23 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

http://dx.doi.org/10.12688/f1000research.5686.1
http://www.jisc.ac.uk/media/documents/programmes/preservation/spsoftware_report_redacted.pdf
http://ijdc.net/index.php/ijdc/article/view/148
https://cryptogenomicon.wordpress.com/2014/10/13/cryptic-genetic-variation-in-software-hunting-a-buffered-41-year-old-bug/

F1000Research

On page 3, when talking about the versioning used by , it should be clarified that "aF1000Research
DOI refers permanently to a specific version of an article"

On page 3, the author's example of the DSSP method still being widely used today could be seen
to contradict the earlier arguments surrounding the inability of code to preserved effectively.

Whilst I agree that as stated on Page 5 "This lack of a precisely defined and stable platform for
executable code is also the root cause of non-replicability in computer-aided research" I feel that
the author could discuss the tradeoffs (mostly optimisation and performance based) in more detail
and put across their opinion of which are most important.

On page 6, I had a little difficulty with the statement that "the scientific aspects of software are
always pure computation". I think that I understand what the author means, but as written it makes
me want to identify a counter example. In fairness, I haven't been able to find one yet.

On page 7, I note that all the examples of ActivePapers I could find on FigShare have the author as
a co-author on them. This means it is unclear whether ActivePapers Python edition is indeed
suitable for the wide variety of scientific research areas, as it is unclear whether they represent a
representative selection of the use cases for ActivePapers.

I believe that the author could do more to support their statement that the fundamental distinction is
between "computational tool" and "scientific content". This could probably be done by making it
clearer how current platforms do or don't support this conceptual split, and whether those that do
support the split lead to a more accurate ability to replicate research at a later date.

As a final note, I would say that it is the tacit convention in science that published results are assumedall
correct unless there is clear evidence to suggest otherwise.

I believe that with some structural changes to give it a clear narrative emphasis, and better figures to
present the information that this research article would provide significant information to the community in
this area.

I have read this submission. I believe that I have an appropriate level of expertise to confirm that
it is of an acceptable scientific standard, however I have significant reservations, as outlined
above.

 The author and I have both participated in the "Code as a Research Object"Competing Interests:
community which is referenced in this article. I am a co-organiser of the WSSSPE community which is
mentioned in the article.

Author Response 24 Feb 2015
, Centre de Biophysique Moléculaire (CNRS), FranceKonrad Hinsen

My goal was not to write a review article on the topic of computational reproducibility, but to present
the conclusions from developing ActivePapers and applying it in real-life research projects. The
article has been restructured accordingly. The review of prior work has been shortened and
reframed in the context of the ActivePapers project. The "lessons learned" from ActivePapers are
presented in more detail.

I was not aware of the work of Brian Matthews on software preservation in the context of scientific

Page 24 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

F1000Research

I was not aware of the work of Brian Matthews on software preservation in the context of scientific
computing. This is indeed very relevant and is mentioned in the revision. I have also expanded the
discussion of bytecode platforms and floating-point operations. The discussion of bytecode
platform also addresses the issue of trust and security.

The minor points have all been addressed in the revised manuscript.

Concerning the example of DSSP, it is the method but not the original code that is still widely used.
Few users of today's code know that it differs from the originally published method. I do not know if
the original code actually implemented the method described in the paper. It is no longer available
and I have never seen it.

I have expanded my statement that "the scientific aspects of software are always pure
computation" into a more detailed paragraph, and referred to it in several places in the article. I
believe that this point is very important but often overlooked. The structure of an ActivePaper,
combining software and the data it works one, makes it clear that only pure computations can be
replicable. I then found out that this is common knowledge in other fields, such as programming
language theory.

I have also expanded the discussion of the factors that have until now prevented the establishment
of a stable platform for scientific computing. While performance is often quoted as an important
factor, as the reviewer remarks, I do not think this can be backed up by much evidence. To the best
of my knowledge, no attempt has been made to design and implement a high-performance yet
rigorously defined platform, so it cannot be claimed that this is impossible. The problem is rather
that for economical reasons, progress in computing happens as a sequence of small, localized
changes: a revision of a language, then a new processor generation, a library update, etc. Each
local change must work correctly and efficiently with the existing ecosystem of computing
technology. A stable platform definition requires coordinated changes in several technological
layers, which is difficult to achieve.

It is well possible that the only currently published ActivePapers are those that I cite, and for which I
am a co-author. I know about a few other groups experimenting with ActivePapers, but they have
not published any results in this form yet. However, I do not make the claim that ActivePapers is in
its current form a good solution for all branches of computational science. Like any other tool, it
was written with specific techniques and workflows in mind. Like for any other tool, only long-time
experience will show how universallly applicable it is. Moreover, the difficulty of integrating legacy
software is a real problem for adoption. This article doesn't pretend to do more that present the
lessons learned from the applications that are cited.

I cannot support my opinion about the distinction between tools and scientific content by any
empirical evidence, because to the best of my knowledge no existing framework or tool chain for
scientific computing supports the implementation of such an approach.

I agree that the tacit assumption of correctness of published results is applied everywhere in
science. The particularity of computational science is that this is usually impossible to verify, both
for the authors of a scientific study and for their readers.

 No competing interests were disclosed.Competing Interests:

Page 25 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

F1000Research

Discuss this Article
Version 3

Reader Comment 02 Oct 2015
, Imperial College London, UKJonathan Passerat-Palmbach

Building on Andrew's comment, I would like to mention () as a packaging toolCARE Janin , 2014et al.
similar to CDE and ReproZip.

Another alternative to Kepler, Taverna, or VisTrails is (; OpenMOLE Reuillon et al., 2013 Reuillon et al.,
), with a strong focus on delegating the executions to a comprehensive set of execution environments2015

(clusters, grids, ...).

 I'm one of the active developers of OpenMOLE.Competing Interests:

Version 2

Reader Comment 14 May 2015
, Unité de Neurosciences, Information et Complexité, Centre national de la rechercheAndrew Davison

scientifique (CNRS), France

Due to the declared competing interests this was unable to be published as a full referee report. It is
instead included as a comment, for the benefit of the author and readers.

After a fairly thorough review of the challenges in publishing reproducible and replicable computational
research, the author presents the ActivePapers framework, and summarizes his experience with using the
framework to publish data and software together with the results of a scientific study, in an encapsulated,
easily-installable and reusable package.

The article is both a helpful review and an important case study in developing tools for reproducible
research.

I have one minor suggested revision: expansion of the paragraph on attempts "to record a computational
environment in a form that can be restored on a different computer". I think that (CDE Guo, in Stodden et al

) and () should be mentioned in this context. My own tool ., 2014 ReproZip Chirigati , 2013et al. Sumatra
 also represents an attempt in this direction.

 The author and I are co-organisers of a workshop on reproducible research to beCompeting Interests:
held in Orléans later in 2015, and co-authors with Christophe Pouzat of a review article on the same topic
submitted to the journal "Statistique et Société".

Page 26 of 26

F1000Research 2015, 3:289 Last updated: 14 JUL 2016

http://reproducible.io/
http://dl.acm.org/citation.cfm?id=2618138
http://www.openmole.org/
http://www.openmole.org/files/FGCS2013.pdf
https://hal.inria.fr/hal-01163457/
https://hal.inria.fr/hal-01163457/
http://www.pgbovine.net/cde.html
https://www.crcpress.com/product/isbn/9781466561595
https://www.crcpress.com/product/isbn/9781466561595
https://github.com/ViDA-NYU/reprozip
https://www.usenix.org/conference/tapp13/technical-sessions/presentation/chirigati
http://neuralensemble.org/sumatra/

