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Targeting Gonadotropins: An Alternative Option for
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Gemma Casadesus,1 Emma Ramiro Puig,2 Kate M. Webber,1 Craig S. Atwood,3 Margarida Castell Escuer,2

Richard L. Bowen,4 George Perry,1 and Mark A. Smith1

1 Department of Pathology, Case Western Reserve University, Cleveland, OH 44106, USA
2 Departament de Fisiologia, Facultat de Farmacia, Universitat de Barcelona, Barcelona 08028, Spain
3 School of Medicine, University of Wisconsin and William S. Middleton Memorial Veterans Administration, Madison, WI 53705,
USA

4 Voyager Pharmaceutical Corporation, Raleigh, NC 27615, USA

Received 5 January 2006; Revised 10 May 2006; Accepted 28 June 2006

Recent evidence indicates that, alongside oxidative stress, dysregulation of the cell cycle in neurons susceptible to degeneration in
Alzheimer disease may play a crucial role in the initiation of the disease. As such, the role of reproductive hormones, which are
closely associated with the cell cycle both during development and after birth, may be of key import. While estrogen has been the
primary focus, the protective effects of hormone replacement therapy on cognition and dementia only during a “crucial period”
led us to expand the study of hormonal influences to other members of the hypothalamic pituitary axis. Specifically, in this review,
we focus on luteinizing hormone, which is not only increased in the sera of patients with Alzheimer disease but, like estrogen, is
modulated by hormone replacement therapy and also influences cognitive behavior and pathogenic processing in animal models
of the disease. Targeting gonadotropins may be a useful treatment strategy for disease targeting multiple pleiotropic downstream
consequences.

Copyright © 2006 Gemma Casadesus et al. This is an open access article distributed under the Creative Commons Attribution
License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly
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BACKGROUND: ALZHEIMER’S DISEASE

Alzheimer’s disease (AD), the primarily cause of senile de-
mentia, is characterized by progressive memory loss, impair-
ments in language and visual-spatial skills, episodes of psy-
chosis, aggressiveness, and agitation, and ultimately death
(reviewed in [1, 2]). AD is the most prevalent neurodegen-
erative disease, affecting approximately 4-5 million people in
the United States and 15 million people worldwide. Given
current population demographic predictions, it is estimated
that by 2050, 50 million people will suffer from this devas-
tating disease if no successful treatments are found [3]. The
severity and the chronicity of this disease ultimately leads to
institutionalization of patients, and thus results in a tremen-
dous cost for the individual families and for society at large.
Indeed, in the United States alone, the current cost of caring
for patients with AD dementia is estimated at $100 billion
per year and this will undoubtedly increase in coming years
[4].

Unfortunately, to date, only palliative treatments of the
symptoms are available and it is widely accepted that a bet-
ter understanding of the etiology and disease pathogene-
sis is crucial for the development of new drugs capable of
forestalling the progression of the disease. The leading hy-
pothesis, the amyloid-β hypothesis, which is based on mu-
tations in either the amyloid-β protein precursor (AβPP)
or presenilins-1/2 (PSEN1/2) that affect the processing of
amyloid-β and contribute to its accumulation in neurons
and consequent formation of senile plaques [5], has come
under increased scrutiny since manipulation of amyloid-β
in cell or animal models does not yield the multitude of
biochemical and cellular changes characteristic of the hu-
man disease. In fact, it is becoming increasingly evident that
amyloid-β deposition may be a consequence rather than
an initiator of the pathophysiological cascade [6–9]. Other
mechanisms of disease, such as abnormally hyperphospho-
rylated bundles of tau protein found in neurofibrillary tan-
gles [10], oxidativestress [11], metal ion deregulation [12],



2 Journal of Biomedicine and Biotechnology

and inflammation [13] also fail to completely explain all the
abnormalities found in AD. Moreover, the lack of efficient
therapeutic strategies based on such mechanisms only serves
to emphasize the fundamental gap in our knowledge of dis-
ease.

CELL CYCLE DYSREGULATION: AN ALTERNATIVE
HYPOTHESIS FOR ALZHEIMER’S DISEASE

There is increasing evidence for activated cell cycle in the
vulnerable neuronal population in AD [14–16]. We suspect
that the dysregulation of the cell cycle, in conjunction with
oxidative stress, in hippocampal neurons leads to initiation
of the pathophysiolological cascade of AD [17]. This hy-
pothesis is supported by several neuronal changes seen in
AD including the ectopic expression of markers of cell cycle
[18], organelle kinesis [19], and cytoskeletal alterations such
as tau phosphorylation [20]. Importantly, and suggestive of
this pivotal effect, mitotic alterations are not only one of
the earliest neuronal abnormalities found in AD but are also
related to the majority of the pathological hallmarks, such
as hyperphosphorylation of tau, amyloid-β accumulation,
and oxidative stress (reviewed in [21]). To this end, a near
identical phosphorylation of tau also occur when cells are
mitotically active and phosphorylation is driven by cyclin-
dependent kinases (CDKs) [22–25]. Therefore, one possibil-
ity is that cell cycle alterations could lead to tau phospho-
rylation and subsequent neuronal degeneration. In support
of this hypothesis, several reports in the literature indicate
that cell cycle markers are abnormally expressed in nerve
cells with filamentous tau deposits. These markers include
proteins cyclin D and Cdk4/Cdk6, involved in the G0/G1

transition, retinoblastoma protein, and the CDK inhibitors
p15, p16, p18, and p19 [26–32]. Other markers such as cy-
clin E and Cdc25A, usually associated with G1/S transition,
have also been shown to be abnormally expressed in degen-
erating neurons [33–35]. Importantly, colocalization of dif-
ferent cell cycle markers with phosphorylated tau protein
has also been demonstrated. In this regard, colocalization of
cyclin B, Cdc2, Cdc25B, Polo-like kinase, Myt1/Wee1, and
p27Kip1, all regulators of the G2/M transition, and some mi-
totic epitopes, such as phosphorylated histone H3, phospho-
rylated RNA polymerase II, PCNA, Ki67, and MPM2, has
been demonstrated [27, 33, 34, 36–45]. Importantly some
of these markers appear to precede the phosphorylation and
aggregation of tau protein, suggesting a possible cause-and-
effect relationship [37, 46, 47]. Moreover, these in vivo find-
ings are supported by studies in cell models showing AD-
like phosphorylation of tau protein in mitotically active cells
[48–50] and also by the phosphorylation of recombinant tau
by CDKs in vitro [51]. While cell cycle changes often pre-
cede tau phosphorylation, in a Drosophila model, cell cycle
abnormalities appear to follow tau alterations [52]. Also, of
relevance, experimental studies have established that inap-
propriate reentry into the cell cycle results in nerve cell death
and reactivation of the cell-cycle machinery likely plays an
important role in the apoptotic death of postmitotic neurons
[53, 54]. Taken together, these findings indicate that cell cycle

is intimately associated with AD and tau phosphorylation.
However, as stated above, the chronology and mechanistic
origin of tau phosphorylation remain to be clearly character-
ized.

There is also abundant evidence indicating that oxida-
tive stress and free radical damage play key roles in the
pathogenesis of AD [11, 55, 56]. Importantly free radicals,
free-radical generators, and antioxidants act as crucial con-
trol parameters of the cell cycle [57] and have all been im-
plicated in the development or halting of cell-cycle-related
diseases such as cancer [58]. Therefore, one possibility is that
oxidative stress and cell cycle dysregulation work synergisti-
cally in the development of AD [59]. In support of this no-
tion, during the cell cycle, there is division and redistribu-
tion of cellular organelles such that mitochondrial prolifer-
ation is evident [60]. Mitochondrial proliferation is impera-
tive for providing the energy needed for cell division, how-
ever, in cells where the cell cycle is interrupted or dysfunc-
tional, cells incur a “phase stasis” to serve as a potent source
of free radicals and cause redox imbalance [6], especially in
those redox reactions involving calcium metabolism [61]. On
the other hand, it is known that one pathway for oxidative
stress mediated neuronal cell death is cell cycle reentry [62]
and antioxidant treatments, most with potent cell-cycle in-
hibitory properties produce declines in tau phosphorylation
[63].

Therapeutic interventions specifically designed to arrest
cells at G0 phase of the cell cycle, halt mitotic signalling
cascades, or reduce the levels of endogenous or exogenous
mitogens responsible for the aberrant mitosis in senescent
neurons could have a tremendous success in AD treatment
(reviewed in [21, 64]). Supporting this, nonsteroidal anti-
inflammatory drugs (NSAIDs), which also possess antipro-
liferative properties, are useful to delay the progression of
AD [65]. Likewise, antiapoptotic compounds such as resver-
atrol are well established in aging and AD. Resveratrol, a po-
tent antioxidant of natural origin [66–69], may be of bene-
fit in murine senescence and AD models and in some clin-
ical studies in patients with AD [70]. Studies with animals
also demonstrated protective effects of resveratrol against
kainite-induced seizures [71] and its protective effects against
brain injury due to ischemia/reperfusion in gerbil model
[72]. Likewise, flavopiridol, a synthetic flavone closely related
to a compound found in a plant native to India, Dysoxylum
binectariferum, is a potent inhibitor of most CDKs, includ-
ing CDK1, CDK2, CDK4, and CDK7 [73]. It induces growth
arrest at either the G1 and/or G2 phases of the cell cycle in
numerous cell lines in vitro by acting as a competitive bind-
ing agent for the ATP-binding pocket of CDK [73]. One con-
sequence of this inhibition is a decrease in cyclin D1, the
binding partner of CDK4 in G1, by depletion of cyclin D1
mRNA resulting in a decrease in CDK4 kinase activity [74].
Importantly, the drug is in phase I and II clinical trials as
an antineoplastic agent for breast, gastric, and renal cancers
[75] and recent studies demonstrate its effectiveness on brain
cancers such as gliomas [76]. These findings indicate that
flavopiridol is a powerful CDK inhibitor as well as a potential
therapeutic avenue for AD.
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Notably, one powerful endogenous mitogen, luteinizing
hormone (LH), a gonadotropin most often associated with
reproduction, is particularly increased during aging and AD.
Therefore another potential therapeutic option is to target
age-related increases of this hormone in AD. The exploration
of the link between gonadotropins such as LH and the etiol-
ogy of AD and its potential value as a therapeutic avenue will
be the focus of this review.

ARE SEX STEROIDS INVOLVED IN THE
ETIOLOGY OF ALZHEIMER’S DISEASE?

Hormones of the hypothalamic-pituitary-gonadal (HPG)
axis include gonadotropin releasing hormone, luteinizing
hormone (LH), follicle-stimulating hormone (FSH), estro-
gen, progesterone, testosterone, activin, inhibin, and fol-
listatin. Each of these hormones is involved in regulating
reproductive function by participating in a complex feed-
back loop. Briefly, this loop is initiated by the secretion of
hypothalamic gonadotropin releasing hormone that stim-
ulates the pituitary to secrete the gonadotropins LH and
FSH. These gonadotropins are capable of stimulating oo-
genesis/spermatogenesis as well as the production of sex
steroids which complete the feedback loop by reducing the
gonadotropin secretion by the hypothalamus into the blood-
stream [77].

Menopause and andropause are characterized by a dra-
matic decline in sex steroids resulting in an increase in the
production of gonadotropins. To this end, in women, go-
nadotropins are considerably increased reaching a 3- to 4-
fold increase in the concentration of serum LH and a 4- to
18-fold increase in FSH. Men also experience an increase of
LH and FSH, but to a lower degree than those in women, re-
sulting only in a 2-fold and 3-fold increase, respectively [78,
79]. Notably, the link between the HPG axis hormones and
AD is not new as it has been hypothesized that the marked re-
duction in sex hormone levels during postmenopausal states
results in various physiological and psychological changes as-
sociated with the development and progression of AD. In this
regard, several epidemiological studies indicate that women
have a higher predisposition to develop AD than do men
[80–82] and treatment with hormone replacement therapy
(HRT) reduced this risk in women [83, 84]. These gender
differences, in addition to the capacity of HRT to reduce this
risk in postmenopausal women, led researchers to investigate
the role of female sex steroids, namely, estrogen, in the patho-
genesis of AD.

To this end, estrogen can act as a neuroprotective agent
by lowering the brain levels of amyloid-β [85], by ameliorat-
ing the nerve cell injury caused by amyloid-β [86], and/or
promoting synaptic plasticity and growth of nerve processes
[87]. Moreover, estrogen is also capable of reducing oxida-
tive stress, increasing cerebral blood flow, and enhancing
cholinergic function and glucose transport into the brain
[88]. All of these effects have a well-known positive impact
on the prevention and the amelioration of AD. However,
recent prospective studies, including the Women’s Health
Initiative Memory Study (WHIMS), seem to contradict the

previous promising observations regarding HRT. WHIMS, a
randomized clinical trial designed to assess the incidence of
dementia among relatively healthy postmenopausal women
under HRT, showed a substantially increased overall in-
cidence of dementia in postmenopausal women [89–91].
Since hormone therapy is relatively common for menopausal
women, these latter findings have raised serious concerns
about the long term efficacy and safety of HRT.

HORMONE REPLACEMENT: TIMING IS EVERYTHING

Many hypotheses have been postulated to justify the re-
sults of the WHIMS. To date, some aspects related to the
form (estradiol versus conjugated equine estrogen (CEE))
and the route of administration (oral versus transdermal)
of estrogen, the choice of progestin (natural versus synthetic
progestins), the high doses administered, the type of treat-
ment regimen (continuous versus cyclic) might be important
points to be considered (reviewed in [92, 93]). For instance,
the adverse effects on cognition are mainly attributed to the
thromboembolic complications of oral CEE [94]. However,
one aspect that has been overlooked and that is tightly linked
to the timing of hormone therapy (ie, perimenopausal ver-
sus postmenopausal) is the release of, and capacity of, HRT
to lower gonadotropins such as LH. In fact, it is only when
one takes into account the role of these other hormones of
the hypothalamic-pituitary-gonadal axis (reviewed in [77]),
during a “critical period” around the onset of menopause
and the years beyond that cognitive decline and suscepti-
bility, onset, and progression of AD can be accurately char-
acterized. To this end, chronic elevation of gonadotropins
and decline in sex steroids leads to HPG axis shutdown.
Therefore, HRT started in older women such as those of
the WHIMS [89], while bringing estrogen to premenopausal
levels, cannot decrease the levels of gonadotropins such as
LH. On the other hand, HRT started during peri-menopause
or early menopause, when the HPG axis feedback loop sys-
tem is functional, does lead to a lowering of LH. Support-
ing this hypothesis, the levels of gonadotropins including
LH are highest during peri-menopause and early menopause
[95], when HRT has been observed to be most successful in
preventing dementia [96, 97]. Likewise, studies also demon-
strate that while cognitive decline can be rescued with es-
trogen therapy initiated immediately after menopause and
ovariectomy (mimics menopause), however, unless subjects
are previously primed with estrogen [98], estrogen replace-
ment initiated after a long interval following menopause or
ovariectomy is ineffective at rescuing cognition [99–101].
This later finding suggests that by priming, HPG-axis func-
tionality is sustained and thus led to cognitive improvements
after HRT. Likewise, estrogen becomes increasingly less ef-
fective at modulating LH expression and biosynthesis the
longer that HRT is started after ovariectomy [102], a mech-
anism that is specifically mediated by the gonadotropin-
releasing hormone (GnRH) receptor [103, 104]. Impor-
tantly, the ovariectomy findings parallel those observed dur-
ing aging, such that estrogen feedback on LH secretion [105]
and GnRH gene expression [106] is decreased. Whether



4 Journal of Biomedicine and Biotechnology

the beneficial AND detrimental effects of HRT are associ-
ated with menopause-driven gonadotropin changes is not
yet fully known and is currently being examined in our
laboratory. However, the above-cited evidence does indicate
that timing, pituitary function, and estrogen-gonadotropin
influences are more complex than previously thought. These
findings may provide the reconciliating link between the con-
tradicting data presented in the WHIMS and prior observa-
tional/epidemiological studies. Moreover, these data suggest
a potential role for gonadotropins in the CNS, particularly
on cognitive decline and AD pathogenesis and, more impor-
tantly, places gonadotropins as a potential therapeutic target
for the treatment of AD.

EVIDENCE FOR A ROLE OF LH IN ALZHEIMER’S DISEASE

Epidemiological data supports a role of LH in AD. In this re-
gard, and paralleling the female predominance for develop-
ing AD [81, 82, 107, 108], LH levels are significantly higher in
females as compared to males [97] and LH levels are higher
still in individuals who succumb to AD [109, 110]. Also im-
portant is the fact that, in Down syndrome, where the preva-
lence of AD-like etiology is higher in males than in females,
that is, a reversal to what is observed in the normal popula-
tion, males have higher serum LH levels compared to females
[111, 112]. Therefore, LH allows an explanation for the re-
versing of the classical gender-predisposition in AD versus
Down syndrome [113].

Like epidemiological data, direct experimental evidence
also indicates that LH may be an important player in the de-
velopment and progression of AD. In this regard, LH is ca-
pable of modulating cognitive behavior [114], is present in
the brain, and has the highest levels of its receptor in the
hippocampus [115], a key processor of cognition affected
by aging and severely deteriorated in AD. Furthermore, we
have recently examined cognitive performance in a well-
characterized transgenic line that overexpresses LH [116–
118] and have found that these animals show decreased cog-
nitive performance when compared to controls [119]. Since
other hormones in addition to LH are altered in the LH over-
expressing mice, we also measured Y-maze performance in a
well-characterized LH receptor knockout (LHRKO) strain of
mice [120], which also have very high levels of LH, to be-
gin to determine whether cognitive decline could be medi-
ated by a specific LH mechanism (ie, the LH receptor). In
this regard, LHRKO (�/�) mice performed indistinguish-
able from wild-type (+/+) mice. Therefore, the negative ef-
fects on cognition affected by high levels of LH were com-
pletely attenuated by knockout of the receptor. While com-
paring the TgLH-β and LHRKO animals should be done with
caution (ie, different strain and background), changes in es-
trogen levels were unlikely to be responsible for the cognitive
changes observed in this study since LH overexpressers show
elevated rather than diminished levels of estrogen [116–118]
and LHRKO mice show decreased levels of estrogen when
compared to wild-type littermate controls [120]. On the
other hand, both do show high LH but this is obviously a
nonissue in the LHRKO animals. These findings support our

hypothesis that modulation of cognition by estrogen is in-
terrelated with the status of LH levels and function. Finally,
recently we also found that experimentally abolishing LH in
the AβPP transgenic mouse, an animal model of AD, using
a selective GnRH agonist (leuprolide acetate) that has been
shown to reduce LH to undetectable levels by downregulat-
ing the pituitary gonadotropin-releasing hormone receptors
[121, 122], improved hippocampally related cognitive per-
formance and decreased amyloid-β deposition in these mice
when compared to aged-matched controls [123]. These find-
ings, together with data indicating that LH modulates AβPP
processing in vivo and in vitro [122], suggest that LH may be
a key player in this disease.

Mechanistically, and as alluded to in the previous section,
LH could be working via the modulation of cell cycle. LH is
known to be a potent mitogen [124, 125] by acting through
MAP kinases pathway [126]. In this regard, LH activates ERK
[127] and other transcription factors [128] all involved in cell
cycle [129], thus suggesting that high levels of this hormone
could lead to the aberrant cell cycle reentry of neurons ob-
served in AD.

CAN TARGETING LH BE THE NEW
THERAPEUTIC AVENUE?

Findings discussed in this review indicate that targeting the
release of LH may indeed be a successful strategy to prevent
and forestall the progression of AD. As discussed above,
preclinical data using leuprolide acetate leads to modulation
of AβPP processing in normal mice [122] and cognitive im-
provement and decreased amyloid-β burden in AβPP trans-
genic mice [123]. More importantly, a recently completed
phase II clinical trial shows stabilization in cognitive decline
in a subgroup of AD patients treated with leuprolide acetate
(http://clinicaltrials.gov/ct/show/nct00076440?orden=6).
Specifically, female AD patients treated with high doses of
leuprolide acetate (http://www.secinfo.com/d14D5a.z6483.
htp, pages 56–64) showed stabilization in cognitive function
and activities of daily living. These promising findings
support the importance of LH in AD and give way for an
alternative and much needed therapeutic avenue for this
insidious disease.
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