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GRAPHICAL ABSTRACT
PUBLIC SUMMARY

- Stable organic radicals behave as tunable electron spin qubits with room-temperature quantum coherence.

- Molecular structures, environment, and operation conditions affect electron spin dynamics of radical qubits.

- Radical qubits could be integrated into polymers, microporous frameworks, and thin films.

- Radical qubits enable quantum computing, quantum memory, and quantum sensing.
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The past century has witnessed the flourishing of organic radical chemistry.
Stable organic radicals are highly valuable for quantum technologies thanks
to their inherent room temperature quantum coherence, atomic-level desig-
nability, and fine tunability. In this comprehensive review, we highlight the
potential of stable organic radicals as high-temperature qubits and explore
their applications in quantum information science, which remain largely
underexplored. Firstly, we summarize known spin dynamic properties of sta-
ble organic radicals and examine factors that influence their electron spin
relaxation and decoherence times. This examination reveals their design
principles and optimal operating conditions. We further discuss their inte-
gration in solid-state materials and surface structures, and present their
state-of-the-art applications in quantum computing, quantum memory,
and quantum sensing. Finally, we analyze the primary challenges associ-
ated with stable organic radical qubits and provide tentative insights to
future research directions.

INTRODUCTION
Quantum information science (QIS) takes advantage of unique features of

quantum mechanics—superposition and entanglement—for information pro-
cessing, enabling revolutionary technologies including quantum computing,
quantum communication, and quantum sensing.1–4 The development of QIS
has led to quantumcomputers that outperformclassical supercomputers in spe-
cific tasks,5,6 eavesdropping-free communication between a satellite and a
ground station,7,8 and in vivo metrology of magnetic field and temperature with
unprecedented sensitivity and spatial resolution.9,10 According to the DiVincen-
zo’s criteria, physical implementation of the basic unit of quantum information,
i.e., qubit, requires two-level quantum systems that are coherent, initializable,
controllable, measurable, and scalable.11 These criteria have inspired extensive
investigations on a myriad of qubit candidates, spanning superconducting cir-
cuits,12 semiconductor quantum dots,13 trapped ions,14 neutral atoms,15 nuclear
spins,16,17 solid-state electron spin defects,18–20 photons,2 Majorana zero
modes,21 etc. However, none of them is perfect for all QIS technologies—the
physical nature of each candidate determines its applicability and limitation.22

For instance, superconducting circuits are highly scalable thanks to their compat-
ibility with concurrent semiconductor technologies, making them ideal building
blocks for large-scale quantum computers, yet the ultralow operation tempera-
ture (tens of millikelvin) restricts their utility in ambient conditions.12 Therefore,
with the growing interests in applying QIS in various scenarios, such as chemi-
cal-specific quantum sensing in biological systems, there is a high demand for
new types of qubits.

With atomic-level designability and tunability, molecular electron spin qubits,
i.e., molecules with unpaired electrons, hold the promise for new opportunities
of QIS.23–27 For instance, chemical-recognizing functional groups can be incor-
porated for highly selective quantum sensing,28–30 and multi-level spin states
can be engineered to simplify the implementation of quantum algorithms.31

Recent studies have revealed design principles formolecular electron spin qubits
with long-lived quantum coherence,32 high operating temperature,33,34 and opti-
cal addressability.35–40 The removal of environmental nuclear spins improves the
decoherence time of a vanadium-based coordination complex approaching 1ms
at cryogenic temperature,32 the suppression of orbital angular momentum gives
rise to room temperature coherence of an yttrium-based organometallic mole-
cule,41 and tailor-designed triplet states enable optical initialization and readout

of chromium-based and vanadium-based coordination complexes.38,42,43

Furthermore, coherent addressing of single-molecular electron spin qubits has
been achievedwith state-of-the-art single-molecule spectroscopy,35–37 scanning
tunneling microscopy,44,45 atomic force microscopy,46 and quantum metrology
using a nitrogen-vacancy center in diamond.47 These advancements have led
to prototype demonstrations of molecular QIS technologies, such as a universal
two-qubit quantum logic gate with a radical pair,48,49 quantum error correction
with an endohedral fullerene qudit,31 quantum sensing of 1H and 2H with a
Cu2+-containingmetal-organic framework (MOF),50 and intramolecular quantum
teleportation with a donor-acceptor molecule.51 So far, these studies have been
focused on coordination complexes27,52 and photo-generated radicals,53 which
typically suffer from low operating temperature and/or short lifetimes, compro-
mising their applications in ambient conditions. Herein, we sought to revisit sta-
ble organic radicals, whose electron spin dynamics has been extensively studied
over two decades, yet whose applications in QIS remain underexplored.54

Organic radicalsareopen-shellmoleculeswith one ormore unpaired electrons,
which generally exhibit short lifetimes and high reactivity.55 Delocalization and
steric hindrance could stabilize organic radicals so that they retain unpaired elec-
trons in ambient conditions.56,57 Moreover, they could be modified with func-
tional groups to inherit optical,58,59 electrochemical,60,61 and magnetic proper-
ties,62 as well as recognition capabilities.63–65 Their stability and versatile
functionalities enable applications in synthesis,66,67 sensing,68 optoelectronics,69

spintronics,70 and biology.71 Stable organic radicals also display advantageous
spin dynamic properties: they are composed of light elements (C, H, N, O, P, S,
etc.) with negligible spin-orbit coupling,72–74 which give rise to quantum coher-
ence at room temperature and in complex chemical environments. Hence, stable
organic radicals have been widely used as spin labels for protein structure deter-
mination and as polarizing agents for dynamic nuclear polarization.75–77

In this review, we highlight the great potential of stable organic radical qubits in
QIS applications (Figure 1), which has attracted little attention so far. Following a
summary of known stable organic radical qubits, we introduce their electron spin
dynamic properties, i.e., figure of merits of qubit performance, with the emphasis
on their mechanisms and optimization strategies. We then summarize trials of
integrating stable organic radical qubits into solid-state systems and present pro-
totype applications in various quantum information technologies. Finally,
although coordination complexes,27,52 endohedral fullerenes,31,78–80 photo-
generated radicals,53,81–83 and injected radicals in devices84,85 are beyond our
scope, we suggest that interested readers explore these alternativemolecular qu-
bit systems through additional literature.

STABLE ORGANIC RADICAL QUBITS
Tens of stable organic radicals have been experimentally demonstrated to be

qubits, which are summarized in Figures 2 and S1�S4. These include radicals
based on triphenylmethyl, nitroxide, semiquinone, and conjugated macrocyclic
structural motifs. The triphenylmethyl radical and its derivatives host an electron
spin on the central carbon atom, whose stability stems from large steric hin-
drance and conjugation pathways provided by the surrounding benzene rings.86

The nitroxide radicals, such as (2,2,6,6-tetramethylpiperidin-1-yl)oxyl (TEMPO),
possess an unpaired electron residing on the N-O site and stabilized by delocal-
ization effects.87,88 o-Phenols and p-phenols can be oxidized to form semiqui-
none radicals whose electron spins are concentrated on oxygen atoms and
stabilized by delocalization.89 Other radicals, such as tetrathiafulvalene (TTF),
1,3-bisdiphenylene-2-phenylallyl (BDPA), and 2,2-diphenyl-1-picrylhydrazyl,
possess unpaired electrons on highly conjugated and sterically hindered
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backbones.90,91 In addition, graphene nanoribbons (GNRs)92–94 and carbon
nanotubes95 could also host stable radicals via chemical modification. All these
stable radicals are potential candidates as qubits as they exhibit decent spin dy-
namic properties and coherent addressability. In this review, we refer to stable
organic radical qubits as radical qubits for simplicity.

ELECTRON SPIN DYNAMICS
QIS applications require qubits tomaintain coherence during quantummanip-

ulation and readout.11 Regarding the radical qubit, this demand translates to long
electron spin relaxation time (T1) and decoherence time (T2).

23 T1 describes the
time that an electron spin takes to relax from a nonequilibrium state to thermo-
dynamic equilibrium (Figure S5A).T2 describes the time spanned for the electron
spin to lose its phase coherence (Figure S5B). In the literature of radical qubits, T2
is often referred to as the dephasing time or phasememory time (Tm), which en-
compasses all dephasing processes. For consistency, we use Tm exclusively in
this review. Another criterion of the qubit is the ability to manipulate its quantum
state through single-qubit quantum logicgates, i.e., arbitrary rotation on theBloch
sphere (Figure S5C), which could be demonstrated via Rabi oscillations. Both T1
and Tm need to exceed the duration of a quantum gate operation, which is typi-
cally tens of nanoseconds.54,96 The T1, Tm, and manipulability of a radical qubit
are typically characterized by pulse electron paramagnetic resonance (EPR)
spectroscopy with specifically designedmicrowave pulse sequences (Figure S6;
see details in the supplemental information).

The spin relaxation and decoherence mechanisms have been summarized in
previous reviews, which are highly recommended to interested readers.54,96 Here,
we briefly introduce core concepts of electron spin dynamics. The spin relaxation
is induced by exchanging energy of the spin with environment through spin-spin
interaction and spin-lattice coupling. The former, namely the cross-relaxation,
takes place through flip-flop of nearby electron spins and nuclear spins. The latter
is associated with absorption and/or emission of phonons (lattice vibrations)
through various processes including direct, Raman, Orbach, local-mode, ther-
mally activated, and tumbling-dependent processes, which are summarized in
Table S1. In the direct process, the spin relaxes by emitting a phonon whose en-
ergy is equal to the Zeeman splitting; hence, it is a one-phonon relaxation pro-
cess. The spin may also undergo two-phonon relaxation, where it transitions to
a virtual energy level (Raman process) or a low-lying excited state (Orbach pro-

Figure 1. Introduction to stable organic radical
qubits

cess) by absorbing a phonon and relaxing to its
ground state by emitting another phonon. The
local-mode process is caused by the localized
molecular vibration instead of the lattice vibra-
tion. The thermally activated process involves a
motion, such as rotation of a methyl group or
hydrogen hopping within a hydrogen bond,
whose rate is comparable with the Larmor fre-
quency of the spin. Moreover, for molecules in
a solution, the tumbling causes spin rotation
andmodulation of anisotropic interactions, intro-
ducing an additional source of relaxation. Finally,
electron spins in semiconductorsmay encounter
additional relaxation mechanisms, such as
Elliott-Yafet mechanism and D’yakonov-Perel’
mechanism, which are beyond the scope of
this review.97

The spin relaxation induces decoherence as
well—T1 sets the upper limit of Tm with Tm %

2T1.
98–100 Nonetheless, in most radicals, the de-

coherence is mainly caused by environmental
magnetic noise that modifies Larmor fre-
quencies of electron spins and accordingly re-
duces the phase coherence of their quantum
states. Such a decoherence effect manifests it-
self in two types of processes: instantaneous

diffusion and spectral diffusion.54,96 The instantaneous diffusion takes place if
the electron spin of interest and a nearby electron spin display similar Larmor fre-
quencies. In this case, applying a resonant pulse simultaneously rotates both
spins. The rotation of the latter instantaneously alters the magnetic field experi-
encedby the former, which causes decoherence. The spectral diffusion is caused
by nuclear spins, electron spins, and rotary functional groups (e.g., methyl and
phenyl groups), etc. These species may introduce stochastic magnetic noise
that leads to decoherence of the electron spin of interest during the free evolution
time. In addition, for electron spins with anisotropic g-factors or anisotropic hy-
perfine interactions, molecular tumbling in solution effectively acts as magnetic
noise by modulating the anisotropy, thus it also results in decoherence.54,96

In Tables 1 and S2, we have compiled a summary of experimentally demon-
strated radical qubits, along with their corresponding spin dynamic properties,
to the best of our knowledge. The majority of radical qubits exhibit coherence
at room temperature with T1 consistently surpassing Tm. At room temperature,
most radicals exhibit T1 values on the order of tens of microseconds, whereas
theirTmvalues aremostly on the order ofmicroseconds or hundreds of nanosec-
onds. Notably, several radicals based on GNRs could display exceptionally long
T1 at room temperature, approaching nearly 1 ms when dissolved in d14-o-ter-
phenyl.92,93 Moreover, identical radical qubits may display remarkably different
values for T1 and Tm when characterized under different conditions. Even under
the same condition, subtle adjustments to the structure of radicals and choice of
solvents can induce significant variations. Therefore, spin relaxation and deco-
herence processes of a radical qubit could be tweaked by molecular design
and environmental engineering. Herein, we discuss the influence of molecular
structure, temperature, solvent, Larmor frequency, radical concentration, and
pulse sequence on the spin relaxation and decoherence processes, aiming at
providing a framework of designing radical qubits and interpreting their spin dy-
namic properties.

Molecular structure
The structure of a molecule determines intrinsic properties of its electron

spin (g-anisotropy, spin multiplicity, etc.), contributes to the phononic and mag-
netic environment, and dictates their interactions. The spin relaxation is mainly
affected by spin-orbit coupling and molecular rigidity.99 A strong spin-orbit
coupling facilitates spin relaxation because it allows the motion of an electron
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(e.g., vibration) to affect its spin state (Figure 3B). It also gives rise to g-anisot-
ropy that intensifies the tumbling-induced relaxation in solution (Figure 3A).117

As the strength of spin-orbit coupling decreases with decreasing atomic num-
ber, radical qubits that consist of only light elements exhibit weak spin-orbit
coupling and in turn suppressed spin relaxation.72–74 Therefore, they could
maintain microsecond-scale T1 even at room temperature (Tables 1 and S2),
which is difficult for metal-based molecular qubits with only a few excep-
tions.33,34,41,118–120 Another strategy to slow down spin relaxation is to reduce
the density of states of low-frequency phonons that couple strongly to the elec-
tron spin.121–128 This often translates to a rigid structure enforced by conjuga-
tion and steric hindrance. For instance, improving the degree of conjugation of
and introducing bulky groups into nitroxide radicals consistently increase T1
across a wide range of temperature (Figure 3D),107 and incorporating radicals
onto GNRs, i.e., hydrocarbons with extended conjugation, gives rise to T1 up to
1 s at 5 K.92,93

The major sources of electron spin decoherence are nearby nuclear spins.96

The influence of a nuclear spin depends on its distance from the electron spin
and its magnetic moment. When the nuclear spin resides within a certain radius
(typically 4�8 Å depending on the magnetic moment) of the electron spin, a dis-
tance called the spin-diffusion barrier, they are strongly coupled by hyperfine/

superhyperfine interactions (Figure 3C).96,131,132 This detunes the nuclear spin
to other more distant nuclei in the bath, reducing its participation in nuclear
flip-flop events. As a result, the nuclear spinwithin the spin-diffusion barrier exerts
little contribution to decoherence. In contrast, when the nuclear spin is beyond
the spin-diffusion barrier, it tends to reduce Tm of the electron spin and its deco-
herence effect scales with the magnetic moment.131 Therefore, a useful design
strategy for improving coherence is to reduce the number of nuclear spins
beyond the spin-diffusion barrier. For radicals that can rarely avoid hydrogen
atoms, deuteration could significantly improve Tm because 2H has a much
smaller magnetic moment than 1H. Besides 2H, 35Cl and 37Cl have low nuclear
gyromagnetic ratios, offering viable alternatives to 1H for extending Tm. For
instance, substituting chlorine for hydrogen onto aromatic rings of the triphenyl-
methyl radical significantly enhances its Tm as showcased in the recent investi-
gation by Dai et al. (Figure 3E).114 Besides nuclear spins, motions of functional
groups, e.g., rotation of methyl groups and liberation of phenyl groups, could
also generate magnetic noise that causes decoherence.54 Zecevic et al. system-
atically examined the impact of methyl groups on the Tm of the tempone radical.
They deliberately mixed various solvents to maintain a relatively constant total
proton concentration while tuning the ratio of methyl to non-methyl protons.
They observed that an elevated concentration of methyl protons expedites

Figure 2. Schemes of selected stable organic radical qubits
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Table 1. T1 and Tm of selected stable organic radical qubits

Radicala Concentration / mmol$L�1 Frequency / GHz Solvent Temperature / K T1 / ms Tm / ms Reference

OX63D 1 9.5 H2O: glycerol = 4:6 77 3334a NAb Chen et al.101

95 5000a

OX63D NAb 9.5 MeOH 300 16.5 5.8 Kuzhelev et al.102

34 15.6 1.8

OX63D NAb 9.5 H2O 300 16.0 7.3 Kuzhelev et al.102

34 15.3 2.2

OX63D NAb 9.5 D2O 300 16.1 7.6 Kuzhelev et al.102

34 16.1 2.0

OX63D NAb 9.5 CHCl3 300 11.4 9.1 Kuzhelev et al.102

34 11.2 5.4

BDPA 0.0007 9.5 Toluene Ambient 12c 9.8c Meyer et al.103

DPPH 0.012 9.5 Toluene Ambient 2.0c 1.3c Meyer et al.103

PDT 0.25 9.5 H2O Ambient 0.56 0.59 Meyer et al.103

2,5-DTBSQ 0.3 9.5 Ethanol Ambient 7.8c 3.2c Elajaili et al.104

TEMPO 1.0 9.5 H2O: glycerol = 1:1 295a 2.00c NAb Sato et al.105

Tempone 0.3 9.5 H2O: glycerol = 1:1 100 100c 5c Nakagawa et al.106

Tempol 3 9.5 Sucrose octaacetate 298a 19.95c NAb Sato et al.107

DTBN 3 9.5 Sucrose octaacetate 250a 5.6c 0.40c Sato et al.107

TEIO 3 9.5 Sucrose octaacetate 300a 25.12c 0.63c Sato et al.107

PCTM 0.2-0.5 9.5 Toluene : CHCl3 = 4:1 298 10c NAb Kathirvelu et al.108

PtTTFtt 0.05 9.5 DCM 298 1.44c 0.34c McNamara et al.109

NIT-polyphenylene NAb 9.4 Powder 300a 1.43c 0.6c Slota et al.92

NIT-GNRs NAb 9.4 Powder 300a 1.43c 0.2c Slota et al.92

C50-LA90 1%d,e 9.73 NAb 30 2102 0.186 Hou et al.110

9.65 298 25.02 0.148

C50-LA140 0.7%d,e 9.73 NAb 30 3522 0.300 Hou et al.110

9.65 298 29.62 0.213

C50-LA400 0.4%d,e 9.73 NAb 30 5173 0.377 Hou et al.110

9.65 298 29.23 0.318

MgHOTP 0.66%e 9.4 NAb 296 10.55 0.153 Sun et al.111

296 21.61f 0.202f

TAPPy-NDI 0.01%e 9.4 NAb 100 790 1.26 Oanta et al.112

296 30.2 0.49

Ni-HATI_iPr 1%e 9.7 NAb 100 3c 0.09c Lu et al.113

PTCM 0.1%e 9.26 NAb 100 150c 1.5c Dai et al.114

298 35.6 1.08

TEMPO SAM NAb 9.47 NAb 10 9200 13.53 Tesi et al.115

BTEV-BTR 1%e 9 NAb 80 386 4.39 Poryvaev et al.116

See the full collection of data in Table S2.
aAbbreviations are consistent with those in Figures S1-S4.
bNot available.
cValue estimated from a figure in the reference.
dvalue estimated from the synthetic condition.
eMolar percentage of the radical.
fMgHOTP soaked in THF.
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decoherence (Figure 3F).130 Thus, it is advised to avoid rotary groups through
molecular design to improve Tm.

Temperature
Temperature affects the harmonicity and excitation of phonon modes of

a radical, which in turn influences its spin-lattice coupling. Depending on
the coupling mechanism, spin relaxation processes exhibit different tem-
perature dependencies (Figure 4A; Table S1) and dominate in different tem-
perature regions. Cross-relaxation is typically temperature indepen-
dent.133,134 The direct relaxation rate (1/T1) is linear to temperature and
is typically salient at low temperatures (mostly below 10 K). The Raman
process is significant at higher temperature. Its relaxation rate often ex-
hibits exponential dependence on temperature.135,136 The exponent may
be 7�9 if only acoustic phonons are involved in spin-lattice coupling and
may appear as 3�5 if optical phonons are involved as well. Moreover,
the exponent is close to 2 in the high-temperature limit where the thermal
energy well exceeds the energies of phonons participating in spin-lattice
coupling. At even higher temperature, thermally activated and local-mode
processes may dominate the spin relaxation. The thermally activated relax-
ation rate levels off when the thermal energy is well above the activation
energy, whereas the local-mode processes become faster as temperature
increases. The relaxation rate of the Orbach process also increases with
increasing temperature, and its contribution is especially significant when
the thermal energy exceeds the excitation energy. In addition, in fluid solu-
tions, the tumbling process is typically dominant, and the temperature
dependence of the tumbling relaxation rate is correlated to that of the sol-
vent viscosity, which is discussed in the next sub-section.54,96

Fitting the temperature dependence of T1 with the formulae summarized
in Table S1 could reveal processes involved in spin relaxation at certain
temperature, and it can offer valuable insights into spin dynamics, including
spin-phonon coupling strengths, Debye temperatures, activation energies
of specific intramolecular motions, molecular vibrations strongly coupled
to the spin, and low-lying excited spin states, among other factors. For
instance, fitting the T1 of d24-OX063 collected at 5�100 K with the above-
mentioned spin relaxation mechanisms shows that the direct process

dominates below 10 K, whereas the Raman and Orbach processes play
major roles above 10 K (Figure 4C).101 The fitting further revealed the De-
bye temperature of 135 K and an excitation energy of 0.3 meV. This infor-
mation is critical to understand the spin dynamics of this radical and its
performance in dynamic nuclear polarization. Similarly, in polyphenylene
and GNR modified by nitronyl nitroxide radicals (NIT-polyphenylene and
NIT-GNR, respectively), fitting variable-temperature T1 reveals direct,
Raman, and local mode processes dominating below 25 K, between 25
and 200 K, and above 200 K, respectively (Figure 4D).92 The local mode
process is associated with a characteristic energy of 1,354 cm�1, which in-
dicates a dominant contribution from the stretch of the N-O bond to the
spin relaxation.
The temperature dependence of Tm ismainly determined by nuclear spin diffu-

sion, motional effects, molecular tumbling processes, and spin relaxation.54,96

They dominate at different temperature regions. At low temperature, intramolec-
ular motions are quenched, solvent is frozen, and spin relaxation is slow, so the
decoherence is mainly caused by nuclear spin diffusion. Tm is independent of
temperature in this regime, which has been observed in trityl-CH3 and trityl-
CD3 radicals.137 As temperature increases, motions, e.g., rotation of methyl
groups, become active, which causes decoherence and significantly reduces
Tm. In frozen solutions, as the temperature approaches the glass transition tem-
perature of the solvent, the complexmotion of the solventmolecules can shorten
the Tm strongly to make coherence undetectable. In contrast, when the temper-
ature further increaseswell above the solvent’smelting point, the rapidmolecular
tumbling tends to average out the g-anisotropy and mitigate the impact of the
surrounding environment, leading to an increase in Tm with increasing tempera-
ture. Finally, in both fluid solution and solid state, T1 becomes short at high tem-
perature, providing the upper limit of Tm. These temperature dependencies of Tm
manifest themselves in two TTF-based coordination complexes, mono-radical-
oid PtTTFtt+ and diradicaloid PtTTFtt, dissolved in amixture of dichloromethane
and toluene.109 The Tmof each complex exhibits a small variationwithin the tem-
perature range of 20–90 K, declines sharply as the temperature further in-
creases, and becomes unmeasurable at 130–220 K (melting points of toluene
and dichloromethane are 178.1 and 176.5 K, respectively). Above 220 K, where
the solution is fluid, Tm increases with increasing temperature (Figure 4B).

A

D E F

B C

Figure 3. Influence of molecular structures on spin dynamics (A) g-Anisotropy mapped on a Bloch sphere calculated with EasySpin.129 (B) Illustration of spin-orbit coupling. (C)
Illustration of spin diffusion barrier (inner circle). Green nuclei are within the spin diffusion barrier, and the red ones are out of it. (D) Influence of conjugation and steric hindrance on T1
of various nitroxide radicals dissolved in sucrose octaacetate. Dotted and dashed lines represent contributions from the Raman process and thermally activated process, respectively,
and solid lines represent their sums. Reproduced from Sato et al.107 with permission from Taylor & Francis, copyright 2007. (E) Influence of the number of chlorine atoms substituted
on triphenylmethyl radicals on their Tm values. The triphenylmethyl radical was either dissolved in d8-toluene solution or diluted in powders of hydrogenated diamagnetic analogues.
5CM is the same as PCTM (Figure 2). Reproduced from Dai et al.114 with permission from John Wiley & Sons, copyright 2018. (F) Influence of concentration of methyl groups in
solution on the Tm of tempone radical. Reproduced from Zecevic et al.130 with permission from Taylor & Francis, copyright 1998.
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Solvent and Larmor frequency
The impact of solvent on spin relaxation mainly stems from its viscosity and

protons (hydrogen atoms). In fluid solution, spin relaxation processes mainly
include tumbling-induced spin rotation and modulation of anisotropic interac-
tions comprising g-anisotropy, A-anisotropy, and dipolar coupling with solvent
nuclei (Figures 5A–5D).54 An increase in viscosity enhances collisions between
spin centers and solvent molecules, intensifying the effects of g-anisotropy
and A-anisotropy that reduce T1 and Tm. In addition, the tumbling correlation
time, tR , increases with increasing viscosity, which may alter the spin relaxation
mechanismaswell as the dependence of T1 on the Larmor frequency of electron
spin (u).138 As exemplified in solutions of the PDT radical,117 when ðutRÞ2 � 1,
the tumbling is fast, which effectively averages out the g-anisotropy andA-anisot-
ropy, rendering the spin system isotropic. As a result, T1 is governed by the spin
rotation that is frequency independent. When ðutRÞ2 is non-negligible, the mod-
ulation of anisotropic interaction is significant, andT1 becomes frequency depen-
dent—T1 increaseswith increasingu. (The frequency dependencies of T1 and Tm
remain underexplored likely due to limited availability of multi-band EPR spec-
trometers; see further discussions in the supplemental information.).

Protons in solvent molecules typically facilitate spin relaxation and decoher-
ence. Their nuclear spins act as environmental magnetic noise that weakly cou-
ples to electron spins through superhyperfine interaction, reducing both T1 and
Tm via spectral diffusion. Deuteration helps relieve this problem because the nu-
clearmagneticmoment of deuterium is six times less than that of the proton. For
instance, at 250 MHz and room temperature, the trityl-CD3 exhibits T1 and Tm of
12.2 and 11 ms in H2O, respectively, while these values become 16.4 and 14 ms in
D2O.

138 Furthermore, N- and O-based radicals readily form hydrogen bonds with
protons of polar solvent molecules, which facilitates spin relaxation through pro-
ton hopping within the hydrogen bonds, a thermally activated process. This phe-
nomenon is evident in the study on semiquinone radicals dissolved in alcoholic
solvent.54,96 Replacing OH with OD in the solvent approximately halves the relax-
ation rate.104 Complete deuteration of the solvent further improvesT1 and almost
eliminates its frequency dependence, indicating that thermally activated proton
hopping dominates spin relaxation in this system (Figure S7).

Radical concentration
The radical concentration determines spin-spin interaction, which induces

both spin relaxation and decoherence. For a radical in solution, its concentration
dependence of T1 depends on the charge state. T1 of a positively or negatively
charged radical remains concentration independent at relatively high concentra-
tion because the radicals tend to repel each other to keep long spin-spin distance
and in turn weak spin-spin interaction. For instance, semiquinone radicals, which

A

C D

B
Figure 4. Influence of temperature on spin dynamics
(A) Temperature dependence of spin-lattice relaxation
rate under various relaxation processes normalized to
the 1/T1 at 300 K. Simulations were performed based
on corresponding equations in Table S1, and simula-
tion parameters of Orbach, Raman, thermally acti-
vated, and local-mode processes are arbitrary. (B)
Temperature dependence of T1 and Tm for PtTTFtt
and PtTTFtt+. Reproduced from McNamara et al.109

ªThe Authors, some rights reserved; distributed un-
der CC-BY-NC-ND 4.0 (http://creativecommons.org/
licenses/by-nc-nd/4.0/). (C) Temperature depen-
dence of spin-lattice relaxation rate for d24-OX063
with various concentrations. Reproduced from Chen
et al.101 with permission from Royal Society of
Chemistry, copyright 2016. (D) Temperature depen-
dence of 1/T1 and Tm for NIT-GNRs and NIT-poly-
phenylene. Reproduced from Slota et al.92 with
permission from Springer Nature, copyright 2018.

hold negative charges, exhibit negligible concen-
tration dependence of T1 up to 1 mmol/L.140,141

In contrast, neutral radicals, e.g., nitroxide radi-
cals, lack Coulombic repulsion and could get
close to each other transiently, leading to strong
dipolar interaction and significant concentration
dependence of T1. On the other hand, the influ-
ence of charge is not salient for radicals in solids

where they cannot easily move, as exemplified by radicals embedded in a cova-
lent organic framework (COF).112

The rate of instantaneous diffusion linearly scales with the radical concentra-
tion, so theTmdecreaseswith increasing radical concentration, as exemplifiedby
tempol.142 When the radical concentration is high, instantaneous diffusion dom-
inates the spin decoherence.54,96 As a result, the influences of nuclear spin diffu-
sion and motional groups are not salient, and Tm tends to be temperature inde-
pendent. At low radical concentration, instantaneous diffusion is suppressed,
nuclear modulations of the electron spin precession become significant, and
Tm shows temperature dependence. Because spin-spin interaction induces se-
vere decoherence, it is necessary to dilute the radical to achieve a long Tm.

Pulse sequence
A pulse sequence can be considered as a noise filter that partially eliminates

environmental noise.143 As both T1 and Tm are sensitive to such noise, they are
dependent on pulse sequences used for their characterization. T1 is typically
characterized by saturation recovery and inversion recovery pulse sequences
(Figure S6). Saturation recovery involves applying either a strong, long pulse
or a series ofp/2 pulses, known as a “picket fence,” to achieve saturation, result-
ing in the equal partition of spinsbetween thegroundstate and the excited state.
The long timeof this saturationprocess effectively averagesout the influence of
spectral diffusion, so this pulse sequence approaches the intrinsic T1.

142,144 In
contrast, the inversion recovery uses a shortp pulse to flip the spin to its excited
state, so it is prone to spectral diffusion and usually gives rise to shorter T1
compared with that acquired by the saturation recovery—TIR

1 <TSR
1 .145

Tm could be measured by free induction decay (FID) as well as Hahn echo
decay, Carr-Purcell-Meiboom-Gill (CPMG), andmore advanced dynamical decou-
pling pulse sequences. The FID reflects the decoherence effect encompassing all
influencing factors.142 The Hahn echo decay pulse sequence exerts a refocusing
p pulse (Figure S6) that suppresses the decoherence caused by static non-uni-
formity in the magnetic environment, but it is difficult to completely eliminate
spectral diffusion because a single p pulse gives rise to a wide noise window.54

The CPMG pulse sequence applies a train of spin-locking p pulses that further
suppresses spectral diffusion and improve coherence by filtering out environ-
mental noise efficiently.146–149 Thus, Tm generally increases with an increasing
number of p pulses applied—TFID

m < THahn
m <TCPMG

m (Figure 5E).139 For example,
for radicals trapped on chemically modified carbon nanotubes, Hahn echo gives
rise to a Tm = 1.2 ms at 5 K, whereas CPMG significantly improves Tm, reaching
8.2 ms with 32 p pulses (Figure 5F).95 Sometimes, a long CPMG pulse sequence
could improve Tm toward T1.

146
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In addition, the pulse itself could also influence T1 and Tm. First, instrumental
artifacts, e.g., the instability and imprecision of the microwave source and ampli-
fier as well as the pulse generator, could introduce pulse errors that cause relax-
ation and decoherence and shorten both T1 and Tm. As pulse errors accumulate
with an increasing number of pulses, the abovementioned coherence enhance-
ment of the CPMG pulse sequence tends to saturate at a certain sequence
length. More advanced dynamical decoupling sequences, such as XY8, could
be applied to eliminate pulse errors and improve Tm.

150–152 Second, given a
certain spin rotation angle, a longer pulse shows a narrower excitation bandwidth
that excludes more environmental noise. Thus, the long pulse tends to improve
both T1 and Tm.

153,154 Similarly, as the pulse shape also influences the excitation
bandwidth, e.g., a chirped pulse exhibits muchwider excitation bandwidth than a
rectangular pulse, it should alter T1 and Tm as well.155

Overall, the experimentally observed T1 and Tm values are highly influenced by
the methods used for their characterization. Therefore, when acquiring the spin
dynamics of even the same spin system at various conditions (temperature,
radical concentration, etc.), it is necessary to maintain consistent pulse se-
quences and pulse parameters to ensure comparability.

Guidelines for improving T1 and Tm

The above discussions point out the following guidelines for improving T1 and
Tm of radical qubits through optimization of molecular structures, environmental
conditions, and operational parameters.

a) Improve structural rigidity: a rigid structure reduces low-energy pho-
nons/vibrational modes, thereby enhancing T1. The structural rigidity
can be designed by introducing steric hindrance and conjugation.

A

C

E F

D

B
Figure 5. Influence of Larmor frequency and pulse
sequence on spin dynamics (A�D) Spin relaxation
driven by (A) spin rotation, (B) modulation of
g-anisotropy and A-anisotropy, (C) thermally activated
process, and (D) dipolar interaction, respectively, with
solvent nuclei under various tumbling times and Lar-
mor frequencies. Simulations were performed based
on the corresponding equations in Table S1, and
simulation parameters are arbitrary. (E) FID, Hahn
echo, and CPMG decay curves. Reproduced from
Mirzoyan et al.139 with permission from John Wiley &
Sons, copyright 2021. (F) Echo decay curves acquired
by Hahn echo or CPMG sequences with various
numbers of pY pulses for chemically modified carbon
nanotubes. Reproduced from Chen et al.95; distrib-
uted under CC-BY 4.0 (http://creativecommons.org/
licenses/by/4.0/).

b) Eliminate nuclear spins: nuclear spin diffu-
sion is themajor sourceofdecoherenceat
low temperature, so reducing the number
of surrounding nuclear spins improves
Tm. The most efficient strategy is to
construct radical qubits with nearly nu-
clear-spin-free elements including C, O,
and S. If hydrogen atoms are unavoidable,
they should be positioned within the nu-
clear spin diffusion barrier or be replaced
by deuterium or chlorine atoms. Similarly,
the solvent should also be free of nuclear
spins (e.g., CS2) or be deuterated.

c) Avoid rotary groups: rotary groups such
as methyl, phenyl, and amino groups
act as environmental magnetic noise
that reduces both T1 and Tm. They
should be eliminated from the radical
by molecular design and from the sol-
vent by avoiding toluene, N,N-dimethyl-
formamide, dimethyl sulfoxide, acetoni-
trile, etc.

d) Reduce temperature: low temperature
helps improve both T1 and Tm. This is

viable for quantum computing and quantum memory but may not be
feasible for quantum sensing that ideally operates at room tem-
perature.

e) Reduce radical concentration: spin-spin interaction causes instanta-
neous diffusion that facilitates both spin relaxation and decoherence.
Therefore, given sufficient spins for EPR detection, the radical concen-
tration should be as low as possible to improve T1 and Tm.

f) Use long pulses: a long pulse helps improve both T1 and Tm. Practically,
as the spin loses coherence during the pulse, the pulse length should be
much shorter than the Tm.

g) Apply dynamical decoupling: dynamical decoupling pulse sequences
could eliminate spectral diffusion, instantaneous diffusion, and deco-
herence caused by pulse errors, so they can greatly improve Tm.

SOLID-STATE INTEGRATION
Integration of radical qubits into solid-state materials and architectures can

combine qubit behaviors with versatile functionalities and processabilities, open-
ing the possibility of integrating QIS with well-established technologies, such as
organic electronics, spintronics, optoelectronics, and chemical sensing. Although
there have been extensive studies on polymers,156,157 COFs,158,159 MOFs,160–162

thin films,163–165 self-assembled monolayers (SAMs),166–168 and functionalized
nanoparticles116 consisting of stable organic radicals, the spin dynamics in these
solid-state structures has rarely been investigated. Compared with small mole-
cules, polymers and framework materials have soft backbones and modular
structures. These characteristics impart tunable phonon modes and designable
spatial distribution of radicals,169–171 thereby creating additional platforms to
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modulate spin-lattice relaxation and decoherence, respectively. Meanwhile, sub-
strates of thin films and SAMs could also affect spin dynamics by providing a
vastly different phononic, electrical, and/or magnetic environment.172–174 There-
fore, it is critical to articulate structure-spin dynamics relationships of radical qu-
bits in solid state to optimize their performance in practical applications.We sum-
marize recent advances in solid-state-integrated radical qubits and list their spin
dynamic properties in Table S3.

Organic polymers could integrate radicals as monomers. The spatial distribu-
tion of radicals could be designed by side-chain engineering or block copolymer
self-assembly. Hou et al. integrated chlorine-substituted triphenylmethyl radicals
into a series of block copolymers with diblock polyesters (Figure 6A).110 The pro-
cessability of these block copolymers allows easy preparation of thin films. An-
nealing-induced phase separation leads to self-assemblieswith variousmorphol-

ogies, including sphere, lamellae, cylinder, and gyroid. These morphologies are
determined by the structures and lengths of polyesters. This morphological con-
trol allows for the tuning of spin-spin distances, which in turn affects spin dy-
namics. Both T1 and Tm increase with the length of the polyesters (Figure 6C).
Importantly, some of these films show room temperature coherence, with one
example (C50-LA400) exhibiting T1 = 29.23 ms and Tm = 0.318 ms at 298 K (Fig-
ure6B). Therefore, these thin filmsof block copolymers behave as tunable qubits.

Different from organic polymers that are mostly amorphous, MOFs and COFs
are crystalline microporous materials with designable structures through retic-
ular chemistry. MOFs are composed of inorganic nodes connected by organic
linkers through coordination bonds, whereas COFs consist of purely organic
monomers with covalent linkages.175,176 By using stable radicals as building
blocks, one can construct ordered arrays of qubits with predefined spin-spin

A

D

G

J K L

H I

E F

B C

Figure 6. Integration of radical qubits in polymers and microporous materials (A–C) (A) Structures, (B) variable-temperature T1 and Tm, and (C) Hahn echo decay curves (298 K) of
Cn-LAm block copolymers. Reproduced fromHou et al.110 with permission from JohnWiley & Sons, copyright 2024. (D–F) (D) Structure of TAPPy-NDI, and (E and F) concentration and
temperature dependencies of its T1 and Tm. Reproduced from Oanta et al.112 with permission from American Chemical Society, copyright 2023. (G–I) (G) Structure, (H) inversion
recovery curve (296 K), and (I) Hahn echo decay curve (296 K) of MgHOTP. Reproduced from Sun et al.111 with permission from American Chemical Society, copyright 2022. (J–L) (J)
Structure, (K) variable-temperature electrical conductivity, and (L) variable-temperature T1 and Tm of Ni3(HATI_X)2. Reproduced from Lu et al.113 with permission from American
Chemical Society, copyright 2024.
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distances and orientations. The modular lattices enable precise control over fre-
quencies and density of states of phonons.177,178Moreover, themicroporosity fa-
cilitates post-synthetic modification of radical concentration with redox chemis-
try.179 These enable fine-tuning of spin-spin interaction and spin-phonon
coupling, offering opportunities for systematic investigation of the structure-
spin dynamics relationship, which provides guidelines for optimizing the T1
and Tm of radical qubits in framework materials.

As a proof of concept, Oanta et al. synthesized a layeredCOF (TAPPy-NDI) con-
taining naphthalene diimide (NDI), which canbe post-synthetically reduced by co-
baltocene to generate NDI$� radicals (Figure 6D).112 Controlling the stoichiom-
etry between NDI and cobaltocene gives rise to a wide range of spin
concentrations spanning from 6.0 3 1012 to 1.9 3 1015 mm�3. Both T1 and
Tm increase with decreasing spin concentration from 10 to 296 K, indicating
that the spin-spin interaction plays a key role in both spin relaxation and decoher-
ence (Figures 6E and 6F). In addition, the spin concentration strongly tweaks the
decoherence mechanism. When it is low, the temperature dependence of Tm
from 10 to 296 K exhibits various plateaus and declines, indicating that the deco-
herence is caused by spectral diffusion from nuclear spins, rotary functional
groups, and spin relaxation at different temperature regions (Figure 6F). As the
spin concentration increases, the temperature dependence of Tm gradually di-
minishes and eventually disappears, indicating that instantaneous diffusion be-
comes the dominant factor. Indeed, the spin concentration controls both spin dy-
namics and electrical conductivity of this COF,180 rendering it a material that can
be fine-tuned by guest molecules and potentially controlled by a gate.

MOFs utilize metal ions as building blocks, resulting in versatile structures and
functionalities. However, thesemetal ionsmay also introduce additional sources
of decoherence due to their electron and nuclear spins. Metal ions should be
diamagnetic and should possess few nuclear spins. Choices include Mg2+,
Ca2+, Ti4+, Zn2+, Zr4+, octahedrally coordinated low-spin Fe2+, square-planarly co-
ordinated Ni2+, etc. The combination of these metal ions with stable radicals,
such as TEMPO and TTF, has led to the synthesis of several MOFs that exhibit
electron spin signatures in their continuous wave EPR spectra.160,162,181 Howev-
er, studies on their electron spin dynamics are only beginning to emerge. In 2022,
Sun et al. reported the spin dynamics of a MOF, MgHOTP, integrating Mg2+ and
2,3,6,7,10,11-hexaoxytriphenylene (HOTP), the latter of which is spontaneously
oxidized in air to form a semiquinone-like radical (Figure 6G).111 The powder
of this material exhibits T1 = 10.55 ms (Figure 6H) and Tm = 153 ns at 296 K

A

B D

C
Figure 7. Integration of radical qubits in thin films
and SAMs (A and B) (A) Structure and (B) variable-
temperature T1 and Tm of thin films of the PCTM
radical. Reproduced from Dai et al.114 with permission
from John Wiley & Sons, copyright 2018. (C) Fabri-
cation of TEMPO SAM on a gold surface. (D) Tem-
perature dependencies of T1 and Tm for the TEMPO
SAM and a dilute solution of TEMPO (PTEMPO).
(C and D) Reproduced from Tesi et al.115 distributed
under CC-BY 4.0 (http://creativecommons.org/
licenses/by/4.0/).

(Figure 6I), demonstrating the qubit behavior of
HOTP-based radicals. Soaking it in tetrahydro-
furan (THF) enhances the T1 to 21.61 ms and
the Tm to 202 ns, further demonstrating the
guest-tunability of spin dynamics.

Recently, Lu et al. investigated the spin dy-
namics in a series of layered MOFs,
Ni3(HATI_X)2, consisting of square-planarly coor-
dinated Ni2+ and substituted 2,3,7,8,12,13-hexai-
minotriindole (HATI_X) (Figure 6J), where X rep-
resents hydrogen (H), allyl (vPr), n-propyl (nPr),
or isopropyl (iPr) groups.113 The substituents
interfere with interlayer p-stacking, resulting in
an enlarged interlayer distance and dislocated
packing. On the one hand, this hampers charge
transport and reduces electrical conductivity
(Figure 6K); on the other hand, it suppresses pho-
nons and in turn spin-lattice relaxation. Mean-

while, the spin decoherence seems to be governed by the local nuclear and elec-
tron spin bath. As a result, Ni3(HATI_iPr)2 shows higher T1 than Ni3(HATI_vPr)2
and Ni3(HATI_nPr)2 at 5–100 K, yet the Tm values of these three MOFs are
almost identical (Figure 6L). Notably, the most conductive analog,
Ni3(HATI_H)2, does not exhibit electron spin coherence even at 5 K, indicating
fast spin relaxation caused by phonon scattering of itinerant electrons through
the Elliott-Yafet relaxationmechanism. Thus, this work shows that electron delo-
calizationmay deteriorate spin coherence, posing demands on balancing charge
transport and spin dynamics in MOFs.

Thin film and surface integration of radical qubits are prerequisites for many
device-related applications. The key challenge in fabricating thin films of radical
qubits is to suppress decoherence caused by spin-spin interaction. This could be
done by diluting the radical with its diamagnetic analog. Dai et al. prepared thin
films of a mixture of perchlorinated triphenylmethyl radical (PCTM) and its
diamagnetic hydrogenated analog at a molar ratio of 1:1,000 (Figure 7A). These
films were deposited onto quartz and polyethylene terephthalate substrates via
vapor deposition and spin coating.114 The PCTM in a film of 200 nm thickness
exhibits T1 = 35.6 ms and Tm = 1.08 ms at 298 K (Figure 7B), which are nearly iden-
tical to the values observed for the powder of this molecule, indicating that the
substrate does not interfere with spin dynamics in the film. An alternative dilution
method is to separate radical qubits by polymers. For instance, dispersing BDPA
radicals within polymethyl methacrylate generates thin films exhibiting T1 = 20–
40 ms and Tm z 0.6 ms at 7 K,182 and, as discussed above, incorporating chlo-
rine-substituted triphenylmethyl radicals into block copolymers enables further
control of film morphology and spatial distribution of radicals. This approach re-
sults in tunable quantum coherence at room temperature.110

SAM is a useful strategy to integrate functional molecules onto the surface of
substrates.168 Tesi et al. developed a bottom-upmethod to arrange radical qubits
as functional groups of SAMs onto the surface of gold.115 This method includes
two steps: first, an azide-modified alkanethiolate SAM is grown on gold; second,
an alkyne-modified TEMPO radical reacts with azide groups via a click reaction,
functionalizing the SAM with radical qubits (Figure 7C). A Fabry-Pérot resonator
operating at the Q-band frequency was used to characterize spin dynamics of
monolayer radicals, revealing T1 = 9.2 ms and Tm = 13.53 ms at 10 K (Figure 7D).
This Tm value exceeds that observed for a dilute solution of TEMPO radicals
(PTEMPO) at the same temperature (Tm = 3.23 ms at 10 K) (Figure 7D), verifying
that the substrate does not reduce the coherence. Themodularity of thismethod
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points out opportunities for further functionalization of the SAM, which might
open the door for SAM-based QIS applications.

APPLICATIONS IN QUANTUM INFORMATION SCIENCE
In this section, we summarize proof-of-concept QIS applications of radical qu-

bits reported so far, including quantum computing, quantummemory, and quan-
tum sensing.

Quantum computing runs quantum algorithms capable of solving problems
that are practically unsolvable for classical computers, such as factoring large
numbers.183,184 The implementation of quantum algorithms can be decom-

posed into a set of single-qubit and two-qubit universal quantum logic gates.185

The latter, e.g., CNOT and iSWAP gates, require quantum entanglement between
qubits, which could be established by qubit-qubit interaction.186,187 To this end,
two radical qubits can be integrated into a single molecule with a designated
spin-spin interaction by sophisticated molecular design. Their weak spin-orbit
coupling and hyperfine coupling give rise to narrow resonant linewidths that facil-
itate implementation of two-qubit quantum logic gates. Nakazawaet al. designed
a molecule containing two TEMPO radicals separated by 2 nm (Figure 8A) and
realized the CNOT gate with this molecule.48 The TEMPO moieties are enriched
with the isotopes by 15N and 2H to simplify the hyperfine structures and narrow
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Figure 8. QIS applications of radical qubits (A–E) Molecular quantum logic gate. (A) The molecule containing two 15N- and 2H-substituted TEMPO radicals used for the CNOT gate
implementation. (B) Schematic illustration of the CNOT gate. (C) Continuous wave (CW) EPR spectrum of the biradical molecule. The arrow points to the resonance field at which the
CNOT gate is implemented. (D) Schematic energy diagram of four zero-field split electron spin states of the biradical molecule. (E) Manifestation of the CNOT gate through the Rabi
oscillation. (C–E) reproduced from Nakazawa et al.48 with permission from John Wiley & Sons, copyright 2021. (F–H) Molecular quantum memory. (F) Conceptual illustration of
quantummemory. (G) Avoided crossing in a 2DCWEPR spectrum of BDPA$Bz radicals showing the strong coupling between electron spins and themicrowave cavity. (H) A spin echo
that shows the retrieval of quantum information stored in the quantummemory for 1.4 ms. Reproduced from Lenz et al.188 distributed under CC-BY 4.0 (http://creativecommons.org/
licenses/by/4.0/). (I–K) Molecular quantum sensing. (I) Conceptual illustration of quantum sensing harnessing hyperfine interaction between MOF-integrated radicals and nuclear
spins of adsorbed ions. (J) CP-ESEEM spectra of MgHOTP in THF solutions with various concentrations of Li+. (K) CP-ESEEM spectra of MgHOTP in THF solutions consisting of both
Li+ and Na+. Reproduced from Sun et al.111 with permission from American Chemical Society, copyright 2022.
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the EPR spectrum linewidths. The z axes of g-tensors of the two radicals and the
spin dipolar tensor are not co-linear due to the non-linear molecular structure.
These features enable implementation of the CNOT gate with this two-qubit
molecule (Figure 8B). With a specific orientation of a single crystal mounted in
a Q-band pulse EPR spectrometer, the transition frequencies of jYYD0j[YD
and jY[D0j[[D differ by 9.5 MHz, which exceeds their linewidths (Figure 8C).
Thus, when the magnetic field is tuned resonant with the first transition, the first
spin can be flipped only when the second spin is in the jYD state (Figure 8D). With
the second spin as the control qubit and the first spin as the target qubit, a p

pulse of 200 ns achieves the CNOT gate operation (Figures 8B and 8E). Although
a rigorous benchmarking of the CNOT gate remains to be conducted, this
demonstration shows the potential of tailor-design multi-qubit molecules for im-
plementing quantum logic gates, which is a cornerstone for molecular quantum
computing.

Quantum memories allow for the storage and retrieval of quantum informa-
tion (Figure 8F), which is essential for quantum computing and long-distance
quantum communication.189–194 Lenz et al. fabricated a quantum memory
with an ensemble of a stable organic radical (benzene complex of BDPA,
BDPA$Bz) coupled with a three-dimensional Fabry-Pérot microwave reso-
nator.188 The large number of spins (6 3 1018 spins) dramatically improves
the spin-photon coupling strength that surpasses both the spin decoherence
rate and the cavity dissipation rate, establishing strong coupling between the
spin ensemble and the cavity (Figure 8G). Such strong coupling improves
the Tm of the radical even at room temperature thanks to the cavity protection
effect and enables spin-photon entanglement. At 7 K, a weak microwave pulse
can transfer the quantum information conveyed by the microwave photons to
the spin ensemble. This quantum information can be stored for 1.4 ms and then
retrieved to microwave photons by a strong microwave pulse (Figure 8H).
Thus, these results demonstrate that the spin-ensemble-resonator hybrid sys-
tem can be used as a quantum memory.

Quantum sensing harnesses a quantum system, a quantum property, or a
quantum phenomenon to measure a physical quantity, such as magnetic field,
temperature, and frequency.143 Radical qubits can be used to detect nuclear
spins at relatively high temperature via quantum sensing: when a nuclear
spin is weakly coupled to the electron spin, it not only causes spin relaxation
and decoherence of the radical but also modulates its Larmor precession.
The modulation frequency is related to the Larmor frequency of the nuclear
spin and the modulation intensity scales with the number of nuclear spins sur-
rounding the radical, enabling both identification and quantification of the nu-
clear spin. Driven by this idea, Sun et al. designed a MOF, MgHOTP, containing
semiquinone-like radicals (Figure 6G) and demonstrated quantum sensing of
Li+ at room temperature in THF solution.111 The microporosity of this material
allows diffusion of Li+ into the nanometer-size pores, enforcing close
contact and weak hyperfine interaction between radicals and Li+ (Figure 8I). Re-
laxometry shows decreasing T1 and Tm with increasing concentration of Li+ in
the range of 0.5–2 mol/L. Hyperfine spectroscopy (combination-peak
electron spin echo envelope modulation, CP-ESEEM) reveals a modulation
frequency corresponding to the Larmor frequency of Li+. The modulation
intensity increases with the concentration of Li+ in the range of 5 3 10�3

to 0.5 mol/L (Figure 8J). Furthermore, because many nuclear spins
exhibit unique Larmor frequencies, the hyperfine spectroscopy can detect mul-
tiple nuclear spins simultaneously and unambiguously, exemplified by Li+ and
Na+ in this work (Figure 8K). Thus, radical qubits hold the promise for chemi-
cal-specific quantum sensing in complex environments and at room
temperature.

Beyond nuclear spins, radical qubits could also be used for quantum sensing
ofmagnetic field. Bonizzoni et al. integrated BDPA radicals into a coplanarmicro-
wave resonator, developed quantum sensing protocols based on dynamical de-
coupling pulse sequences, and performed echo detection to sense alternative-
current magnetic field with a sensitivity reaching 10�9 T/Hz1/2.195 In addition,
radical-based quantum superposition and quantum sensing have been hypoth-
esized to be essential for bird navigation.196 For example, it is proposed that
the illumination of cryptochromes in birds’ eyes produces FAD$� (FAD, flavin
adenine dinucleotide) radical pairswith strong andanisotropic hyperfine coupling
with 14N. Acting asmagnetic orientation sensors, these radical pairsmight allow
birds to detect the Earth’s magnetic field and keep them oriented during
migration.197–199

SUMMARY AND OUTLOOKS
In this review, we summarize spin dynamic properties, mechanisms, and

their optimization strategies of stable organic radicals, present their integra-
tion into solid-state materials and surface structures, and enumerate
their prototypical applications in quantum computing, quantum memory,
and quantum sensing. Besides the room temperature quantum coherence
and versatile integrability that have been discussed extensively above,
radical qubits distinguish from other types of qubits by their atomic-level
rational designability. Their bottom-up synthesis allows for precise control
over the structural rigidity as well as the type, amount, and spatial distribu-
tion of nuclear spins and functional groups surrounding the electron spin.
This precise control is crucial for prolonging both the T1 and Tm. Such syn-
thetic versatility also facilitates rational design of radical qubits for QIS: mul-
tiple radical qubits could be incorporated into one molecule with prescribed
inter-qubit interactions to implement specific quantum logic gates, lumines-
cent radical qubits may introduce spin-optical interfaces that are essential
for quantum communication,58,200 and radical qubits functionalized by mo-
lecular/ionic recognition groups may enable highly selective quantum
sensing, and their integration with photo-excited triplets may lead to complex
molecular qubit systems with versatile functionalities.201,202 Thanks to these
unique advantages, stable organic radical qubits could promote the develop-
ment of quantum information technologies that demand compatibility with
room temperature and complex chemical environments. This would facili-
tate QIS applications in biological systems, energy storage devices, elec-
tronics, environmental monitoring, and more.
With their great potential in QIS applications, stable organic radical qubits

pose many opportunities and challenges for future research. First, besides
the radical qubits listed in Tables 1 and S2, many others remain to be char-
acterized from the QIS perspective, such as 7,7,8,8-tetracyanoquinonedime-
thane mono-anion radical, perylene cation radical, dithiophenalenyl radical
and their derivatives, among others. Second, spin dynamics of radical qu-
bits need to be investigated in various application-related scenarios. Inte-
gration of radical qubits into microporous materials, thin films, and devices
necessitates in-depth examination of spin relaxation and decoherence
mechanisms because these structures introduce complex phononic, mag-
netic, and electrical environments. Third, to take full advantage of
radical qubits for QIS, strategies need to be developed to achieve high-fidel-
ity initialization, manipulation, and readout of single radical qubits in
mild conditions. This is technically difficult because thermal initialization re-
quires a strong magnetic field and ultralow temperature, while conventional
EPR-based spin state readout only works for ensembles.202 To this end, we
could learn from the addressing strategies of other types of qubits.
Optical pumping and spin injection may be implemented to initialize radi-
cals.15,203,204 Optical,35–37 electrical,44,45,205 scanning probe microscopic,46

and quantum metrological strategies47,206 could be sufficiently sensitive
to detect single electron spins. In addition, recent studies of the chirality-
induced spin selectivity effect may offer an ultimate solution to initialize
and readout single electron spins with chiral moieties embedded in radi-
cals.207 Finally, efforts should be paid to improve scalability of radical qu-
bits, which requires coherent addressing of each qubit in a system. This
is challenging for conventional EPR as most radicals exhibit similar g-fac-
tors (close to 2.0023) and can hardly be spectrally distinguished. Imple-
menting radical qubits into single-molecule spintronic devices may enable
spatial addressing of individual qubits, leading to fabrication of universal
molecular quantum computers.
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