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Abstract

Following subcellular fractionation, the complexity of proteins derived from a particular cellular compartment is often eval-
uated by gel electrophoretic analysis. For the proteomic cataloguing of these distinct protein populations and their bio-
chemical characterization, gel electrophoretic protein separation can be conveniently combined with liquid chromatogra-
phy mass spectrometry. Here we describe a gel-enhanced liquid chromatography mass spectrometry (GeLC-MS)/MS
approach with a new bioanalytical focus on the proteomic profiling of mitochondrial contact sites from rat liver using the
highly sensitive Orbitrap Fusion Tribrid mass spectrometer for optimum protein identification following extraction from
dried and long-term stored gels. Mass spectrometric analysis identified 964 protein species in the mitochondrial contact site
fraction, whereby 459 proteins were identified by�3 unique peptides. This included mitochondrial components of the su-
pramolecular complexes that form the ATP synthase, the respiratory chain, ribosomal subunits and the cytochrome P450
system, as well as crucial components of the translocase complexes translocase of the inner membrane (TIM) and translo-
case of the outer membrane (TOM) of the two mitochondrial membranes. Proteomics also identified contact site markers,
such as glutathione transferase, monoamine oxidase and the pore protein voltage dependent anion channel (VDAC)-1.
Hence, this report demonstrates that the GeLC-MS/MS method can be used to study complex mixtures of proteins that have
been embedded and stored in dried polyacrylamide gels for a long period of time. Careful re-swelling and standard in-gel di-
gestion is suitable to produce peptide profiles from old gels that can be used to extract sophisticated proteomic maps and
enable the subsequent bioinformatics analysis of the distribution of protein function and the determination of potential
protein clustering within the contact site system.
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Introduction

Differences in size, charge and solubility are critical physico-
chemical parameters that can be conveniently used for the
biochemical separation of individual protein species [1].
Complex mixtures of proteins can be swiftly separated by a

variety of one-dimensional polyacrylamide gel electrophoretic
techniques [2–4] or two-dimensional gel electrophoresis using
isoelectric focusing in the first dimension [5–7]. Gel electropho-
retically separated proteins can then be stored for very long
periods of time at room temperature following gel drying [8].
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A great variety of labelling and staining methods for the
detection of proteins in polyacrylamide gels are available to
visualize separated protein bands or spots [9]. Following stor-
age, gel-embedded polypeptides can be efficiently extracted
from individual lanes or gel zones and recovered for subse-
quent biochemical analyses [10]. This opens up the possibility
of re-analysing experiments that were carried out many years
prior to the proteomic era of modern biochemistry [11]. The
usage of highly sensitive mass spectrometry to characterize
protein populations in long-term stored polyacrylamide gels
promises a refined profiling to both confirm and extend the
scope of previous gel-based protein biochemical studies.

A select number of previous attempts to study dried and
stored gel samples by mass spectrometry have mostly focused
on isolated proteins or relatively small numbers of electropho-
retically separated protein species [12–16]. The analytical con-
tinuation of the proteomic profiling of dried and long-term
stored protein gels, as outlined in this report, is based on the
mass spectrometric screening of an isolated fraction of mostly
soluble muscle proteins [17]. We have extended and refined
this approach here to the comparative subproteomic identifi-
cation of protein species in a critical membrane system, the
contact sites between the outer and inner membranes of mito-
chondria. Rat liver mitochondrial fractions enriched with the
outer membrane, inner membrane and contact sites were orig-
inally separated by one-dimensional gel electrophoresis over
30 years ago and then stored after drying in a lab book at room
temperature [18].

For the systematic analysis of protein mixtures, one-
dimensional sodium dodecyl sulfate polyacrylamide gel elec-
trophoresis (SDS-PAGE) can be conveniently coupled to sensi-
tive liquid chromatography tandem mass spectrometry. This
biochemical approach, usually referred to as GeLC-MS/MS, rep-
resents a robust and well-established technique of modern
mass spectrometry-based proteomics [19–21]. Here we outline
a GeLC-MS/MS approach with a specific bioanalytical focus on
the subproteomic profiling of rat liver mitochondria using the
highly sensitive Orbitrap Fusion Tribrid mass spectrometer for
optimum protein identification following extraction from dried
and long-term stored gels. During the retrospective analysis of
a long-term stored polyacrylamide gel, a combination of
extensive subcellular fractionation, liver protein extraction,
one-dimensional gel electrophoretic separation, in-gel diges-
tion, liquid chromatography and advanced mass spectrometry
succeeded in the systematic cataloguing of the mitochondrial
contact site fraction. This resulted in the identification of 964
protein species, including 459 proteins for which sequence was
covered by� 3 unique peptides. The proteomic documentation
of a large number of mitochondrial liver proteins with a close
association to the contact site region clearly outperformed the
findings from previous biochemical studies prior to the devel-
opment of mass spectrometry-based proteomics [22].

Mitochondrial contact sites are dynamic and crucial
membrane systems involved in energy metabolism, organelle
signalling and protein translocation [23–25]. Previous investi-
gations on the identification and characterization of protein
constituents of mitochondrial contact sites were performed
with biochemical, immunochemical and focused mass spec-
trometric analyses [26–28]. Building on these findings, we have
utilized long-term stored polyacrylamide gels for the system-
atic mass spectrometric profiling of the entire protein popula-
tion that constitutes mitochondrial contact sites, as outlined
in this report.

Materials and methods
Materials

For the systematic profiling of the gel electrophoretically separated
protein constituents of rat liver contact sites, a variety of general
analytical grade reagents and materials were obtained from GE
Healthcare (Little Chalfont, Buckinghamshire, UK), Bio-Rad
Laboratories (Hemel-Hempstead, Hertfordshire, UK) and Sigma
Chemical Company (Dorset, UK). Sequencing grade-modified tryp-
sin was purchased from Promega (Madison, WI, USA) and
Whatman nitrocellulose transfer membranes came from
Invitrogen (Carlsbad, CA, USA). The chemiluminescence substrate
and protease inhibitors were obtained from Roche Diagnostics
(Mannheim, Germany). A primary antibody to the porin protein
VDAC-1 (Abcam Cat# ab14734, RRID: AB_443084) was from Abcam
(Cambridge, UK) and Chemicon International (Temecula, CA, USA)
provided peroxidase-conjugated secondary antibodies.

Isolation of mitochondrial contact sites

A fraction highly enriched in mitochondrial contact sites was
isolated by an optimized method as previously described in de-
tail [18]. The workflow is summarized in Fig. 1 and consists of
the isolation of mitochondria by differential centrifugation,
followed by mitochondrial swelling, mitochondrial shrinkage,
sonication and sucrose density gradient centrifugation for the
enrichment of individual mitochondrial membrane systems.
The protein constituents from the inner membrane, contact
sites and outer membranes were originally separated on 10%
SDS-PAGE gels [2] followed by protein staining with Coomassie
Brilliant Blue. Standard vacuum drying of the gel was carried
out between one layer of acetate film and one layer of thick fil-
ter paper in a solution of 30% methanol and 5% glycerol.
Transportation of samples to Maynooth University was carried
out in accordance with the Department of Agriculture (animal
by-product register number 2016/16 to the Department of
Biology, National University of Ireland, Maynooth, Co. Kildare).

Sample preparation for mass spectrometric analysis

Re-swelling of the long-term stored polyacrylamide gel with the
mitochondrial contact site fraction was carried out through
overnight incubation at room temperature with gentle agitation
in 30% methanol, 5% acetic acid and 5% glycerol [17]. Gel strips
were then placed in fresh plastic tubes and incubated with
shaking at room temperature; first for 4 h in 5% glycerol and 1%
acetic acid, and then with 1% glycerol and 1% acetic acid over-
night. Following gentle washing of gels with distilled water, the
covering acetate sheet and filter paper were removed. For the
proteolytic digestion of mitochondrial proteins prior to mass
spectrometric peptide analysis, an established in-gel digestion
protocol was used [29]. Protein lanes with purified contact sites
from liver mitochondria [18] were cut into five separate seg-
ments and processed separately [30]. Individual Coomassie
Brilliant Blue-stained gel zones were de-stained by the addition
of 100 ml of 100 mM ammonium bicarbonate: neat acetonitrile
(1: 1) solution, and incubated at 37�C for 30 min with gentle agi-
tation. The solution was removed and 500 ml neat acetonitrile
was added to each gel zone and incubated at room temperature
for 10 min with gentle agitation. The solution was removed and
gel pieces then underwent in-gel trypsin digestion using 100 ml
of re-suspended trypsin and incubated at 4�C for 30 min to allow
slow diffusion of trypsin into the gel. A further 20 ml of trypsin
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buffer was added, and gel zones were incubated for 90 min at
4�C [30]. A 100 ml of a 50 mM ammonium bicarbonate solution
was added and left to incubate overnight at 37�C. A 220 ml ex-
traction buffer [5% formic acid/neat acetonitrile (1: 2)] was
added to gel pieces and incubated at 37�C for 15 min with agita-
tion. The supernatant, containing peptides, was transferred to
fresh tubes, and dried down by vacuum centrifugation. Dried
peptides were re-suspended in 0.5% trifluoroacetic acid (TFA)/
5% acetonitrile (ACN), purified by C18 spin columns and dried
by vacuum centrifugation and stored at -80�C prior to mass
spectrometric analysis [31].

Liquid chromatography mass spectrometry

Dried peptides were re-suspended in loading buffer consisting
of 2% ACN and 0.05% TFA in liquid chromatography mass spec-
trometry (LC-MS) grade water. Peptide suspensions were then
vortexed, sonicated and centrifuged briefly at 14 000�g before
being transferred to mass spectrometry vials [32]. Reverse-
phased capillary high-pressure liquid chromatography was car-
ried out using the UltiMate 3000 nano system (Thermo
Scientific) coupled directly in-line with the Thermo Orbitrap
Fusion Tribrid Mass Spectrometer (Thermo Scientific). The
digested samples were loaded onto the trapping cartridge (m-
Precolumn 300 mm i.d. 5 mm C18 PepMap100 5 mm 100-Å) at a
flow rate of 25 ml/min with 2% (v/v) ACN, 0.1% (v/v) TFA for 3 min
before being resolved onto an analytical column (Easy-Spray
C18 75 mm� 500 mm, 2 mm bead diameter column). Peptides
were eluted using the following binary gradient: solvent A (0.1%
(v/v) formic acid in LC-MS grade water) and 2–27.5% solvent B
[80% (v/v) ACN, 0.08% (v/v) formic acid in LC-MS grade water] for

60 min at a flow rate of 300 nl/min [33]. For peptide ionization, a
voltage of 1.9 kV was applied and a capillary temperature of
320�C was used. Data-dependent acquisition with full scans in
the 375–1500 m/z range was performed using an Orbitrap mass
analyser with a resolution of 120 000 (at m/z 200), a targeted au-
tomatic gain control (AGC) value of 4Eþ 05 and a maximum in-
jection time of 50 ms. The number of selected precursor ions for
fragmentation was determined by the top-speed acquisition al-
gorithm. Selected precursor ions were isolated in the
Quadrupole with an isolation width of 1.6 Da. Peptides with a
charge state of 2þ to 6þwere analysed and a dynamic exclusion
was applied after 60 s. Precursor ions were fragmented using
higher energy collision-induced dissociation with a normalized
collision energy of 28%, and resulting MS/MS ions were mea-
sured in the linear ion trap. The typical MS/MS scan conditions
were as follows: a targeted AGC value of 2Eþ 04 and a maximum
fill time of 35 ms.

Protein profiling by label-free LC-MS/MS analysis

Proteins present in the enriched contact site fraction from rat
liver mitochondria were identified using Proteome Discoverer
1.4 against Sequest HT (SEQUEST HT algorithm, licence Thermo
Scientific, registered trademark University of Washington, USA)
using the UniProtKB/Swiss-Prot Rattus norvegicus database. The
following search parameters were used for protein identifica-
tion: (i) peptide mass tolerance set to 10 ppm, (ii) MS/MS mass
tolerance set to 0.6 Da, (iii) an allowance of up to two missed
cleavages, (iv) carbamidomethylation set as a fixed modification
and (v) methionine oxidation set as a variable modification. The
data was filtered for high-confidence peptides as determined by
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Percolator validation in Proteome Discoverer. Bioinformatics
was carried out by standard analysis software [34,35].

Immunoblot analysis

Standard immunoblotting was used to characterize the sepa-
rated fractions from rat liver mitochondria enriched in the outer
membrane, contact sites and inner membrane [18]. Following
gel electrophoretic separation, proteins were transferred to ni-
trocellulose membranes, blocked in a milk protein solution
[2.5% (w/v) fat-free milk powder in 10% phosphate-buffered sa-
line] and incubated with primary antibody overnight [36].
Following a number of wash steps, membranes were incubated
with horseradish peroxidase-conjugated secondary antibodies,
and detected using enhanced chemiluminescence [36].
Densitometric scanning was performed using a HP PSC-2355
scanner.

Results and discussion

The method outlined in this report describes the successful pro-
teomic analysis of the extracted protein constituents from a gel
lane in a long-term stored SDS-PAGE gel that was originally
used to demonstrate the difference in protein composition be-
tween fractions from rat liver mitochondria that are enriched in
the outer membrane, inner membrane and contact sites [18].
The application of the GeLC-MS/MS method and the usage of
the highly sensitive Orbitrap Fusion Tribrid mass spectrometer
identified 964 protein species in the mitochondrial contact site
fraction, as listed in Supplementary Table 1. The data underly-
ing this study is available from Open Science Framework
(10.17605/OSF.IO/8KQPB). Figure 2 gives an overview of the num-
ber of identified protein species in relation to their sequence
coverage by numbers of unique peptides. Previous mass spec-
trometric studies of isolated mitochondria have identified a
considerable number of protein species, including the mito-
chondrial proteomes from various organs and species [37–39],
as well as subcellular structures within mitochondria [40–42].
Proteomic profiling has classified 900 high-confidence mito-
chondrial proteins and in addition over 2000 proteins in
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mitochondria-associated fractions [43]. Efficient protein separa-
tion by gel electrophoretic methodologies or liquid chromatog-
raphy is often a prerequisite for in-depth bioanalytical
applications. For the systematic cataloguing of the mitochon-
drial proteome [44–46], crucial parameters are the purity of

starting material, sample handling and the rigor of the extrac-
tion protocol [47–49].

Mitochondria are double membranous organelles with an
outer and inner membrane system that separates an intermem-
brane space, as outlined in the diagram of Fig. 3. The protein

459 proteins with ≥3 unique peptides identified in contact site fraction
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banding patterns of enriched fractions from the outer mem-
brane, contact sites and the inner membrane show distinct dif-
ferences in the staining intensity of individual gel zones (Fig. 3).
Antibody labelling of the three different mitochondrial mem-
brane fractions clearly illustrate a striking difference in abun-
dance of the outer membrane pore protein VDAC-1, which is
lowest in the inner membrane and highest in the outer mem-
brane (Fig. 3). The contact sites contain an intermediate amount
of this pore protein of the outer membrane. The findings from
the immunoblot analysis correlate well with the mass spectro-
metric data in relation to the porin isoform VDAC-1, which was
detected by 19 unique peptides and a 64% coverage in contact
sites (Supplementary Table 1). In contrast, 10 peptides and 46%
coverage and 26 peptides and 75% coverage identified VDAC-1
in the inner membrane versus the outer membrane (not
shown).

Following careful re-swelling of the dried and long-term
stored gel [18], the proteomic profiling of the mitochondrial con-
tact site fraction from rat liver was carried out by LC-MS/MS
analysis. To illustrate the diversity of identified proteins and de-
termine potential protein clusters, proteomic data were ana-
lysed by the bioinformatics programmes PANTHER [34] and
STRING [35], respectively. Figure 4 summarizes the findings of
the PANTHER analysis and shows that the contact site fraction
contains a large number of oxidoreductases, transferases,
hydrolases, nucleic acid binding proteins, enzyme modulators
and transporters. This agrees with the fact that liver mitochon-
dria are of central importance for a variety of hepatic functions,
including oxidative bioenergetics, metabolic integration and
protein translocation.

The systematic mapping and characterization of the liver
proteome has included the identification of mitochondrial
changes in health and disease [50]. In analogy, the detailed pro-
teomic profiling of enriched contact sites reported here has
identified mitochondrial components of the supramolecular
complexes that form the respiratory chain, the ATP synthase,
coenzyme biosynthesis clusters, ribosomal subunits and the

cytochrome P450 system, as well as crucial components of the
translocase complexes TIM and TOM of the two mitochondrial
membranes. The STRING analysis shown in Fig. 5 summarizes
potential protein–protein interaction patterns within the sub-
proteome of mitochondrial contact sites. This presents a benefi-
cial addition to the already existing proteomic listings and
characterizations of subproteomic data sets of mitochondrial
membrane systems [40–42]. The contact site fraction contains
the marker enzyme glutathione transferase of this membrane
system [18, 26–28], as well as the outer membrane markers
monoamine oxidase and porin isoform VDAC-1 [23]. The ADP/
ATP translocating protein complex and the glycolytic enzyme
hexokinase were shown to be present in contact sites, which
agree with previous biochemical studies [22, 27]. Mitochondria
also form contact zones with the endoplasmic reticulum and in-
teract with the cytoskeleton, which is confirmed by the pres-
ence of the SERCA-type Ca2þ-pumping ATPase and tubulin
isoforms, respectively. Key proteins linked to mitochondrial
contact sites that have been identified by the GeLC-MS/MS
study outlined here are summarized diagrammatically in Fig. 6.
This includes the monoamine oxidase, the pore protein VDAC-
1, MIC proteins belonging to the mitochondrial contact site and
cristae organizing system MICOS, the ADP/ATP translocator and
glutathione transferase GSTA, as well as various subunits of the
translocase complexes TOM and TIM of the inner and outer mi-
tochondrial membrane [23–25].

In eukaryotic cells, mitochondria are essential organelles
that maintain cellular viability and generate the essential en-
ergy for the maintenance of basic biochemical and physiological
processes. Mitochondria are the primary bioenergetic site for
oxidative phosphorylation and are majorly involved in the inte-
gration of intermediate metabolism, protein translocation, cell
cycle progression, calcium signalling, the biosynthesis of haem
and iron–sulphur clusters and the regulation of apoptosis [51].
Altered expression levels within the mitochondrial proteome
are critical factors for normal development and numerous dis-
eases [52–54]. The method presented here is a suitable addition

Figure 6: Overview of key components of mitochondrial contact sites from rat liver as determined by GeLC-MS/MS analysis of a long-term stored SDS-PAGE gel.
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to the plethora of proteomic methodologies available to study
the biochemistry of mitochondria and enables the re-evaluation
of previous experiments on contact sites from liver mitochon-
dria. This study has demonstrated that re-swelling of old poly-
acrylamide gels followed by in-gel digestion and highly sensitive
mass spectrometry can be used for the advanced proteomic pro-
filing of mitochondrial contact sites from rat liver and the sys-
tematic cataloguing of complex membrane subproteomes.

Supplementary data

Supplementary data are available at Biology Methods and
Protocols online.
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