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Background. To elucidate the correlations between tumor microenvironment and clinical characteristics as well as prognosis in
clear cell renal cell cancer (ccRCC) and investigate the immune-associated genes by a comprehensive analysis of 1e Cancer
Genome Atlas (TCGA) database. Methods. We collected mRNA expression profiles of 537 ccRCC samples from the TCGA
database. Immune scores and stromal scores were calculated by applying the ESTIMATE algorithm. We evaluated the correlation
between immune/stromal scores and clinical characteristics as well as prognosis. 1e differentially expressed genes (DEGs) were
screened between high immune/stromal score and low immune/stromal score groups by the cutoff of |log (fold change)|> 1, P

value <0.05 by using package “limma” in R. Functional enrichment analysis was performed by DAVID, and the protein-protein
interaction network of intersected DEGs between stromal score and immune score groups was conducted using the STRING
database.1e Kaplan–Meier method was used to explore DEGs with predictive values in overall survival, and the prognostic DEGs
were further validated in a Gene Expression Omnibus (GEO) dataset GSE29609. Results. A higher immune score was associated
with T3/4 (vs. T1/2, P< 0.001), N1 (vs. N0, P � 0.05), M1 (vs. M0, P � 0.004), G3/4 (vs. G1/2, P< 0.001), advanced AJCC stage
(P< 0.001), and shorter overall survival (P � 0.04). Intersected DEGs between immune and stromal score groups were 48
upregulated and 47 downregulated genes, with 43 DEGs associated with overall survival in ccRCC. After validation by a cohort of
39 ccRCC cases with detailed follow-up information from GSE29609, six immune-associated DEGs including CASP5, HSD11B1,
VSIG4, HMGCS2, HSD11B2, and OGDHL were demonstrated to be predictive of prognosis in ccRCC. Conclusions. Our study
elucidated tight associations between immune score and clinical characteristics as well as prognosis in ccRCC. Moreover, six
DEGs were explored and validated to exert predictive values in overall survival of ccRCC.

1. Background

Renal cell cancer (RCC), the common urological malig-
nancy, was statistically predicted for 73,820 estimated new
cases and 14,770 estimated deaths in 2019 in the United
States [1]. Although detailed and various histopathological
classifications were recommended by World Health Orga-
nization [2], clear cell renal cell cancer (ccRCC), papillary
renal cell cancer (pRCC), and chromophobe renal cell cancer
(chRCC) still remain the major histological types, with
ccRCC accounting for the largest proportion. Radical sur-
gical resection is the most effective therapy for RCC;
however, approximately 30–40% of cases with ccRCC

eventually progress into metastatic status postoperatively
[3, 4]. Although systemic adjuvant therapy received limited
effects on prognosis of advanced ccRCC, nivolumab, as a
programmed death 1 (PD-1) immune checkpoint inhibitor
antibody, demonstrated promising improved survival out-
come in the metastatic ccRCC [5, 6]. Further investigation
into the immune microenvironment of ccRCC is expected to
reveal the underlying molecular mechanism and prognostic
implications.

1e Cancer Genome Atlas (TCGA) provided compre-
hensive genomic profiles and detailed clinical as well as
follow-up information, making it suitable to investigate the
correlation between immune and genomic features [7]. To
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evaluate the role of infiltrating stromal and immune cells in
cancer biology, an algorithm called Estimation of STromal
and Immune cells in MAlignant Tumours using Expression
data (ESTIMATE) was raised and triggered a few genomic
investigations on tumor-associated normal cells [8].

1is study aimed to elucidate the correlations between
tumor microenvironment and clinical characteristics as well
as prognosis in ccRCC and investigate the prognosis-asso-
ciated genes by a comprehensive exploration of the TCGA
database and validation analysis based on the Gene Ex-
pression Omnibus (GEO) database.

2. Methods

Gene expression profile and clinical data of 537 ccRCC pa-
tients were downloaded from the TCGA database (https://
tcga-data.nci.nih.gov/tcga/). Immune and stromal scores were
calculated by using the ESTIMATE algorithm. Data analyses
of differentially expressed genes (DEGs) were performed
using package “limma” with threshold set as log FC (fold
change)> 1 and P value <0.05 [9]. Heatmaps were performed
using package “pheatmap.” Functional enrichment analyses
of DEGs were performed by package “clusterProfiler,”
“org.Hs.eg.db,” “enrichplot,” and “ggplot2.” Gene ontology
(GO) categories consisted of biological processes (BPs) and
molecular functions (MFs). KEGG (Kyoto Encyclopedia of
Genes and Genomes) enrichment analysis was preformed to
obtain significant associated pathways of DEGs [10]. 1e
protein-protein interaction (PPI) network of intersected
DEGs between stromal score and immune score groups was
conducted using the STRING (https://string-db.org) [11].1e
Kaplan–Meier method was used to explore DEGs with
predictive values in overall survival, and the prognostic DEGs
were further validated in a GEO dataset GSE29609. All sta-
tistical tests were done with R version 3.5 and GraphPad 7. A
P< 0.05 was considered as a statistically significant difference.

3. Results

3.1. Correlation between Immune/Stromal Scores and Clinical
Characteristics. A total of 537 ccRCC patients with gene
expression profiles and clinical information were collected
from the TCGA database. 1e patients were diagnosed as
ccRCC between 1998 and 2013. Among them, 346 cases were
male and 191 were female. According to the ESTIMATE
algorithm, immune scores were distributed between − 693.96
and 3328.21, while stromal scores ranged from − 1433.77 to
1411.35.

To evaluate the correlations between clinical charac-
teristics and immune or stromal scores, we compared and
plotted the distribution of immune scores and stromal scores
stratified by the Tstatus, N status, M status, Fuhrman grade,
and AJCC stage. We found that a higher immune score was
associated with T3/4 (vs. T1/2, Figure 1(a), P< 0.001), N1
(vs. N0, Figure 1(b), P � 0.05), M1 (vs. M0, Figure 1(c),
P � 0.004), and G3/4 (vs. G1/2, Figure 1(d), P< 0.001). With
regard to the AJCC stage, the median average immune
scores of stage IV ranked the highest of all stage classifi-
cations, while stage I harbored the lowest immune scores,

indicating that higher immune scores predicted the ad-
vanced AJCC stage with statistical significance (Figure 1(e),
P< 0.001). However, high stromal scores were only asso-
ciated with T3/4 (vs. T1/2, Supplementary Figure 1A,
P � 0.03), without evidence to support significant correla-
tion between stromal scores and N status, M status, Fuhr-
man grade, as well as AJCC stage (Supplementary
Figures 1B–E, P> 0.05).

To explore the potential correlations between immune
scores and/or stromal scores with overall survival (OS), we
retrieved 530 ccRCC cases with detailed follow-up in-
formation and divided them into high and low immune or
stromal score groups. Kaplan–Meier survival curves
(Figure 1(f)) showed that OS of cases with the low-score
group of immune scores is longer than the cases in the high
immune score group (Figure 1(f), P � 0.04). However, cases
with lower stromal scores did not show OS advantage over
patients with higher stromal scores (Supplementary
Figure 1F, P � 0.22).

3.2. DEGs Associated with Tumor Microenvironment in
ccRCC. To investigate the DEGs associated with tumor
microenvironment in ccRCC, we compared the gene ex-
pression profiles of cases stratified by high vs. low immune
scores and/or stromal scores. 1e heatmaps of DEGs based
on immune scores (Figure 2(a)) and stromal scores
(Figure 2(b)) in ccRCC were presented for different ex-
pressions of genes in the separated specimen.With respect to
immune scores, 512 genes were upregulated, while 147 genes
were downregulated in the high-score group, compared with
the low-score group (log FC> 1, P< 0.05). Moreover,
comparison between the high and low stromal score groups
showed 259 upregulated genes and 152 downregulated genes
(log FC> 1, P< 0.05). Intersect genes between stromal score
and immune score groups were achieved by Venn diagrams,
with 48 intersective upregulated genes and 47 intersective
downregulated genes (Figures 2(c) and 2(d)).

3.3. GO and Pathway Analysis of DEGs. To illustrate the
functional implications of DEGs, the intersective DEGs were
selected to evaluate biological functions and molecular
functions by DAVID 6.8. 1e top 10 DEG-associated bi-
ological functions included humoral immune response,
cellular response to tumor necrosis factor, response to tumor
necrosis factor, leukocyte proliferation, cell
chemotaxis, lymphocyte proliferation, mononuclear cell
proliferation, B-cell proliferation, monocyte chemotaxis,
and mononuclear cell migration, as demonstrated in
Figure 2(e). Moreover, Figure 2(e) also showed the top 10
molecular functions including receptor ligand activity, cy-
tokine activity, cytokine receptor binding, anion trans-
membrane transporter activity, serine-type endopeptidase
activity, CCR chemokine receptor binding, chemokine ac-
tivity, chemokine receptor binding, phosphatidylinositol 3-
kinase activity, and peroxisome proliferator-activated re-
ceptor binding. 1e potential pathways involved were dis-
covered by using KEGG analysis. 1ese DEGs were enriched
in cancer-related pathways including cytokine-cytokine
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receptor interaction, NF-kappa B signaling pathway, pri-
mary immunodeficiency, and intestinal immune network
for IgA production (Figure 2(f )). 1e DEGs were also ap-
plied to construct a PPI network with the String database, as
demonstrated in Figure 3.

3.4. Identification and Validation of Prognosis-Associated
DEGs. Kaplan–Meier survival analysis was conducted to
identify prognostic DEGs with regard to overall survival of

ccRCC patients from the TCGA cohort; finally, 43 DEGs
were found to be associated with OS in ccRCC. To validate
whether the selected DEGs were also predictive of OS in
other population, we searched and downloaded a cohort of
39 ccRCC cases with detailed follow-up information from
GEO (Supplementary Table 1). Six DEGs were finally val-
idated to be related to OS, of which three upregulated DEGs
including CASP5 (Figure 4(a), P � 0.005, in the TCGA
cohort; Figure 4(b), P � 0.002, in the GEO validation co-
hort), HSD11B1 (Figure 4(c), P � 0.003, in the TCGA

–1000

0

1000

2000

3000

4000

Im
m

un
e s

co
re

s

T3/4T1/2

(a)

N1N0
–1000

0

1000

2000

3000

4000

Im
m

un
e s

co
re

s

(b)

–1000

0

1000

2000

3000

4000

Im
m

un
e s

co
re

s

M1M0

(c)

–1000

0

1000

2000

3000

4000

Im
m

un
e s

co
re

s

G3/4G1/2

(d)

0

200

400

600

Im
m

un
e s

co
re

s

Stage II Stage III Stage IVStage I 

(e)

High immune score
Low immune score

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

ra
ll 

su
rv

iv
al

2 4 6 8 10 120
Survival years

(f )

Figure 1: Immune scores were associated with clinical characteristics and overall survival. (a) Distribution of immune scores stratified by T
status and box plot indicates a higher immune score was associated with T3/4 (vs. T1/2, P< 0.001). (b) Box plot indicated a higher immune
score was associated with N1 (vs. N0, P � 0.05). (c) Box plot indicates a higher immune score was associated with M1 (vs. M0, P � 0.004).
(d) Box plot indicated a higher immune score was associated with G3/4 (vs. G1/2, P< 0.001). (e) Box plot indicated a higher immune score
was associated with the advanced AJCC stage (P< 0.001). (f ) Kaplan–Meier survival curves for overall survival of ccRCC stratified by
immune scores, indicating that the low-score group harbors survival advantage over the high immune score group (P � 0.04).
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Figure 2: Exploration of DEGs associated with tumor microenvironment in ccRCC. (a) Heatmap of gene expression profiles of high
immune score group and low immune score, log FC> 1, P< 0.05. (b) Heatmap of gene expression profiles of high stromal score group and
low stromal score group, log FC> 1, P< 0.05. (c, d) Venn diagrams showed the intersect upregulated (c) or downregulated (d) DEGs
between immune and stromal score groups. (e) 1e top 10 DEG-associated biological functions and molecular functions. (f ) 1e potential
pathways obtained by using KEGG analysis.
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cohort; Figure 4(d), P � 0.05, in the GEO validation cohort),
and VSIG4 (Figure 4(e), P � 0.03, in the TCGA cohort;
Figure 4(f), P � 0.05, in the GEO validation cohort). 1ree
downregulated DEGs included HMGCS2 (Figure 5(a),
P< 0.001, in the TCGA cohort; Figure 5(b), P � 0.02, in the
GEO validation cohort), HSD11B2 (Figure 5(c), P< 0.001, in
the TCGA cohort; Figure 5(d), P � 0.01, in the GEO vali-
dation cohort), and OGDHL (Figure 5(e), P< 0.001, in the
TCGA cohort; Figure 5(f), P � 0.02, in the GEO validation
cohort).

4. Discussion

Tumor microenvironment constructed by tumor-associated
normal cells during multistep tumorigenesis exerts a sig-
nificant role in cancer initiation, progression, and drug
resistance [12, 13]. Assessing the fraction of microenvi-
ronment-associated cell types may illustrate the role of

tumor microenvironment and provide perspectives in
cancer research. Among the tumor microenvironment,
stromal and immune cells constitute the major noncancer
proportion. Based on single-sample gene set-enrichment
analysis, immune and stromal scores were calculated to
predict tumor purity with the level of infiltrating immune
and stromal cells by using ESTIMATE [8]. Tumor purity and
infiltrated immune/stromal cells are considered to exert a
considerable effect on malignancy progression, clinical
conditions, and poor prognosis. A tight association between
stromal/immune scores and stage as well as prognosis has
been demonstrated in glioma [14, 15].

With regard to RCC, it was regarded as a highly vas-
cularized and immunogenic cancer type, harboring two
revolutionary therapeutic landscape including anti-angio-
genic therapy and immunotherapy [16]. However, hetero-
geneous tumor microenvironment partly promoted
therapeutic resistance and led to unsatisfied prognosis [17].
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Figure 4: Validation of three upregulated DEGs from the TCGA database in the GEO database: Kaplan–Meier survival curve for (a)
CASP5 in the TCGA database (P � 0.005), (b) CASP5 in the GEO database (P � 0.002), (c) HSD11B1 in the TCGA database (P � 0.003),
(d) HSD11B1 in the GEO database (P � 0.05), (e) VSIG4 in the TCGA database (P � 0.03), and (f ) VSIG4 in the GEO database
(P � 0.05).
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Figure 5: Validation of three downregulated DEGs from the TCGA database in the GEO database: Kaplan–Meier survival curve for (a)
HMGCS2 in the TCGA database (P< 0.001), (b) HMGCS2 in the GEO database (P � 0.02), (c) HSD11B2 in the TCGA database (P< 0.001),
(d) HSD11B2 in the GEO database (P � 0.01), (e) OGDHL in the TCGA database (P< 0.001), and (f) OGDHL in the GEO database
(P � 0.02).
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Chevrier et al. performed immune profiling of samples from
73 ccRCC cases and five healthy controls by mass cytometry
and identified 17 tumor-associated macrophage phenotypes,
22 T-cell phenotypes, and a distinct immune composition
correlated with progression-free survival [18].

1is study firstly evaluated the association between the
levels of immune cells or stromal cells and clinical char-
acteristics and found that a higher immune score was related
to more advanced status of ccRCC, including T status, N
status, M status, tumor grade, as well as the AJCC stage.
Moreover, this study demonstrated that a higher immune
score was associated with a shorter overall survival, which
may be explained by the tight connection between the higher
immune score and advanced clinical characteristics; how-
ever, the underlying mechanism required more exploration.

Moreover, this study compared the DEGs between higher
and lower immune score groups as well as stromal score
groups and detected 95 intersective DEGswith 48 upregulated
and 47 downregulated genes. 1e GO and KEGG analysis
suggested that the intersected DEGs were involved with
immune cell proliferation like T cells, lymphocytes, mono-
nuclear cells and immune response, cytokine-cytokine re-
ceptor interaction, as well as NF-kappa B signaling pathway.
Among the 95 intersective DEGs, only 43 DEGs were proved
to be associated with overall survival based on TCGA follow-
up data, and six genes were finally validated for prognostic
values in another cohort from the GEO database.

Among the six validated DEGs, VSIG4, HSD11B1, and
CASP5 were upregulated in both higher immune score and
stromal score groups, and high expression of these genes
harbored unfavorable OS compared with low expression
groups, suggesting that higher expressions of these genes
were predictive of less tumor purity and worse prognosis. On
the contrary, the other three downregulated genes including
HMGCS2, HSD11B2, and OGDHL in higher immune score
and stromal score groups indicated higher expressions of
these genes were associated with more tumor purity and
prognostic advantages.

VSIG4 was found to promote carcinogenesis by inhib-
iting cytotoxic T-lymphocyte activation and acted as an
independent predictive factor for a shorter progression-free
survival and overall survival in high-grade glioma patients
[19]. Moreover, macrophage-associated VSIG4 was dem-
onstrated to facilitate lung carcinoma andmultiple myeloma
development, which provided a promising immunothera-
peutic target and prognostic indicator [20, 21]. HSD11B1
and HSD11B2 were two isozymes of 11 beta-hydroxysteroid
dehydrogenase and modulate glucocorticoid levels and
might influence circulating levels of active and inactive
glucocorticoids [22]. HSD11B1 exhibits oncogenic potential
in primary imatinib-naı̈ve gastrointestinal stromal tumors
driven by HSD11B1 copy-number gain or missense muta-
tions [23]. CASP5, as a member of caspase family, promoted
angiogenesis of human microvascular endothelial cells by
activating the VEGF-1 signal pathway [24]. CASP5 was also
found to be associated with bladder cancer development,
especially in the selected cases with smoking exposure [25].
HMGCS2 may function as either an oncogene or a tumor
suppressor in various human cancers. HMGCS2 protein

expression was significantly reduced in prostate cancer
tissues, and low HMGCS2 expression was associated with a
high Gleason score, pathological grade, and presence of
distant metastasis in prostate cancer [26]. However, in rectal
cancer, high expression of HMGCS2 predicted poor disease-
free survival, local recurrence-free survival, and metastasis-
free survival [27]. OGDHL was found to suppress cervical
tumorigenesis via inactivation of the AKTsignaling pathway
in cervical cancer [28]. A significant high methylation level
leading to inactivation of OGDHL was observed in co-
lorectal cancer compared with nontumoral marginal sam-
ples and might be considered as a biomarker for colorectal
carcinogenesis [29].

With further exploration of public databases and wide
application of bioinformatic methods, increasing evidence
indicated promising biomarkers and predictive signatures in
renal cancer. Based on TCGA and International Cancer
Genome Consortium (ICGC) cohorts, DYSF, VNN3,
TMED3, and TEK were found and validated to exert as
promising biomarkers to predict the prognosis of ccRCC
patients [30–33]. A 3-mRNA signature consisting of ERG,
RRM2, and EGF was constructed to predict survival in
papillary renal cell cancer with satisfactory accuracy [34]. A
risk score based on 6 lncRNAs was raised and exhibited
superior predictive value for prognosis of ccRCC [35].

1ere are still some advantages and limitations in this
study.1e TCGA has enough sample size and comprehensive
types of genomic data, providing a relatively reliable basis for
bioinformatics analysis. Although the results were further
validated in other databases, several DEGs with significant
clinical significance in ccRCC are still required to be in-
vestigated to determine the underlyingmolecular mechanism.

5. Conclusion

In summary, our study elucidated the close association
between immune score and clinical characteristics as well as
prognosis in ccRCC. Moreover, six DEGs including CASP5,
HSD11B1, VSIG4, HMGCS2, HSD11B2, and OGDHL were
explored and validated to exert a predictive value in overall
survival of ccRCC.
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GO: Gene ontology
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GEO: Gene expression omnibus.

Data Availability

Data supporting the findings of this study are available
within the article.

8 BioMed Research International



Conflicts of Interest

1e authors declare that they have no conflicts of interest.

Authors’ Contributions

DH and XZ designed this study. DH and XZ collected the
data. MZ and XZ performed statistical analysis. DH and XZ
wrote the paper. All authors read and approved the final
version of the paper.

Supplementary Materials

Supplementary Figure 1: associations between stromal
scores and clinical characteristics or overall survival. (A)
Distribution of stromal scores stratified by T status, and box
plot indicated a higher stromal score was associated with T3/
4 (vs. T1/2, P � 0.03). (B) Box plot indicated no significant
associations between stromal score and N1 (vs. N0,
P � 0.36). (C) Box plot indicated no significant associations
between stromal score and M1 (vs. M0, P � 0.71). (D) Box
plot indicated no significant associations between stromal
score and G3/4 (vs. G1/2, P � 0.53). (E) Box plot indicated
no significant associations between stromal score and AJCC
stage (P � 0.14). (F) Kaplan–Meier survival curves for
overall survival of ccRCC stratified by stromal scores, in-
dicating no significant associations between the low stromal
group and high stromal score group (P � 0.22). Supple-
mentary Table 1: baseline characteristics of TCGA and GEO
validation cohorts. (Supplementary Materials)
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