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Abstract

The complex cellular heterogeneity of the lung poses a unique challenge to researchers in the field. 

While the use of bulk RNA sequencing has become a ubiquitous technology in systems biology, 

the technique necessarily averages out individual contributions to the overall transcriptional 

landscape of a tissue. Single-cell RNA sequencing (scRNA-seq) provides a robust, unbiased 

survey of the transcriptome comparable to bulk RNA sequencing while preserving information on 

cellular heterogeneity. In just a few years since this technology was developed, scRNA-seq has 

already been adopted widely in respiratory research and has contributed to impressive 

advancements such as the discoveries of the pulmonary ionocyte and of a profibrotic macrophage 

population in pulmonary fibrosis. In this review, we discuss general technical considerations when 

considering the use of scRNA-seq and examine how leading investigators have applied the 

technology to gain novel insights into respiratory biology, from development to disease. In 

addition, we discuss the evolution of single-cell technologies with a focus on spatial and multi-

omics approaches that promise to drive continued innovation in respiratory research.

Introduction

Every cell in the body shares a similar genome, but the epigenome, transcriptome, proteome 

and metabolome of each cell varies dramatically between tissues and cells. These “omes” 

beyond the genome dynamically change in response to environmental challenges, disease 

states and ageing. While technological advances increasingly allow measurement of 

epigenome, proteome and metabolome in small tissue samples that can be collected as part 

of clinical care, none are as robust, reproducible or low cost as next-generation sequencing 

(NGS) technologies to measure the transcriptome [1–3]. NGS technologies first allowed 

direct measurement of gene expression in composite tissues via sequencing of messenger 

RNA (RNA-seq) in 2008 [4–6]. Applying these technologies to ever-smaller samples 

allowed profiling of gene expression in a single cell within a year [7]. Since then, 

commercialisation and standardisation have made these technologies available in most 

advanced laboratories, supporting an explosion of publications using single-cell RNA-seq 
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(scRNA-seq). Reductions in cost and advances in computational approaches have allowed 

the number of cells profiled in these studies to increase exponentially over time reaching >1 

million per study [8, 9]. Boosted by these enabling technologies, scRNA-seq is being used in 

large-scale efforts to provide a high-resolution map of every cell in the human body, offering 

unparalleled opportunities to explore cellular interactions and trajectories over the course of 

disease.

The community of respiratory researchers, long hampered by the cellular complexity of the 

lung, have been leaders in applying scRNA-seq to the study of human disease. These studies 

have supported a broad array of findings, including insights into respiratory system 

development, the identification of novel cell types in the human lung and profiles of 

heterogeneity in respiratory system cell populations in health and disease [10–15]. The 

ability to address fundamental biological questions is continuously expanding as 

technologies to collect and process respiratory specimens for scRNA-seq are refined, costs 

for reagents and sequencing fall and computational platforms become more robust. Rapid 

advances in spatial transcriptomics, epigenomics, proteomics and metabolomics provide the 

opportunity for an integrated multi-omic approach to investigating lung disease. 

Nevertheless, techniques to leverage data generated from scRNA-seq technologies for 

respiratory research are evolving, and the limitations of these technologies for profiling 

respiratory samples are incompletely understood. In this review, we aim to provide an 

overview of scRNA-seq technologies focused on its applications and limitations when 

applied to studies of the respiratory system. We begin with some illustrative examples from 

our own group and others that address disease focused questions that can be specifically 

answered using scRNA-seq.

Case study 1: alveolar macrophage heterogeneity in pulmonary fibrosis

The understanding of alveolar macrophages as a homogenous, nonreplicating cell population 

continuously replenished from a reservoir of peripheral monocytes changed dramatically 

when a series of lineage-tracing studies in mice showed that alveolar macrophages are a 

long-lived, self-renewing population that populates the lung immediately after birth and 

persists without input from circulating monocytes over prolonged periods of time [16–20]. 

In murine models of bleomycin- and asbestos-induced fibrosis, we found that monocyte-

derived alveolar macrophages recruited in response to lung injury were necessary for 

fibrosis, while tissue-resident alveolar macrophages were dispensable [21, 22]. We used 

genetic lineage tracing systems to flow cytometry sort tissue-resident and monocyte-derived 

alveolar macrophages for bulk RNA-seq, which showed that monocyte-derived alveolar 

macrophages exhibit a profibrotic transcriptomic signature distinct from their tissue-resident 

counterparts. These findings predicted the presence of at least two transcriptionally distinct 

populations of alveolar macrophages in the lungs of patients with pulmonary fibrosis, a 

question that could only be addressed using scRNA-seq [14]. Applying this technology to 

the human lung, we identified two populations of alveolar macrophages in the lungs of 

patients with pulmonary fibrosis, one of which resembled macrophages from normal lungs 

and one of which differentially expressed profibrotic genes homologous to those we 

observed in mice. We were able to definitively show this in a remarkably small group of 

patients (eight patients with lung fibrosis and eight controls), suggesting that cellular 
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heterogeneity rather than true biological variability might have masked signals in previous 

studies using bulk RNA-seq. Similar results were found by two independent laboratories, 

highlighting the reproducibility of scRNA-seq even when applied to human disease [23, 24].

Case study 2: discovery of lung ionocytes

Two groups used scRNA-seq to sequence a very large number of cells from samples of 

normal human airway, thereby describing the transcriptional landscape of the airway at 

unprecedented resolution. They identified a transcriptionally unique cell type that expressed 

large quantities of CFTR (cystic fibrosis transmembrane conductance regulator), the causal 

gene of cystic fibrosis [11, 12]. In addition, this cell was characterised by increased 

expression of several other ion transporters and the transcription factor FOXI1, a 

transcription factor with homology to foxi1, the canonical transcription factor of Xenopus 
larval skin ionocytes. The studies describing the discovery of the human airway ionocyte 

also reported extensive validation to demonstrate the presence of airway ionocytes in the 

human and murine lung using single-molecule fluorescence in situ hybridisation. They 

further validated their findings by performing functional studies in mice to show that this 

population of pulmonary ionocytes contributes disproportionately to CFTR function in the 

airway. These data challenged the existing paradigm that ciliated cells expressing FOXJ1 are 

the major source of CFTR protein in the lung with potential implications for gene-therapy 

approaches to cystic fibrosis.

Case study 3: characterising the immune landscape of lung cancer

Immunotherapy has quickly become a frontline therapy in patients with nonsmall cell lung 

cancers (NSCLC) lacking driver mutations. A minority of patients receiving immune 

checkpoint blockade will exhibit a durable response to disease, an outcome that was 

previously unheard of. Unfortunately for the majority of patients, progression of their lung 

cancer is inevitable. The tumour immune microenvironment has been found to have a large 

influence on response to immunotherapy and by understanding the unique compositions of 

those environments researchers hope to better predict responsiveness and reveal novel targets 

[25]. Using scRNA-seq, a group of researchers characterised the tumour T-cell landscape of 

14 patients with NSCLC compared to surrounding lung and peripheral blood [26]. They 

found significant heterogeneity in CD8+ and regulatory T-cell (Treg)-infiltrating T-cells with 

increasing proportions of exhausted CD8+ subtypes and activated Tregs portending a worse 

prognosis.

Why perform scRNA-seq?

A key limitation of bulk RNA-seq applied to whole-tissue or to purified cell populations is 

that this approach necessarily averages the gene expression signals of all the cells in a 

sample (figure 1b). This is a particular concern for complex tissues like the lung, which 

includes 40 or more cell types [27]. Because many of these populations are relatively rare or 

difficult to dissociate intact from the underlying tissue, their contributions to disease 

signatures from bulk RNA-seq analysis are lost. Furthermore, scRNA-seq analyses have 

raised doubt about the reliability of methods of “deconvolution”, or computational 
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estimation of the composition of individual cell populations in bulk RNA-seq data. While 

this limitation can be mitigated by purification of cell types or subpopulations using flow 

cytometry, often no such method of purification is available. Analysis using scRNA-seq 

estimates the transcriptomes of individual cells in a sample, enabling attribution of gene 

expression signals to cell types or subpopulations and allowing recognition of rare cells or 

pathogenic populations of cells that appear only during disease (figure 1). Compared with 

flow cytometry, which measures levels of surface or intracellular proteins with single-cell 

resolution, scRNA-seq offers a less biased portrayal of gene expression because it measures 

RNA corresponding to all genes rather than measuring only a prespecified panel of protein 

markers. One frequently discussed limitation of scRNA-seq data when compared with bulk 

RNA-seq data relates to the relatively shallow depth of sequencing within each cell. As a 

result, single-cell data is susceptible to the problem of “dropout” where a zero value for a 

gene may or may not reflect a lack of expression in an individual cell. However, recent work 

suggests that this sensitivity problem in scRNA-seq data can be overcome by sampling and 

sequencing sufficiently large numbers of cells [28].

Single-cell RNA-sequencing workflows

Several workflows for scRNA-seq have been developed, and most scRNA-seq experiments 

are now performed using commercial platforms (table 1 and figure 2). A critical step of any 

scRNA-seq experiment is generation of a single-cell suspension from a sample of interest 

(figure 2b). For solid tissues, this is usually done using a combination of mechanical 

dissociation and enzymatic digestion. Existing studies have generally used fresh tissue, but 

protocols have been developed for cryopreserved samples or for cells isolated using laser-

capture microdissection from formalin-fixed, paraffin-embedded samples [41–43]. One 

study demonstrated that intact lung tissue could be cold-preserved at 4°C for up to 72 h prior 

to processing for scRNA-seq without substantial evidence of degradation in the resulting 

data quality [44]. Following dissociation, individual cells are collected and then lysed in 

either wells on a plate, oil droplets or nanowells on a chip (figure 2c). This enables capture 

of messenger RNA (mRNA) molecules, generation of complementary DNA (cDNA) by 

reverse transcription and barcoding of cDNA for each individual cell in isolation from all 

other cells. A barcode incorporated into the cDNA during the process of preparing a cDNA 

“library” for each cell consists of a unique nucleotide sequence for each cell, and often 

another sequence called a unique molecular identifier (UMI) for each mRNA molecule 

captured from that cell. Afterwards, the cDNA from all cells can be pooled and sequenced 

using NGS technology.

The sensitivity of scRNA-seq which enables its unparalleled resolution also renders the 

technology susceptible to technical and experimental biases that may obscure true biological 

signals. Differences in tissue dissociation protocols contribute significantly to batch effect 

and technical variation. The method of mechanical and enzymatic disaggregation, the 

processing time and the strengths of reagents can all affect downstream analysis. Aggressive 

or prolonged digestion protocols can cause cell death or cell fragmentation that release 

ambient RNA into the media (figure 2b and c). Because this RNA is included in each 

droplet, genes from these dead cells appear to be “expressed” in all of the sequenced cells 

(figure 2d). Gentle dissociation protocols lead to overrepresentation of cells that are easily 
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liberated from the tissue [29, 45]. This is a particular problem in the lung where diseases 

(fibrosis, emphysema and pneumonia) dramatically alter the cellular composition and matrix 

characteristics of the tissue. Even in normal lung tissue this becomes evident as cell types 

that are more difficult to liberate intact, such as broad, flat, sail-like alveolar type I (AT1) 

cells and matrix-embedded fibroblasts, are relatively undersampled compared with cuboidal 

alveolar type II (AT2) cells and alveolar macrophages in published datasets. Efforts are 

under way to improve consistency and reliability of scRNA-seq methods and decrease 

technical variation, including the implementation of automated tissue processing. Data 

structures designed for storing data from single-cell experiments generally permit the 

storage of metadata detailing experimental conditions under which the data were obtained. 

The standardisation and meticulous documentation of implemented protocols will support 

improved consistency across operators and institutions.

scRNA-seq analysis

The initial processing of raw scRNA-seq data entails sorting reads based on their cell 

barcodes and aligning the reads to the reference transcriptome of the organism being studied 

to produce a table of gene counts. In this table, each column corresponds to a cell barcode 

and each row corresponds to a gene so that each entry contains an integer reflecting the 

number of reads with that cell barcode mapped to that gene (figure 2d). If libraries have been 

prepared for sequencing using UMIs, then all reads with the same UMI are treated as 

amplification duplicates and are collapsed into a single read in the counts table. A threshold 

is often selected to perform filtering on the counts table which removes cell barcodes with 

low sequencing depth, or total number of unique reads. These removed barcodes are 

attributed to capture, during cell isolation, of partial or damaged cells or ambient mRNA. 

Additional filtering may be performed to remove cell identities based on other metrics 

reflecting poor quality of input cells, such as having greater than a specific proportion of 

reads mapping to mitochondrial genes.

Following filtering and other quality-control procedures, machine-learning tools can be used 

to group cells. Most often this entails clustering using either a similarity- or distance-based 

metric, and then assigning a cell identity to each resulting cluster based on the most highly 

expressed genes in that cluster compared with the other clusters [46–48]. Machine-learning 

algorithms for projecting high-dimensional data in low-dimensional space, such as t-

distributed stochastic neighbour embedding (t-SNE) or uniform manifold approximation and 

projection (UMAP) are usually used for generating visualisations of clustered data [49, 50]. 

The results of a clustering analysis could provide evidence for a novel cell type or cell state 

if a distinct cluster was identified that expressed relatively high levels of unexpected genes. 

Additionally, if an scRNA-seq experiment was designed to compare two different 

conditions, differential expression analysis could be used to estimate which genes were 

expressed at a statistically higher level in one condition compared with another between 

clusters corresponding to the same cell type in samples from the respective conditions. 

Several computational tools have been developed to assist in combining scRNA-seq data 

from different experimental conditions or batches or data produced using varying protocols 

or by distinct groups [46, 51, 52]. These techniques are necessary for generating aggregate 

datasets and increasing the power to detect small expression differences, but they have to be 
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applied thoughtfully. It is possible to remove expression signatures of true biological 

differences using these integration techniques, such as when a distinct cell type exists 

exclusively in one experimental condition.

Auxiliary analyses using scRNA-seq data can answer a number of biologically meaningful 

questions. If the transition of cells through a biological process such as differentiation is of 

interest, a pseudotime analysis can be performed where cells are arranged sequentially on a 

graph according to their similarity, computationally recapitulating a temporal phenomenon 

occurring in a cross-sectional sampling of cells [53–55]. Another procedure to infer these 

trajectories, RNA velocity, compares the ratios of spliced, mature mRNA to unspliced, 

nascent mRNA between cells to identify likely transitional states between cells [56]. If the 

interest is in uncovering which gene pathways or gene regulatory networks are differentially 

modulated between cell types or experimental conditions, differentially expressed genes 

from scRNA-seq clustering analysis can be analysed using a statistical test for enrichment of 

curated gene sets from a collection such as GO or MSigDB [57, 58]. And if the focus is in 

uncovering novel cell type interactions, a curated list of ligand–receptor pairs combined with 

lists of highly expressed genes in different cell clusters from scRNA-seq data can be used to 

generate hypotheses about signalling interactions between different cell types, such as 

alveolar macrophage–epithelial cell interactions in the lung [59].

scRNA-seq collaborations and data repositories

Collaborative efforts to generate and publish data using scRNA-seq on the cellular 

compositions of normal tissues have coalesced around several “atlases”. These efforts are 

motivated by the goal of making raw scRNA-seq data available as quickly and as widely as 

possible with the recognition that the value of a single dataset can be increased through 

careful reanalysis in combination with other datasets. Consistent with such a fundamentally 

collaborative approach, many researchers using scRNA-seq have adopted the practice of 

making publications available before peer review on preprint servers such as ArXiv (https://

arxiv.org), bioRxiv (www.biorxiv.org/) and medRxiv (www.medrxiv.org/). The idea that the 

free sharing and synergistic integration of scRNA-seq datasets can accelerate the pace of 

discovery is predicated on the quality of those datasets. Collaboration is only possible 

through corroboration. Computational genomics is not immune to the reproducibility 

challenges in other branches of science, but in data science any result should be easily 

reproducible from the raw data and code used to generate the final analysis. We believe that 

the full disclosure of the experimental procedures, raw data, metadata and code used in a 

study is critical to the integrity of research. In the United States, the National Institutes of 

Health (NIH) has published requirements for genomic data sharing for all NIH-funded 

research and maintains several large databases to meet this need [60, 61]. In Europe, the 

European Molecular Biology Laboratory through the European Bioinformatics Institute 

operates similar repositories committed to the free sharing of genomic data [62]. Our 

practice is to upload our raw sequencing data to repositories maintained by the NIH 

including the Sequence Read Archive or the Database of Genotypes and Phenotypes (dbGaP, 

for human data) and to post our code to public repositories. Many journals now mandate that 

data and code generated in support of an article be uploaded to a repository and freely 

accessible to other researchers [63, 64].
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Challenges and future directions of scRNA-seq

The computational identification of a cell population or cell state using any of the commonly 

employed clustering algorithms always requires independent validation with a 

complementary technology (table 2). Ideally for tissue analyses, this validation should add 

spatial information that defines the “neighbourhood” in which a putative new cell population 

or cell state resides. To this end, the single-cell research community is sharply focused on 

developing multiplexed, high-resolution spatial transcriptomic and proteomic methods to 

both validate and extend data from scRNA-seq. To date, most studies in the lung have used 

variants of single-molecule RNA fluorescence in situ hybridisation to validate their findings. 

However, these techniques are limited by the small number of probes that can be imaged 

simultaneously. To address this concern, multiplexed techniques that allow sequential 

imaging of multiple probes on a tissue section are being optimised [68–70]. Tissue clearing 

and permeabilisation protocols combined with light sheet microscopy offer the opportunity 

for three-dimensional imaging. All of these spatial transcriptomic techniques will necessitate 

advances in terms of processing and storage given the size and high complexity of these 

datasets [71–74, 87].

While the technology to measure the transcriptome at single-cell resolution is more robust 

and less costly when compared with those that measure the epigenome, proteome or 

metabolome, these other technologies are advancing rapidly. Examples of integrated single-

cell transcriptomics and single-cell ATAC-seq (assay for transposase-accessible chromatin, 

which measures regions of open chromatin) are already present [80, 81]. While not yet 

available at single-cell resolution, reduced representation bisulfite sequencing to query the 

DNA methylome and “cut and run” technology to measure chromatin modifications can be 

done with very small numbers of cells [88–90]. Multiparameter flow cytometry and mass 

cytometry (CyTOF) can currently measure several proteins simultaneously to complement 

scRNA-seq with proteomic analysis [91]. Even more exciting is a method for incorporating 

oligonucleotide-tagged antibodies into a droplet-based scRNA-seq workflow called CITE-

seq (cellular indexing of transcriptomes and epitopes by sequencing) [75]. This technology 

permits simultaneous measurement of gene expression and surface protein levels in the same 

single cell.

The liberation of cells from tissues for scRNA-seq differs depending on the tissue digestion 

protocols used. Therefore, scRNA-seq cannot reliably recapitulate the cellular composition 

of tissues [14, 92]. Single-nucleus RNA-seq (snRNA-seq) offers a solution to this problem. 

Protocols using this technology typically take advantage of the relative resistance of the 

nuclear membrane compared to the plasma membrane to fracture during a freeze–thaw 

cycle. The intact nucleus is then used in typical droplet-based sequencing protocols. While 

this procedure necessarily increases contamination by ambient RNA, overrepresents long 

noncoding and small nuclear RNA and reduces the number of measured genes, it has shown 

promise when applied to the brain [65, 93, 94]. Most importantly, snRNA-seq can be 

performed on frozen tissue, offering the promise to generate transcriptomic information at 

single-cell resolution from archival tissues [65, 93–97].
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Costs of scRNA-seq remain high because of costs of reagents in library preparation 

workflows and costs of sequencing [8, 36]. Sequencing costs are likely to continue to 

decrease, but current technologies may reach a limit such that further lowering of cost will 

require the development of novel NGS platforms [98]. Innovations in experimental protocols 

have produced great decreases in library preparation cost and are likely to continue to do so. 

Techniques for adding barcodes to samples prior to single-cell isolation, or for using single 

nucleotide variants to computationally determine sample genotypes will allow pooling of 

multiple samples for library preparation [39, 40, 99, 100]. In addition, these techniques are 

helpful for mitigating the effect of doublets, a single shared cell ID barcode in a scRNA-seq 

dataset that in actuality corresponds to two distinct cells.

Preparation of libraries for scRNA-seq using droplet-based methods results in the capture of 

ambient RNA that is present in the input single-cell suspension [14]. Thus, genes, 

particularly those expressed at high levels in cells that are highly prevalent in the input 

sample, will be counted for cells in which they may not actually be expressed. 

Computational tools have been developed to address this issue by estimating contamination 

and adjusting counts accordingly [101, 102]. However, it is challenging to validate these 

tools, and the effect of ambient RNA contamination may vary between different tissues, 

experimental conditions and single-cell library preparation protocols.

Applications of scRNA-seq to respiratory research

Cellular composition of the normal and diseased lung

According to an often-cited estimate, the lung is composed of ~40 different cell types [27]. 

However, this estimate is based largely on studies that used microscopy, which may not be 

able to distinguish between cell populations similar in appearance but having distinct 

transcriptional or proteomic states and correspondingly distinct functions. It is likely that 

scRNA-seq will expand this number. Indeed, a recent preprint describes the detection of 58 

cell populations from scRNA-seq of human lung [103]. Furthermore, technologies like 

snRNA-seq offer promise to more precisely quantify the changes in cellular composition in 

the lung that develop in response to environmental challenge, disease and ageing. While still 

in the future, three-dimensional imaging techniques with automated quantification may 

enable precisely localising and quantifying cell populations within the three-dimensional 

volume of the lung, obviating the need for statistical estimates based on stereology [104–

107].

Two prominent atlas projects using scRNA-seq, focused on mouse and human data 

respectively, are the Tabula Muris project and the Human Cell Atlas (HCA) project [108–

111]. Each of these atlases aims to produce data about normal structure and function of 

organs and tissues. The Tabula Muris is a single publicly available dataset including scRNA-

seq from almost 100000 cells spanning 20 murine organs and tissues, and it includes data 

from a substantial number of respiratory system cells, which can be included as a basis of 

comparison in studies of disease models (https://tabula-muris.ds.czbiohub.org). The HCA is 

an ongoing collaborative project aimed at producing data from many different organs and 

tissues from healthy humans (www.humancellatlas.org/). Furthermore, the HCA contains 38 

different seed networks spanning a number of different organs and tissues including a 
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dedicated HCA lung network focused on the respiratory system [112]. Major strengths of 

the HCA lung network include a welcoming stance that allows any investigator to participate 

and incorporation of multiple assay modalities including single-cell epigenetic and spatial 

transcriptomic tools together with scRNA-seq. Recently, during the coronavirus disease 

(COVID-19) global pandemic caused by severe acute respiratory syndrome coronavirus 2 

(SARS-CoV-2), members of the HCA lung network have demonstrated the power and speed 

of this consortium in being able to respond to novel biological challenges. Rapidly, members 

of the HCA lung network produced several studies reporting analyses of datasets combined 

from different groups detailing anatomical expression of the SARS-CoV-2 receptor ACE2 
and identifying clinical covariates associated with different expression levels in various 

tissues of viral entry mediators [113–115].

Development

The first published study using scRNA-seq in the respiratory field by TREUTLEIN et al. [10] 

attempted to elucidate the process of lung epithelial cell development in a murine embryonic 

model. The authors performed clustering on gene expression profiles of lung epithelial cells 

from embryonic and adult mice to support their finding of a common progenitor cell 

population of AT1 and AT2 epithelial cells during development. A more recent study 

reported on scRNA-seq of ~2 million cells from 61 mouse embryos between embryonic days 

9.5 and 13.5 [9]. This study was labelled by its authors as an “atlas” in acknowledgement of 

it being descriptive and of the data it produced being potentially useful for incorporation into 

future studies. Cells belonging to lung epithelium, a lung epithelial developmental trajectory 

and other developmental trajectories related to components of the respiratory system are all 

identified in this study.

Ageing

Ageing is a critical risk factor for the development of many lung diseases including cancer, 

lung fibrosis, COPD and lung infections [116]. Studying ageing in the lung using scRNA-

seq is attractive because it offers the promise of comparing distributions of transcriptional 

states within cell types at different extremes of age. A study that combined scRNA-seq with 

proteomics of lungs from young and old mice found that ageing was associated with 

increased transcriptional noise, an increased ratio of ciliated cells to club cells and increased 

cholesterol biosynthesis [117]. Additionally, an integrated analysis of the scRNA-seq and 

proteomic data from that study allowed the investigators to identify the most likely cellular 

sources of differentially regulated proteins with age. In another study, investigators analysed 

scRNA-seq data derived from lung as well as kidney and spleen tissue from young and old 

mice. The findings from this study suggested that the effect of ageing on transcriptional 

noise varied between different cell types and was greater in lung stromal cell types, for 

example, than AT2 cells. Investigating the biology of ageing in the lung using scRNA-seq of 

human tissue is particularly challenging because obtaining normal lung tissue is difficult, 

particularly from multiple individuals of different ages over the lifespan. As more and more 

scRNA-seq datasets of human lung tissue are published, such as within the HCA, a meta-

analysis of human lung scRNA-seq data over the lifespan will become feasible, that can 

include enough samples from different groups to control for batch effects.
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Lung cancer

Tissue samples from patients with lung cancer are relatively accessible because treatment of 

lung cancer frequently includes surgical resection. Accordingly, several studies have thus 

focused on scRNA-seq of lung tissue obtained from patients with NSCLC [26, 118–121]. 

The majority of these studies highlight the heterogeneity of tumour cells and, as in the study 

highlighted in case study 3, tumour-associated immune cells [122–124]. In addition, the 

results of two studies suggested that the presence of certain subsets of tumour-associated 

immune cell markers was associated with prognosis in patients with NSCLC [26, 121].

Interstitial lung disease and pulmonary fibrosis

While stromal, epithelial and immune cells have all been implicated in contributing to the 

pathogenesis of pulmonary fibrosis, the first published study leveraging scRNA-seq to 

investigate pulmonary fibrosis pathobiology focused on epithelial cells [13, 125]. This study 

of human lung tissue demonstrated, and work from our group and others later confirmed, 

that pulmonary fibrosis was characterised by the emergence of transcriptionally distinct 

epithelial cell populations [14, 24, 126]. Our group was among the first to apply scRNA-seq 

to the analysis of patients with pulmonary fibrosis to address the question of macrophage 

heterogeneity during fibrosis [14]. Our findings were subsequently confirmed and extended 

in two independent datasets, highlighting the reproducibility of these approaches [23, 24]. 

Importantly, all of the groups responsible for these studies have already made their data 

available or committed to doing so, and some have made these data available in a format that 

can be explored by the community [15, 23, 24, 44, 126–130]. While most investigators have 

used scRNA-seq at a single time point during the course of disease, time-series single-cell 

data offer particular promise. For example, Schiller and colleagues performed scRNA-seq in 

murine lungs harvested over the course of pulmonary fibrosis in mice induced by bleomycin 

[131]. The investigators identified and validated a novel Krt8-positive transitional epithelial 

cell progenitor population that receives input from AT2 and club cells and is responsible for 

replacing AT1 cells during alveolar repair. This finding was supported by an enrichment 

analysis indicating higher expression of genes related to proliferation in this novel Krt8-

positive population and by an RNA velocity analysis indicating convergence of the 

transcriptional states of AT2 and club cells on the Krt8-positive state.

Lung injury and repair

Mouse models of lung injury and repair have been used to understand acute lung injury in 

humans and also to gain insights into related processes involved in lung development and 

fibrosis. In one study, investigators used scRNA-seq of lung macrophages to confirm a 

previous observation that following lung injury induced by lipopolysaccharide (LPS), a 

population of recruited alveolar macrophages expresses increased levels of inflammatory 

genes compared with resident alveolar macrophages [132, 133]. In another study, 

investigators performed scRNA-seq on AT2 cells after LPS-induced lung injury and found 

that a relative decrease in Tgfb2 expression was associated with AT2 cells occupying a 

transdifferentiating state rather than a cell cycle arrest state during repair [134].
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Asthma

One study has reported on scRNA-seq analysis of samples from patients with asthma. The 

investigators used a distance-based trajectory analysis, termed “pseudotime”, to estimate 

developmental trajectories among epithelial cells from healthy controls and patients with 

asthma [15]. The investigators found that there were altered epithelial cell differentiation 

pathways in asthma and increased numbers of goblet and mucous ciliated cells compared 

with healthy controls. Additionally, there were increased numbers of type 2 helper T (Th2) 

effector cells in asthma and increased cell-to-cell signalling involving Th2 cells. This finding 

is further supported by a study using scRNA-seq to analyse Th-cells in a murine house dust 

mite (HDM) model of allergic airway disease, which identified a distinct Th2 cell gene 

expression signature in the airways of mice exposed to HDM [135].

Other respiratory system diseases

We anticipate that, for any diseases affecting the respiratory system for which studies using 

scRNA-seq have not yet been published, such studies are probably forthcoming. For 

example, for cystic fibrosis, COPD and pulmonary hypertension, analyses of scRNA-seq 

data have not yet been published, but there have been multiple studies utilising bulk RNA-

seq approaches [136–141]. As techniques for tissue processing, library preparation and data 

analysis improve, and as cost continues to decrease, more studies containing larger numbers 

of cells can be expected. The discovery of the pulmonary ionocyte, a cell type that expresses 

high levels of CFTR, provides an exceptional motivation for using scRNA-seq to gain 

insight into the function of this cell type in cystic fibrosis [11, 12].

Biomarker development

Bulk RNA-seq has been used for biomarker development for a variety of respiratory system 

diseases, including NSCLC and idiopathic pulmonary fibrosis [142–147]. Developing 

biomarkers using scRNA-seq to assist in diagnosis, prognosis and selection of appropriate 

therapy in a variety of lung diseases may be feasible, but several questions will have to be 

clarified. It is not known whether tissue proximal to the disease is required for biomarker 

development using scRNA-seq, or whether samples obtained by less invasive means, such as 

blood or nasal epithelial samples, can be used. Furthermore, it is not known what approaches 

to scRNA-seq analysis can support biomarker development. The extent to which scRNA-seq 

can be part of a successful platform for developing clinically relevant biomarkers will need 

to be determined through future research, although the existing studies hinting at the 

prognostic relevance of certain tumour-associated immune cell populations are promising 

[26, 121].

Conclusions

In a relatively short period of time, the impact of research using scRNA-seq for advancing 

knowledge about respiratory biology and disease has been substantial. The opportunity of 

data sharing and meta-analysis of data from multiple studies is encouraging the formation of 

large-scale collaborations [112]. The influence of scRNA-seq on respiratory research will 

grow as the underlying technologies continue to improve along with experimental and 
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computational approaches for more closely integrating scRNA-seq data with spatial, 

proteomic and epigenomic data.
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FIGURE 1. 
Single-cell RNA-sequencing is able to resolve distinct individual cellular transcriptomes 

compared to bulk RNA-sequencing. a) Whole lung tissue with distinct cellular components 

represented by blue circles, red squares and yellow triangles; b) transcriptional output of 

bulk RNA-sequencing experiments results in an averaging of the individual cellular signals. 

While some marker genes unique to cell types may indicate the presence of that cell type 

(protruding corners of red square and arcs of blue circle), the overall signal will be a mixture 

of the cell types (purple) and may obscure the transcriptomic signature of rare cell types 

(dashed triangle); c) in a single-cell experiment, every cell type (red square, blue circle, 

yellow triangle) is represented.
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FIGURE 2. 
Typical workflow of a single-cell RNA-sequencing experiment and possible pitfalls. a) 

Whole-lung tissue with highly abundant cellular components (blue circle, red square) and 

rare cell type (yellow triangle). b) A single-cell suspension is created through the mechanical 

and enzymatic disaggregation of the lung. Cell types that are fragile or difficult to liberate 

intact from the tissue (grey squares) may be underrepresented in the final dataset. In the 

lung, these cell types typically include alveolar type 1 epithelial cells and mesenchymal cells 

including fibroblasts. c) Individual cells are isolated into vessels (plate wells or droplets) 

with barcoded RNA primers and the cells are lysed to create a unique complementary DNA 

(cDNA) library for each cell. A number of errors can be introduced at this step, including the 

inclusion of two or more cells in a vessel, the inclusion of a cell fragment, the creation of a 

library from an empty vessel (*) or one containing ambient RNA (droplet with all colours), 

the inclusion of apoptotic cells or the induction of transcriptional changes as a result of 

processing (purple circle). d) cDNA libraries are sequenced and separated by barcode to get 

all the individual sequences for the individual cell. Sequences are aligned to a reference 

genome and successful alignments with known gene sequences are counted. This expression 

matrix is filtered by several quality criteria and used for downstream analyses.
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TABLE 1

Aspects of single-cell RNA-sequencing experiments

Experimental design [29–31]

 Organism Culture, animal, human

 Replicates/number of cells General considerations including organism heterogeneity and ability to resolve rare cell 
populations of interest

 Tissue disaggregation Mechanical dissection, enzymatic disaggregation

 Enrichment FACS, magnetic bead separation, centrifugation

Cell capture

 Microfluidics

 Nanowell [32, 33]

 Droplet [34] Advantages in throughput and cost

 FACS Relatively lower throughput; protein markers needed

 Plate-based

 Micropipette/laser capture microscopy [7, 35]

Library preparation [36] NGS Illumina versus other cDNA-compatible system; availability depends on protocol

 3’ Does not capture splice variants; lower sequencing depth required

 5’ Requires sequencing to higher read depth

 Full-length transcript Costly; splice variant, isoform and allelic variation analysis

Quality

 Cell integrity

  FACS Sorting out dead cells, cell fragments

  Imaging Plate-based systems; detection of empty wells, doublets

 RNA quality

  RIN [37] RNA quality score

 Barcoding

  Cell label One sequence per bead/well

  UMI [38] Different for every oligo on bead; differentiates PCR clone from transcript read

 Multiplexing

  RNA spike-in Animal doping Multiplexing with cells of different species, detect doublets

  Multiple donor [39, 40] Using SNPs from unrelated donors or oligo-tagged antibodies to detect doublets, correct for 
batch effect in multiplexed experiments

FACS: fluorescence-activated cell sorting; RIN: RNA integrity number; UMI: unique molecular identifier; NGS: next-generation sequencing; 
cDNA: complementary DNA; SNP: single nucleotide polymorphism.
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TABLE 2

Emerging single-cell technologies and multi-omics

Single nucleus [65, 66] Analysis of frozen/archival tissue

Spatial

 smFISH [67] Single-molecule fluorescent in situ hybridisation

 ISH+amplification [68] PLISH

 ISH+amplification+multiplexing [69–71] MERFISH, SCRINSHOT, STARmap (3D)

 Oligo microarray [72]

 LCM capture [73, 74] Single cells on array, captured, sequenced

Multi-omics

 Surface markers

  Epitope capture [75, 76] Simultaneous sequencing of mRNA and oligo-labelled antibodies; CITE-seq, REAP-seq

  TCR antigen specificity [77] Oligo-tagged MHC multimer libraries

 Epigenome

  scRBBS [78] Reduced-representation bisulfite sequencing

  scWGBS [79] Whole-genome bisulfite sequencing

  Parallel transcriptome and methylome [80–82]

  CHIP-seq [83] Chromatin immunoprecipitation sequencing

 ATAC-seq [84] Assay for transposase-accessible chromatin

 Metabolome/proteome

  Mass spectrometer/MALDI-TOF Matrix-assisted laser desorption/ionisation

  Mass cytometry [85, 86] Cytometry TOF; panel of antibody-labelled ions

ISH: in-situ hybridisation; LCM: laser capture microscopy; TCR: T-cell receptor; TOF: time of flight; CITE-seq: cellular indexing of 
transcriptomes and epitopes by sequencing; REAP-seq: RNA expression and protein sequencing; MHC: major histocompatibility complex.
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