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Background: Magnetic resonance imaging (MRI) has become important in the diagnostic work-up of neurodegenerative
diseases. icobrain dm, a CE-labeled and FDA-cleared automated brain volumetry software, has shown potential in differ-
entiating cognitively healthy controls (HC) from Alzheimer’s disease (AD) dementia (ADD) patients in selected research
cohorts.
Objective: This study examines the diagnostic value of icobrain dm for AD in routine clinical practice, including a comparison
to the widely used FreeSurfer software, and investigates if combined brain volumes contribute to establish an AD diagnosis.
Methods: The study population included HC (n = 90), subjective cognitive decline (SCD, n = 93), mild cognitive impairment
(MCI, n = 357), and ADD (n = 280) patients. Through automated volumetric analyses of global, cortical, and subcortical brain
structures on clinical brain MRI T1w (n = 820) images from a retrospective, multi-center study (REMEMBER), icobrain
dm’s (v.4.4.0) ability to differentiate disease stages via ROC analysis was compared to FreeSurfer (v.6.0). Stepwise backward
regression models were constructed to investigate if combined brain volumes can differentiate between AD stages.
Results: icobrain dm outperformed FreeSurfer in processing time (15–30 min versus 9–32 h), robustness (0 versus 67 fail-
ures), and diagnostic performance for whole brain, hippocampal volumes, and lateral ventricles between HC and ADD
patients. Stepwise backward regression showed improved diagnostic accuracy for pairwise group differentiations, with
highest performance obtained for distinguishing HC from ADD (AUC = 0.914; Specificity 83.0%; Sensitivity 86.3%).
Conclusion: Automated volumetry has a diagnostic value for ADD diagnosis in routine clinical practice. Our findings indicate
that combined brain volumes improve diagnostic accuracy, using real-world imaging data from a clinical setting.
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INTRODUCTION

Utilization of non-invasive structural magnetic res-
onance imaging (MRI) in Alzheimer’s disease (AD)
has expanded over the last decades, as the focus
has shifted from a symptom-based exclusion diagno-
sis toward a biomarker-based framework. Whereas
structural neuroimaging was historically performed
to rule out brain lesions, it has become clear that
identification of structural findings, such as atrophy
patterns, and their association with neurodegenera-
tive diseases may significantly increase diagnostic
accuracy and aid in monitoring of disease pro-
gression [1–4]. In addition, structural imaging has
become important in the selection of well charac-
terized homogenous populations in clinical trials of
disease modifying therapies in early AD [2]. In the
light of these events, there is a growing interest in the
use of volumetric measures of relevant brain regions
as potential diagnostic markers for AD.

Brain structural volumes correlate strongly to dis-
ease severity in AD. Volumetric reductions in vulner-
able cortical regions, including the frontal, parietal,
and temporal brain areas, have been observed in

varying degrees following disease progression [5,
6]. Medial temporal lobe atrophy, in particular hip-
pocampal volume loss, is widely recognized as a
prominent feature of AD neuropathology [3, 7]. Hip-
pocampal atrophy resides amongst the most accurate
markers of mild cognitive impairment (MCI) to AD
conversion [8] and is now recommended as a neu-
roimaging biomarker for early detection in the revised
National Institute on Aging-Alzheimer’s Association
(NIA-AA) criteria for AD diagnosis [9–13].

Manual segmentations of brain structures, in par-
ticular the hippocampi, through hand-tracing by
neuroanatomical experts are still considered to be
the golden standard [14–16]. However, it is costly
and time-consuming, especially in large-scale stud-
ies, and is subjected to inter- and intra-rater variability
[14, 17]. As a result, visual assessments by radi-
ologists are being merged with (semi-) automated
volumetrics. However, semi-automated volumetry
requires validated a priori determination of the region
of interest (ROI) (e.g., user-defined landmarks).
Fast and reliable automated brain segmentation
techniques are thus beneficial to further deploy
and successfully implement the usage of structural
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neuroimaging biomarkers in a clinical trial setting as
well as routine clinical practice and increase their
diagnostic accuracy. Therefore, recent research is
aiming toward fully automated processes with easy
interpretability for specialists, solid reproducibility,
sensitivity, and a low measurement error [18, 19].
Already available automated brain segmentation soft-
ware such as FreeSurfer, SPM, and BrainVisa reside
among the most frequently used in neuroimaging
research studies [20, 21]. Nonetheless, there is a
translation paucity of many of these methodologies
into the clinic, partly due to excessive processing
time and a lack of validation in large cohorts that
are representative of the general population. Hence,
bridging the gap between the research setting and
utility in clinical practice is an indispensable step in
the widespread implementation of these segmenta-
tion tools in a real-world setting.

icobrain dm (v.4.4.0.), a CE-labeled and FDA-
cleared automated brain tool using clinical MRI
scans, has shown potential in terms of accuracy,
reliability, and diagnostic performance in selected
research cohorts [18]. Following previous work, we
analyzed a total of 12 brain structure volumes (includ-
ing whole brain, gray matter, cortical gray matter,
white matter, frontal, parietal, temporal and occipital
cortices, hippocampal volumes, and lateral ventri-
cles) in a retrospective Belgian multi-center study
(REMEMBER) comprising the entire AD contin-
uum and cognitively healthy controls, to examine the
utility of icobrain dm for AD for improving diag-
nostic accuracy in a real-world clinical setting. The
secondary objective of this paper is to investigate if
combined brain volumes contribute to establish or
improve the accuracy of an AD diagnosis and can
differentiate between different stages of the disease.
Finally, to characterize icobrain dm’s validity, a com-
parison to the widely used automatic tool FreeSurfer
(v.6.0) is performed.

MATERIALS AND METHODS

Study population and design

The ‘retrospective Belgian multi-center MRI
biomarker study in dementia’ (REMEMBER) cohort
comprises participants (n = 887) obtained from 8
memory clinics that are members of the Belgian
Dementia Council (BeDeCo). Participants underwent
a baseline brain MRI scan at date of inclusion, in
combination with a clinical neurological and neu-
ropsychological evaluation for diagnostic purposes.

Patient classification was effectuated in compliance
with the NIA-AA criteria for ‘MCI due to AD’ and
‘Dementia due to AD’ [9–13]. SCD patients were
diagnosed according to the criteria of Jessen’s et al.
(2014) [22]. Cognitively healthy controls were sub-
jected to, at the minimum, a cognitive screening test to
exclude cognitive deterioration and were required not
to meet the criteria for SCD as formulated by Jessen
et al. (2014) [22]. Level of education for each partic-
ipant was defined as the number of years of school
completed. Specific details regarding total population
description and clinical diagnostic criteria have been
previously published [16].

MRI acquisition and processing

Image acquisition
All MRI scans were obtained from the respec-

tive neuroimaging departments to which the patients
were referred. Images from all scanner types were
accepted. The MRI protocol advised to provide a 3D
T1-weighted (T1w) image with a preferred voxel size
of (1 × 1 × 1 mm) and an optional fluid-attenuated
inversion recovery (FLAIR) sequence (not used in
this study). Baseline brain MRI scans were available
for all subjects. MRI acquisition came from the fol-
lowing scanner platforms: GE medical systems (1.5 T
and 3.0 T), Philips (1.5 T and 3.0 T), and SIEMENS
(1.5 T and 3.0 T). Detailed description on scanner
field and model specifications can be found in Sup-
plementary Table 1.

Image analysis
All participants underwent MR examinations,

including a T1w MR sequence (slice thickness; mean
(SD) 1.69 (±) 1.76). The cloud-based software ico-
brain dm (v.4.4.0) performed an automated brain
imaging morphometry analysis, reporting volumes
of whole brain (WB), gray matter (GM), white mat-
ter (WM), hippocampal total (HIP) volume, left
hippocampus (HIP-L), right hippocampus (HIP-R),
cortical GM volumes (CGM) of the temporal (TL),
parietal (PL), occipital (OL), and frontal (FL) cor-
tices. Brain volumes scaled for head size for both
FreeSurfer and icobrain dm were adjusted to account
for age and sex by using icobrain dm’s healthy ref-
erence population. The healthy population volumes
were obtained from MR images of 1903 healthy sub-
jects (1069 female and 834 male subjects) available
from several public collections on which the icobrain
software was applied [23]. For each brain structure,
the age- and sex-matched median volume computed
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using icobrain dm’s healthy reference population was
subtracted from the patient volume to obtain age- and
sex-adjusted volumes.

Concisely, icobrain dm’s processing steps included
skull stripping and voxel classification into brain or
non-brain regions based on the affine registration
of a Montreal Neurological Institute (MNI)-atlas
brain mask, followed by matching GM, WM, and
cerebrospinal fluid (CSF) probabilistic anatomical
priors, also available as an MNI-atlas, to the T1w
image. After bias field correction, the T1w image
was segmented using a probabilistic model based on
prior information from the preprocessing steps, into
the three respective tissue classes: GM, WM, and
CSF [24].

Cortical lobe segmentations. icobrain dm provides
sub-segmentation of cortical lobes using an assembly
of cortical labels available in MNI space. Through a
non-rigid registration between the MNI template and
the T1w image, the cortical labels (‘CGM labels”)
were propagated to the patient’s image T1w space. A
second non-rigid registration between the skeleton of
the binarized propagated CGM labels and skeleton of
the patient’s binarized cortical gray matter segmen-
tation was used for further refinement. Lastly, CGM
voxels were assigned as the cortical label matching
the closest voxel in the skeleton of the non-rigidly
propagated CGM labels [18].

Hippocampal segmentations. Multiple atlases con-
taining anatomical priors (i.e., T1w templates
containing hippocampal segmentations correspond-
ing to the guidelines of the EADC-ADNI harmonized
protocol [25]) for left and right hippocampi were reg-
istered to the T1w image by affine and non-rigid
image transformations. The propagated segmenta-
tions were ranked according to their similarity to
the input image, then combined into one proba-
bilistic segmentation for each hippocampus (label
fusion segmentation). For the final hippocampus seg-
mentation, the probabilistic segmentation for each
hippocampus was used as prior information in an
intensity-based expectation maximizing (EM) algo-
rithm with morphological level set refinement. As
a post-processing step, voxels mainly considered as
CSF by the main tissue segmentation were excluded
from the hippocampus segmentation, to keep in line
with the EADC-ADNI harmonized protocol, which
agreed on excluding internal CSF pools from manual
hippocampus segmentation.

All output volumes were adjusted for head size
through normalization by intracranial volume, using
the determinant of the affine transformation matrix

describing the transformation between the image and
the MNI atlas. The processing time for each indi-
vidual cross-sectional analysis varied between 15 to
30 min, including an automatic quality control (QC)
for approximately 7 min. icobrain dm analysis was
carried out on a Linux server with 16 GB RAM and
8 CPU cores (Intel Xeon Platinum 8000).

FreeSurfer. The FreeSurfer image analysis suite
(version 6.0) is well documented, freely available
for download online (http://surfer.nmr.mgh.harvard.
edu/) and has been thoroughly described elsewhere
[26, 27]. In this paper, the recon-all stream with fully
automated directive-all was used to reconstruct all
brain volumes, including cortical and subcortical par-
cellations, processed with identical command and
default parameters. Cortical labels corresponding to
the frontal, temporal, and parietal gray matter regions
were grouped to obtain volumes of the same three
cortical lobe regions as for icobrain dm.

When reporting volumes normalized for head
size, in order to obtain brain volumes in the same
range as icobrain, a scaling of the FreeSurfer vol-
umes [18] using the formula below was performed,
where 1985.026 mL is the intracranial volume of the
MNI template used in icobrain and ‘Estimated Total
Intracranial Volume’ is the total intracranial volume
reported by FreeSurfer. FreeSurfer was executed on a
Linux server with 16 CPU cores (Intel Xeon Platinum
8000) and 64GB RAM. FreeSurfer required between
9 and 32 h per scan to complete, depending on the
image quality and disease severity.

Region of Interest Volume

Estimated Total Intracranial Volume
∗ 1985.026mL

(1)

Quality control

A quality control of the extracted measurements
was performed per center by M.W. Motion artefacts
and technical parameters (including signal intensity,
image artefacts, lesion contrast, tissue type volumes,
noise, and field of view (FOV)) were examined
through a visual assessment for all ‘outlier’ mea-
surements. ‘Outliers’ were defined as samples having
volumes below the 10th and above the 90th percentile
within each center’s cohort. If the segmentation
approach failed entirely, due to, e.g., low quality of
scans or a large slice thickness (> 3 mm), this was
reported as ‘Rejected’, resulting in the exclusion of
all output values from downstream analyses. If the
brain structures were partly segmented correctly and

http://surfer.nmr.mgh.harvard.edu/
http://surfer.nmr.mgh.harvard.edu/
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the WB volumetric analysis was trustworthy, it was
reported as ‘Approved with remarks.’ Upon correct
segmentation the scans were classified as ‘Approved’.

Statistical analysis

All statistical analyses were performed using the
R-environment (R-Studio, v.1.0.136) for statistical
computing and graphics [28, 29] using the following
“packages” and (functions). Demographic informa-
tion was explored for the baseline population and
mean, standard deviation, median and interquartile
range (where applicable) were reported (R package:
“arsenal” (tableby and write2word)). Distribution of
categorical variables within subject groups (e.g., sex)
as well as demographic comparisons were analyzed
by Chi-square tests (sex) and ANCOVA tests (age
and sex-adjusted brain volume measures and other
measurements). Significant differences between dis-
ease stages were evaluated using Post-hoc analysis
with Tukey correction and p values were reported
(R packages: “stats” (lm, anova, chisq.test) and
“multcomp” (ghlt). MRI characteristics (slice thick-
ness, voxel size, head coverage and contrast-to-noise
ratio) were reported separately. Boxplots for each
brain volume were computed and significant dif-
ferences between groups from post-hoc analyses
with Tukey correction were included (R pack-
ages: ‘ggstatsplot” (ggbetweenstats, geom signif),
“ggplot2” (scale x discrete), and “ggsave”).

Diagnostic performance

Prediction of disease stage was based upon logistic
regression, using age and sex-adjusted brain volumes
as a predictor. As binary outcome, consisting of all
possible pairwise combinations of disease stages.
Diagnostic performance of mentioned age and sex-
adjusted brain volumes was evaluated using receiver
operating characteristic (ROC) analysis, with the R
package “pROC” (roc, auc, coords, ci) and the “stats”
(predict) package [30]. Area under the curve (AUC),
specificity and sensitivity values were documented
for each of the binary classifications between dis-
ease stages (SCD versus HC, MCI versus HC, AD
versus HC, AD versus SCD, and AD versus MCI).
Specificity and sensitivity outcomes were calculated
based on the combined smallest Euclidian distance,
using the Youden index to determine the threshold for
each pairwise classification between disease stages.
In addition, for ADD versus HC, DeLong tests were
used to investigate if the AUC’s of icobrain dm and

FreeSurfer were significantly different for each indi-
vidual brain structure [31].

To analyze if there was a difference in icobrain
dm’s diagnostic performance regarding lower quality
T1 MRI images, an additional exploratory analysis
to assess the impact of slice thickness (ST) resolu-
tion in the classification of AD stages was performed.
The subjects in this study were split into three groups
according to T1 image resolution. Important to note
here is that HC and SCD were classified as one group
due to the small number of the low-resolution scans
available in both groups. Pairwise comparisons were
performed between AD stages, using a linear ker-
nel support vector machine (SVM) model, over the
high-resolution group (ST < 1 mm) as the training
set, and by testing its performance over the mid-
dle (1 mm ≤ ST ≤ 1.6 mm) and the low-resolution
(> 1.6 mm) groups, referred to as the testing sets.
The SVM was fitted using balanced AD stages data,
obtained through minority class upsampling. The
training set classification performance obtained in a
5-fold cross-validation fashion was also reported, as
a reference performance.

Correlation between icobrain dm and FreeSurfer

The correlation between icobrain dm and
FreeSurfer automated brain volumes was visual-
ized and calculated using the “ggpubr” (ggscatter,
ggqqplot) package, “stats” (shapiro.test, cor.test)
package and Pearson’s correlation coefficient [32].
Linear mixed models were fitted to assess system-
atic bias between the two automated software tools.
An anonymized patient identifier was included as a
random effect to account for repeated measurements,
while the automated software technique was included
as a fixed effect. All brain structures were evaluated
individually. A Bonferroni-corrected alpha level of
0.004 (0.05 / total number (n = 12) of brain struc-
tures) was applied for the fixed effect, testing the
null hypothesis that there is no systematic difference
in volume between the two automated segmentation
tools. These analyses were carried out with R pack-
ages ‘lme4’ and ‘multcomp’.

Stepwise backward logistic regression

In order to improve our knowledge regarding
which combination of brain volumes is most rel-
evant and robust for differentiating the considered
disease stage in the AD continuum, an exploratory
multivariate ‘feature selection’ analysis was per-
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formed, with a top-down approach. To prevent
suppressor effects (when predictors are only signifi-
cant when another predictor is held constant, often
seen in stepwise forward regression), a stepwise
backward logistic regression model was applied (R
package: “mass” (stepAIC), “stats” (predict, glm) and
“pROC” (roc, auc, coords, ci)). The Akaike Informa-
tion Criterion (AIC) was used to determine which
combination of variables could best distinguish
between different disease stages, while simultane-
ously gaining insight in which volumes were least
informative. The AIC is a statistical criterion that
functions as a trade-off between the goodness-of-fit
and model complexity by estimating the appropriate-
ness of different model inputs from a given dataset.
The achievement of the lowest AIC was used as a stop
criterion. To assess the robustness of the fitted models,
we repeated the stepwise backward modelling using
a different criterion, based upon p values. In brief,
we started from the full model with all predictors. In
each step the least significant predictor was removed,
after which the model was refitted. This procedure
was repeated until all remaining predictors were sig-
nificant. The relative likelihood measure (REL.LL),
representing the ratio of improvement in performance
of the final model compared to the start model, was
calculated using the following formula:

REL.LL = exp

(
AICmin − AICi

2

)
(2)

where the AICmin represents the final model (the
model with the lowest AIC), which is subtracted from
the start model (AICi). This difference is also referred
to as the delta-AIC (�AIC). Note that the REL.LL
was not used in this study to compare between the two
segmentation methods, since the AICi’s of icobrain
dm and FreeSurfer are not identical but reflects model
improvement for each pairwise comparison within
one segmentation method. Variance inflation factors
(VIF) were calculated to exclude predictor variables
that were highly correlated (multi-collinearity) (R
package: “car” (vif)). A VIF of 5 or higher was used
as a cut-off for predictor variable exclusion [33].

RESULTS

Initial study population

Based on the recruitment requirements, data from
the following number of participants was collected;
Cognitively healthy controls without cognitive
complaints (recruited among spouses of patients)

Table 1
REMEMBER study cohort

HC SCD MCI ADD Total

Center 1 44 38 51 86 295
Center 2 2 76 14 29
Center 3 32 13 14 89
Center 4 43 54 54
Center 5 26 17 38 81
Center 6 2 96 65 163
Center 7 20 40 39 99
Center 8 2 8 10
STUDY COHORT 90 93 357 280 820
Complete rejection post – QC 1 4 36 30 71
WB volumes – approved 89 89 321 250 749
All volumes – approved 88 88 317 204 697

Number of subjects per disease stage (cognitively healthy control
(HC), subjective cognitive decline (SCD), mild cognitive impair-
ment (MCI) and Alzheimer’s disease dementia (ADD) patients)
for each participating center. Study cohort and approved volumes
(only whole brain (WB) and all volumes) after quality control
(post-QC) are highlighted in bold.

(HC; n = 93), subjects with subjective cognitive
decline (SCD, n = 102), mild cognitive impairment
(n = 379), and AD dementia patients (ADD, n = 313).
From this initial cohort, the image processing of
67 participants experienced difficulties leading to an
interruption of the FreeSurfer pipeline. We hypothe-
size that these errors might be due to a variety of issues
such as large slice thickness (> 1.6 mm) and voxel
sizes, an incomplete FOV, as well as the possible
presence of white matter lesions, while performing
topology corrections. icobrain dm was able to process
all 67 MRI scans from these participants, without the
run-time being affected. To obtain an equal number of
participants for both automated tools, these were not
used for downstream comparative analysis for neither
icobrain dm nor FreeSurfer. The new study cohort
included HC (n = 90), SCD (n = 93), MCI (n = 357),
and ADD patients (n = 280), and represented a total
of 820 subjects (Table 1). Magnetic resonance imag-
ing parameters, including slice thickness, voxel size,
contrast-to-noise (CNR) ratio, and head coverage are
presented in Table 2. Incomplete head coverage, or
limited field of view, is computed as the percentage
of scans for which at least one of the six sides of the
bounding box surrounding an ‘ideal’ brain mask falls
outside the FOV of the patient’s T1 image, where the
‘ideal’ brain mask is obtained from the MNI template
image, through affine registration to the patient’s T1
image.

The exploratory analysis on icobrain dm’s diag-
nostic performance regarding variable quality T1
MRI images, to assess the impact of slice thickness
resolution in the classification of AD stages, showed
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Table 2
Magnetic resonance imaging T1-weighted image parameters

Parameters HC SCD MCI ADD Total
(n = 90) (n = 93) (n = 357) (n = 280) (n = 820)

Slice thickness, Mean (SD) 1.00 (0.02) 1.33 (1.16) 1.78 (1.89) 1.92 (1.97) 1.69 (1.76)
Contrast-to-noise (CNR), Mean (SD) 3.18 (0.33) 3.29 (0.47) 2.96 (0.52) 2.83 (0.53) 2.98 (0.52)
Voxel size, Mean (SD) 0.86 (0.22) 0.89 (0.68) 1.02 (0.77) 1.15 (0.82) 1.03 (0.74)
Incomplete head coverage (% scans with incomplete FOV) 25.6 47.3 43.1 35.0 38.9

Magnetic resonance imaging T1-weighted image parameters per disease stage (cognitively healthy control (HC), subjective cognitive decline
(SCD), mild cognitive impairment (MCI), and Alzheimer’s disease dementia (ADD) patients).

a drop in sensitivity in the low-resolution group,
compared to the middle and high resolutions for all
pairwise comparisons. Specificity remained rather
constant for all comparisons. The results of this
exploratory analysis can be found in Supplementary
Table 2, Supplementary Table 3, and Supplementary
Figure 1.

Quality control

In total, 697 scans (85.0%) were approved after
QC and all volumes (WB, GM, WM, CSF, CGM
TOT, FL, TL, PL, OL, HIP, LVENT, left hippocam-
pus (HIP-L) and right hippocampus (HIP-R)) were
included for further analyses (Table 4, for all vol-
umes). Subjects where smaller brain regions were
not correctly segmented, but WB volumes were still
accurate, were also included. Subsequently, for whole
brain volume analysis, a total of 749 (91.3%) MRI
scans were approved after QC (Table 3, for whole
brain volumes). Seventy-one scans were completely
excluded for analysis. Differences in numbers of
approved scans result from volume mis-segmentation
due to low scan quality (e.g., low GM-WM contrast)
or large slice thickness (> 3 mm).

Final study population

The clinical and demographic characteristics of the
final study population are presented in Tables 3 and
4. Mini-Mental State Examination (MMSE) scores
decreased with disease severity, with a significant
difference between all groups, except when compar-
ing cognitively healthy controls with SCD subjects.
Mean age increased with disease severity but was not
significantly different between cognitively healthy
controls and SCD subjects (all volumes: p = 0.629,
whole brain volumes: p = 0.544) nor between MCI
and ADD patients for the approved whole brain
volumes (p = 0.286). The time interval between the
neuropsychological evaluation and the baseline MRI
scan was approximately three months for most

participants (all volumes: mean [IQR] 3.2 [0.5–3.0]
months, whole brain volumes: mean [IQR] 3.3
[0.5–3.0] months). The level of education was signifi-
cantly higher for HC and SCD subjects in comparison
with the MCI and AD patients.

Normalized brain volumes obtained with
icobrain dm

Brain volumes normalized for head size are pre-
sented in Table 3 (approved whole brain volumes)
and Table 4 (all volumes approved). Whole brain,
gray matter, cortical gray matter, temporal cortex,
parietal cortex, lateral ventricles, and hippocampal
volumes were significantly different between all dis-
ease stages, except for HC versus SCD subjects. For
the frontal cortex, the difference between HC and
SCD subjects, as well as between MCI and ADD
patients, was not significant, while white matter and
occipital cortex volumes showed no significant dif-
ference between any of the disease stages (Fig. 1).

Correlation between icobrain dm and FreeSurfer

The correlations between icobrain dm and
FreeSurfer brain volumes were all statistically sig-
nificant and are fully reported in Supplementary
Figure 2. The highest correlation was found between
gray matter volumes (r = 0.81, p < 0.0001) and lateral
ventricles (r = 0.95, p < 0.0001), while the hippocam-
pal volumes showed the lowest correlation (HIP,
r = 0.64, p < 0.0001; HIP-R, r = 0.58, p < 0.0001;
HIP-L, r = 0.64, p < 0.0001). Linear mixed mod-
elling revealed systematic differences between the
automated software types across all brain structure
volumes. Whole brain, white matter and hippocam-
pal volumes showed higher estimates for FreeSurfer
compared to icobrain dm, while the opposite was
observed for gray matter, cortical gray matter, frontal,
parietal, temporal, and occipital cortices, as well
as for lateral ventricles. Detailed results are fully
reported in Supplementary Table 4.
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Table 3
REMEMBER baseline population clinical and demographic characteristics – icobrain dm - whole brain volumes approved

HC SCD MCI ADD Total p
(N = 89) (N = 89) (N = 350) (N = 250) (N = 749)

Sex (%F) 0.013
F 47 (52.8%) 46 (51.7%) 160 (49.8%) 158 (63.2%) 411 (54.9%)

Age at BL (y) < 0.001
Mean (SD) 67.3 (8.6) ∧∧∧,### 68.8 (10.0) ∧∧∧,### 74.6 (7.9) ∗∗∗,+++ 77.1 (8.4) ∗∗∗,+++ 73.9 (9.1)

MMSE from 0 to 30 < 0.001
N 69 84 306 241 700
Mean (SD) 29 (1) ∧∧∧,### 29 (1) ∧∧∧,### 25 (3) ∗∗∗,+++,### 21 (5) ∗∗∗,+++,∧∧∧ 24 (5)

Time between BL MRI and
BL NPE (mo)

0.254

Mean (SD) 1.07 (1.1) 3.6 (6.7) 2.7 (4.6) 3.8 (9.4) 3.2 (6.9)
Education (y) < 0.001

N 57 82 299 222 660
Mean (SD) 14.9 (3.9) ∧∧,### 15.3 (4.2) ∧∧∧,### 13.0 (4.1) ∗∗,+++,### 11.0 (4.0) ∗∗∗,∧∧∧,### 12.8 (4.3)

WB – whole brain (mL) < 0.001
Mean (SD) 1478.4 (74.1) ∧∧∧,### 1441.4 (81.9) ∧∧∧,### 1399.1 (68.7) ∗∗∗,+++,## 1380.1 (74.0) ∗∗∗,+++,∧∧ 1407.2 (79.4)

Description of the data as percentage and mean ± standard deviation (SD). Analysis and post-hoc analysis with Tukey correction (significance between disease stages (cognitively healthy
controls (HC), subjective cognitive decline (SCD), mild cognitive impairment (MCI), and Alzheimer’s disease dementia (ADD) patients): Chi-square test (categorical variables; sex), ANCOVA
analysis (continuous variables; Age at BL (Post-hoc p values: SCD-HC; ADD-MCI: NS, remaining disease stages: < 0.0001), MMSE score (Post-hoc p values: SCD-HC: NS, remaining disease
stages: < 0.001), time between baseline MRI, and baseline NPE visit (Post-hoc p values for all disease stage comparisons: NS), Years of education (YOE) (Post-hoc p values: SCD-HC: NS, MCI-
HC: < 0.01, remaining disease stages: < 0.001), Brain volumes normalized for head size (Post-hoc p values: Whole brain (WB) SCD-HC: NS, ADD-MCI: < 0.05, remaining disease stages: < 0.001)).
Symbols: versus HC ∗< 0.05, ∗∗< 0.01, ∗∗∗< 0.001, versus SCD +< 0.05, ++< 0.01, +++< 0.001, versus MCI ∧< 0.05, ∧∧< 0.001, ∧∧∧< 0.0001, versus ADD #< 0.01, ##< 0.01, ###< 0.001. BL,
baseline; NPE, neuropsychological examination.
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Table 4

REMEMBER baseline population clinical and demographic characteristics – icobrain dm - all volumes approved

HC SCD MCI ADD Total p
(N = 88) (N = 88) (N = 317) (N = 204) (N = 697)

Sex (%F) 0.029
F 46 (52.3%) 46 (52.3%) 159 (50.2%) 129 (63.2%) 380 (54.5%)

Age at BL (y) < 0.001
Mean (SD) 67.3 (8.7) ∧∧∧,### 69.0 (10.1)∧∧∧,### 74.7 (7.9) ∗∗∗,+++,### 76.0 (8.4) ∗∗∗,+++,∧∧∧ 73.4 (9.0)

MMSE from 0 to 30 < 0.001
N 69 83 302 196 650
Mean (SD) 29 (1) ∧∧∧,### 29 (1) ∧∧∧,### 25 (3) ∗∗∗,+++,### 20 (5) ∗∗∗,+++,∧∧∧ 25 (5)

Time between BL MRI and BL NPE (mo) 0.136
Mean (SD) 1.1 (1.1) 3.7 (6.8) 2.7 (4.6) 4.2 (10.2) 3.3 (7.1)

Education (y) < 0.001
N 56 81 296 177 610
Mean (SD) 14.9 (3.9) ∧∧,### 15.2 (4.2) ∧∧∧,### 13.0 (4.1) ∗∗,+++,### 11.2 (4.0) ∗∗∗,∧∧∧,### 12.7 (4.3)

GM – gray matter (mL) < 0.001
Mean (SD) 852.2 (44.1) ∧∧∧,### 830.7 (59.0) ∧,### 784.2 (63.5) ∗∗∗,+,### 784.1 (63.5) ∗∗∗,+++,∧∧∧ 806.9 (61.7)

WM – white matter (mL) 0.011
Mean (SD) 625.6 (59.5) 610.5 (55.6) 596.2 (67.1) 597.7 (72.9) 602.1 (67.3)

CGM – cortical gray matter (mL) < 0.001
Mean (SD) 808.5 (43.4) ∧∧∧,### 789.6 (58.5) ∧∧,### 764.2 (53.7) ∗∗∗,++,### 749.9 (60.7) ∗∗∗,+++,∧∧∧ 768.8 (58.5)

FL – frontal cortex (mL) < 0.001
Mean (SD) 216.1 (17.1) ∧∧∧,### 214.0 (22.7) ∧,### 200.0 (23.1) ∗∗∗,+ 195.8 (22.3) ∗∗∗,+++ 202.6 (23.3)

PL – parietal cortex (mL) < 0.001
Mean (SD) 139.5 (12.7) ∧∧∧,### 134.2 (15.5) ∧∧∧,### 127.4 (14.3) ∗∗∗,+++,### 122.0 (15.9) ∗∗∗,+++,∧∧∧ 128.2 (15.8)

OL – occipital cortex (mL) 0.039
Mean (SD) 63.0 (10.9) 59.0 (7.7) 59.3 (11.3) 59.9 (12.4) 59.9 (11.2)

TL – temporal cortex (mL) < 0.001
Mean (SD) 149.1 (10.3) ∧∧∧,### 145.6 (14.2) ∧∧∧,### 136.7 (12.0) ∗∗∗,+++,### 130.6 (14.8) ∗∗∗,+++,∧∧∧ 137.6 (14.4)

HIP – hippocampus, total (mL) < 0.001
Mean (SD) 9.2 (0.8) ∧∧∧,### 8.8 (0.9) ∧∧∧,### 8.1 (1.1) ∗∗∗,+++,### 7.5 (1.3) ∗∗∗,+++,∧∧∧ 8.1 (1.2)

HIP-L – left hippocampus (mL) < 0.001
Mean (SD) 4.5 (0.4) ∧∧∧,### 4.4 (0.4) ∧∧∧,### 4.0 (0.6) ∗∗∗,+++,### 3.7 (0.7) ∗∗∗,+++,∧∧∧ 4.0 (0.6)

HIP-R – right hippocampus (mL) < 0.001
Mean (SD) 4.7 (0.4) ∧∧∧,### 4.5 (0.5) ∧∧∧,### 4.1 (0.6) ∗∗∗,+++,### 3.8 (0.7) ∗∗∗,+++,∧∧∧ 4.1 (0.7)

LVENT – lateral ventricles (mL) < 0.001
Mean (SD) 43.3 (21.9) ∧∧,## 51.3 (25.6) ∧∧,### 64.3 (28.0) ∗∗∗,++,# 73.7 (29.0) ∗∗∗,+++,∧ 62.7 (29.0)

Description of the data as percentage and mean ± standard deviation (SD). Analysis: Chi-square test (categorical variables; sex), ANCOVA and Post-hoc analysis with Tukey correction (significance
between disease stages (cognitively healthy control (HC), subjective cognitive decline (SCD), mild cognitive impairment (MCI), and Alzheimer’s disease dementia (ADD) patients): (continuous
variables; MMSE score (p values: SCD-HC: NS, remaining disease stages: < 0.0001), age at baseline (p values: SCD-HC; ADD-MCI: NS, remaining disease stages: < 0.0001), time between baseline
MRI and baseline NPE (Post-hoc p values for all disease stages: NS), Education (y): SCD-HC: NS, MCI-HC: < 0.01, remaining disease stages: < 0.001. Brain volumes normalized for head size
(Post-hoc p values: Gray matter (GM) SCD-HC: NS, MCI-SCD: < 0.05, remaining disease stages: < 0.001. White matter (WM): NS. Cortical gray matter (CGM) SCD-HC: NS, MCI-SCD: < 0.01,
remaining disease stages < 0.001. Frontal cortex (FL) SCD-HC; ADD-MCI: NS, MCI-SCD: < 0.05, remaining disease stages; < 0.001. Parietal cortex (PL) SCD-HC: NS, remaining disease
stages: < 0.001. Occipital cortex (OL) MCI-HC: < 0.05, remaining disease stages: NS. Temporal cortex (TL): SCD-HC: NS, remaining disease stages: < 0.0001. Hippocampus (HIP) SCD-HC: NS,
remaining disease stages: < 0.0001). Left hippocampus (HIP-L) SCD-HC: NS, remaining disease stages: < 0.001. Right hippocampus (HIP-R) SCD-HC: NS, remaining disease stages: < 0.001.
Lateral ventricles (LVENT) SCD-HC: NS, ADD-MCI: < 0.05, MCI-SCD: < 0.01, remaining groups: < 0.001)). Symbols: versus HC ∗< 0.05, ∗∗< 0.01, ∗∗∗< 0.001, versus SCD +< 0.05, ++< 0.01,
+++< 0.001, versus MCI ∧< 0.05, ∧∧< 0.01, ∧∧∧< 0.001, versus ADD #< 0.05, ##< 0.01, ###< 0.001. NS, not significant; BL, baseline; NPE, neuropsychological examination.
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Fig. 1. Violin boxplots per brain region – icobrain dm. Differences between groups reported using post-hoc analysis (“Tukey” correction) for
normalized brain volumes. p values: 0 ‘∗∗∗’< 0.001 ‘∗∗’< 0.01 ‘∗’< 0.05. The absence of a notation corresponds to a non-significant value. p
values are presented in Tables 3 and 4. HC, cognitively healthy controls; SCD, subjective cognitive decline; MCI, mild cognitive impairment;
ADD, Alzheimer’s disease dementia.



M.M.J. Wittens et al. / Diagnostic Performance of Automated MRI Volumetry 633

Table 5
Diagnostic performance of ADD versus HC calculated with icobrain dm and FreeSurfer

icobrain dm FreeSurfer p
AUC Specificity (%) Sensitivity (%) AUC Specificity (%) Sensitivity (%)

Whole brain 0.749 65.2 75.6 0.564 83.1 45.6 < 0.001∗
Gray matter 0.726 86.4 57.4 0.705 73.9 63.7 0.550
Cortical gray matter 0.686 89.8 49.0 0.695 86.4 49.5 0.788
White matter 0.562 75.0 44.1 0.486 92.0 23.0 0.018∗
Frontal cortex 0.685 82.9 51.5 0.637 88.6 35.8 0.176
Parietal cortex 0.725 88.6 50.0 0.670 81.8 52.9 0.086
Occipital cortex 0.464 70.4 32.8 0.557 78.5 35.3 0.126
Temporal cortex 0.790 65.9 78.0 0.759 76.1 70.1 0.298
Hippocampus 0.871 89.8 72.5 0.711 87.5 56.9 < 0.001∗
Hippocampus, left 0.849 97.7 58.3 0.696 87.5 54.9 < 0.001∗
Hippocampus, right 0.862 84.1 75.5 0.732 89.8 55.9 < 0.001∗
Lateral ventricles 0.763 65.9 77.4 0.733 65.9 71.6 < 0.001∗

Brain volumes were age- and sex-adjusted and normalized for head size. Area under the curve (AUC), specificity (%) and sensitivity (%)
values were reported. Specificity and sensitivity outcomes were calculated based on the combined smallest Euclidian distance, using the
Youden index to determine the threshold. The highest AUC value when comparing both automated tools is highlighted in bold. p values to
visualize the difference between icobrain dm’s AUC and FreeSurfers’ AUC were calculated with DeLong tests with a significance level of
0.05. ∗p values < 0.05.

Diagnostic performance of icobrain dm as
compared to FreeSurfer

Diagnostic performance of icobrain dm was
evaluated between the following disease stages
using ROC analysis (as described in the Meth-
ods section); HC, SCD, MCI, and ADD patients
(Supplementary Table 5, Fig. 1). The age- and sex-
adjusted volumes of the icobrain dm automated
volumetry that showed the largest AUC to dis-
tinguish ADD patients from HC were the whole
brain (AUC = 0.749), temporal cortex (AUC = 0.790),
hippocampal volumes (HIP, AUC = 0.871; HIP-
R, AUC = 0.862; HIP-L, AUC = 0.849), and lateral
ventricles (AUC = 0.763) (Table 5). White matter
(AUC = 0.562) and occipital cortex (AUC = 0.464)
volumes were not able to distinguish between the
different disease stages. The diagnostic performance
of FreeSurfer is also shown in Table 5 (ADD versus
HC), Supplementary Table 6 (all pairwise group clas-
sifications) and visually in Supplementary Figure 3.
FreeSurfer obtained the highest AUCs for the tempo-
ral cortex (AUC = 0.759), total hippocampal volume
(AUC = 0.711), right hippocampus (AUC = 0.732),
and lateral ventricles (AUC = 0.733). Whole brain
(AUC = 0.564), white matter (AUC = 0.486), and
occipital lobe (AUC = 0.557) volumes were not
able to distinguish between the different disease
stages. When looking at ADD versus HC, icobrain
dm significantly outperformed FreeSurfer for whole
brain (p ≤ 0.001), white matter (p = 0.018), hip-

pocampal volumes (p ≤ 0.001), and lateral ventricles
(p ≤ 0.001). Temporal, frontal, and parietal cortices
reported a higher diagnostic performance for icobrain
dm as well, but this was not significantly different.

Combining different brain volumes improves AD
diagnosis

A stepwise backward logistic regression model
was used to evaluate which combinations of individ-
ual brain volumes achieved the best results regarding
diagnostic performance, aiming to find the most sta-
ble model while minimizing the number of indicators.
Two different algorithms for stepwise backward elim-
ination (as described in the Methods section), resulted
in the same final model. Total hippocampal vol-
ume was excluded from analysis based on complete
multi-collinearity with the presence of the individual
hippocampal volumes (HIP-L and HIP-R). In addi-
tion, white matter volumes and occipital cortex were
excluded from further analysis to avoid overfitting
and on account of their minimal differential contri-
bution in the diagnostic performance of the individual
brain structures. The AIC, �-AIC, and REL.LL are
presented in Table 6 (icobrain dm) and Supplemen-
tary Table 7 (FreeSurfer). The individual contribution
(in terms of AIC difference) of separate brain volumes
to the final model can be found in Supplementary
Table 8 (icobrain dm) and Supplementary Table 9
(FreeSurfer) for all pairwise group classifications.
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Table 6
Stepwise backward regression model – icobrain dm for age- and sex-adjusted brain volumes normalized for head size

icobrain dm
Disease Final Brain AIC �-AIC rel.LL Youden Threshold Specificity Sensitivity AUC
Stages Structures Index (%) (%)

SCD versus
HC

WB, FL, PL, and
HIP-R

233.7 5.35 0.04 0.213 0.564 81.8 53.4 0.689

McI versus
HC

WB, PL, TL, and
HIP-R

342.4 4.13 0.13 0.507 0.753 75.0 75.7 0.809

ADD versus
HC

WB, PL, HIP-R,
HIP-L, and
LVENT

215.4 3.05 0.22 0.692 0.620 83.0 86.3 0.914

MCI versus
SCD

FL, TL, and
HIP-L

397.0 5.24 0.07 0.692 0.829 84.1 48.9 0.691

ADD versus
SCD

FL, TL, HIP-R,
and HIP-L

276.5 2.98 0.23 0.560 0.673 79.5 76.4 0.831

ADD versus
MCI

PL, HIP-R,
HIP-L, and
LVENT

661.0 3.33 0.19 0.301 0.360 58.0 72.1 0.670

Input brain volumes: whole brain (WB), frontal cortex (FL), parietal cortex (PL), temporal cortex (TL), lateral ventricles (LVENT), left
hippocampus (HIP-L), and right hippocampus (HIP-R). Disease stages: HC, cognitively healthy controls; SCD, subjective cognitive decline;
MCI, mild cognitive impairment; ADD, Alzheimer’s disease dementia. AIC, Akaike Information Criterion; �-AIC, Difference between the
AIC of the full model (input brain volumes) and the final model (brain volume model with the lowest AIC); REL.LL, relative likelihood
measure; AUC, Area under the curve, specificity (%), and sensitivity (%) values were reported. Specificity and sensitivity outcomes are
presented as percentages and were calculated based on the combined smallest Euclidian distance, using the Youden index to determine the
threshold. Brain structures highlighted in bold are present in the final models of both automated volumetric tools.

Fig. 2. Stepwise backward regression flowchart – icobrain dm and FreeSurfer. Final brain structures per pairwise comparison for icobrain
dm (left) and FreeSurfer (right). AUC, area under the curve. Brain structures highlighted in bold are present in the final models of both
automated volumetric tools. HC, cognitively healthy controls; SCD, subjective cognitive decline; MCI, mild cognitive impairment; ADD,
Alzheimer’s disease dementia.

icobrain dm (Table 6, Fig. 2)

For SCD-HC (AUC = 0.689), whole brain, frontal
cortex, parietal cortex, and right hippocampus con-
tributed to the differentiation between the groups. The
model for the MCI-HC differentiation (AUC = 0.809)
showed that whole brain, parietal and temporal
cortices, and right hippocampus together provided
the most information to distinguish between the
disease stages. For differentiating between ADD
and HC patients (AUC = 0.914), whole brain, pari-
etal cortex, as well as both hippocampal volumes
(HIP-L and HIP-R), and lateral ventricles, each pro-

vided additional information to improve diagnostic
performance. Variables to differentiate the MCI-SCD
subjects (AUC = 0.691) included frontal and tempo-
ral cortices, and the left hippocampus. The model
for the ADD-SCD group comparison (AUC = 0.831)
consisted of frontal cortex, temporal cortex, and both
hippocampal volumes. Finally, for the ADD-MCI
group comparison (AUC = 0.670), it was the pari-
etal cortex, both hippocampal volumes and lateral
ventricles that contributed the most to the discrimina-
tion. A comparison between the AUC values from the
stepwise logistic regression model and the diagnostic
performance of the individual brain volumes com-
puted by icobrain dm, shows that combining different
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brain volumes can improve AD diagnosis.

FreeSurfer (Supplementary Table 7, Fig. 2)

For the separation between SCD-HC
(AUC = 0.679), whole brain and lateral ventri-
cles contributed the most in the final model. The
model for the MCI-HC group (AUC = 0.761) showed
that whole brain, frontal and temporal cortices,
the left hippocampus and the lateral ventricles
together provided the most information to distin-
guish between the disease stages. For differentiating
between ADD and HC patients (AUC = 0.844),
whole brain, frontal, and temporal cortices as well
as the right hippocampus and lateral ventricles,
each provided additional information to improve
the diagnostic performance. The model for the
MCI-SCD group (AUC = 0.713) included parietal
cortex, temporal cortex, and the left hippocampus.
Variables to distinguish the ADD-SCD groups
(AUC = 0.802) consisted of parietal cortex, temporal
cortex, and the right hippocampus. Finally, for
the ADD-MCI group (AUC = 0.622), parietal and
temporal cortices, right hippocampus, and lateral
ventricles each contributed to the improvement of
diagnostic performance. As seen with icobrain dm,
combining different brain volumes led to a higher
diagnostic performance for distinguishing between
disease stages, compared to the AUC values of the
individual brain segmentations.

DISCUSSION

In this study we examined the diagnostic utility of
icobrain dm in a real-world clinical setting, includ-
ing a head-to-head comparison with the widely used
FreeSurfer software. In addition, we performed an
exploratory stepwise backward logistic regression
analysis to assess if combined brain structures would
improve diagnostic accuracy in the AD continuum.
This study showed the robustness (no software crash
nor unrealistic segmentations) of icobrain dm, con-
sidering the data heterogeneity. In addition, it served
as a real-world validation for previously published
research cohort data on icobrain dm’s diagnostic per-
formance [18].

The most notable difference between icobrain
dm and FreeSurfer was seen when looking at the
whole brain volumes, where icobrain dm showed a
highly significant difference between HC and ADD
patients, whereas FreeSurfer could not distinguish
well between the disease stages. One possible reason

for this could be the large percentage of T1w MRI
sequences that suffered from incomplete head cover-
age, which might have affected FreeSurfer’s whole
brain volume output. Differences between the out-
comes of icobrain dm and FreeSurfer for whole brain
volumes might be caused by the fact that icobrain dm
uses a different method, based on determining grey
scale differences in an image. In other words, there are
no assumptions made regarding the cortical folding
patterns. FreeSurfer on the other hand, needs to find a
cortical model to determine the surface of the cortex,
which becomes a difficult task with an image that has
an incomplete FOV or with a 2D image. The usage of
a different method might also explain the significant
difference in obtained brain volumes according to the
linear mixed modelling approach.

It has been shown that FreeSurfer performs well
with curated datasets such as ADNI and OASIS-
1 [18]. However, the effect of large slice thickness
(>1.6 mm) and voxel sizes, an incomplete field of
view, as well as white matter lesions, resulted in
significant runtime elongation (>72 h) while perform-
ing topology corrections. In some cases, this resulted
in a complete abortion (n = 67) of FreeSurfer analy-
sis, a previously reported phenomenon [34]. icobrain
dm processed all 820 MRI T1w sequences of this
dataset accurately without the processing time being
affected, suggesting icobrain dm can have a diag-
nostic value for the analysis of real-world clinical
data.

Selection of relevant brain volumes for robust AD
diagnosis

Using a stepwise logistic regression model can
be useful to select the minimum number of indica-
tors to distinguish between different groups. Through
providing models with more stable indicators, the
number of exigent brain structures for AD diagno-
sis in clinical routine can be minimized. In addition,
identifying the most relevant volumetric measures for
each disease stage might aid to understand the under-
lying pathophysiology of the AD continuum [35, 36].

The exploratory stepwise-AIC analysis done in
this study revealed that combining brain structures
computed by icobrain dm indeed improved diag-
nostic accuracy in the AD continuum. The whole
brain, frontal, parietal, and temporal cortices, both
hippocampal volumes (HIP-L and HIP-R), and the
lateral ventricles reside amongst the most relevant
volumetric measures and that each, either as a sep-
arate predictor or in combination with each other,
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provide information to improve diagnostic accu-
racy in the different disease stages within the AD
continuum as compared to HC. These results were in
concordance with previously published literature [3,
37, 38].

When looking at the individual disease stage com-
parisons such as SCD versus HC, it is important to
note that SCD is characterized by self-experienced
worsening of cognitive function [22, 39, 40]. Indi-
viduals with SCD have a higher risk to have incipient
AD as compared to cognitively healthy individuals
without cognitive complaints [41], hence exploring
possible differences between HC and SCD can aid in
refinement of SCD features.

In the ADD-MCI comparison, besides the right
hippocampus and lateral ventricles, both models con-
tained the parietal cortex as one of the brain structures
that helped to distinguish between the disease stages.
Apart from medial temporal lobe atrophy, progres-
sion of atrophy to posterior regions, which includes
the posterior cingulate gyrus, precuneus, and parietal
cortex [42], is increasingly recognized as a potential
structural marker for MCI to ADD conversion [43]. In
addition, several studies indicated that MCI patients
display loss of gray matter in the posterior parietal
cortex, when compared to cognitively healthy con-
trols, suggesting parietal involvement in earlier stages
of AD as well [44]. Since visuo-spatial impairment,
executive dysfunction and language impairment are
also characteristics of AD, together with the strong
connectivity between the parietal cortex and other
regions of the brain, the presence of the parietal cor-
tex as an important structure in icobrain dm’s final
model of both the SCD-HC, MCI-HC, and ADD-
MCI comparison seems to be plausible [44].

All disease stages classifications included either
one, or both hippocampal volumes, which is consis-
tent with previous statements reported in the literature
indicating hippocampal atrophy is a reliable marker
for disease stage and progression [2, 45, 46]. The
model, however, does not consider possible hip-
pocampal asymmetry. Evidence for possible changes
in the MRI hippocampal asymmetry index during
the progression of AD have been previously reported
and it was suggested to occur with different extents
between control, MCI, and ADD disease stages [47,
48]. Changes in the normal pattern of asymmetry
could be representative of a brain pathology and could
serve as a neuroanatomical marker or as a risk factor,
thus could therefore be considered in future studies
[49]. Apart from considering hippocampal asymme-
try, hippocampal subfield segmentation is generating

increasing interest as well. Although currently not
applied in FDA-approved automated segmentation
software, including hippocampal subfield segmen-
tation may provide insight in subregion specific
pathology patterns, as hippocampal subregions were
postulated to be functionally specialized and not
equally affected by AD [50–52]. In our previous
study, it was shown that the usage of FreeSurfer’s hip-
pocampal subfield functionality resulted in a higher
DSC and lower mean absolute volume difference
compared to FreeSurfer’s default hippocampal seg-
mentation, however not surpassing icobrain dm in
terms of accuracy [18]. Since hippocampal subfield
segmentation improved FreeSurfer’s performance,
the inclusion of hippocampal subfield segmentation
in icobrain dm’s pipeline as an additional sensitive
biomarker might lead to improved diagnostic accu-
racy and should be further investigated.

Toward implementation in clinical practice

This study showed that automated neuroimaging
biomarkers computed by icobrain dm, individually
as well as combined, can aid in improving diagnosis
for real-world clinical data in a time-efficient man-
ner. However, tackling the most frequent obstacles
when obtaining real world data is key to support
the continuum of evidence generation for the usage
of automated volumetric tools in daily practice. The
usage of real-world data is as well a strength as a lim-
itation in the current study in terms of analysis and
interpretation. Real world data is clinically driven,
often showing lower internal validity due to the selec-
tion based on clinical indications rather than strict
inclusion criteria, resulting in variable data quality,
especially in MRI resolution. In the current study, ico-
brain dm demonstrated clinical utility by being able to
handle MRI images of variable quality, additionally
confirmed by the exploratory analysis assessing the
impact of slice thickness resolution on icobrain dm’s
diagnostic performance. Furthermore, icobrain dm
does not recommend specific acquisition parameters,
allowing easy integration in routine clinical prac-
tice. Nevertheless, we suggest an MRI slice thickness
of < 1.6 mm to adequately analyze neuroimaging data
in an automated manner, since image quality remains
a critical factor for reliable automated volumetric
measurements, especially regarding potential clini-
cal applications. We did not repeat a comparison with
manual segmentations to assess segmentation method
accuracy, since hippocampal manual segmentations
were compared against icobrain dm and FreeSurfer
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segmentations in our previous study, reporting a sig-
nificantly higher dice coefficient for icobrain dm as
opposed to FreeSurfer, while also showing an over-
all lower volumetric error for other examined brain
structures [18]. Lastly, a significant difference in age
between the disease stages is an additional limitation
of this study, but was corrected for, during statistical
analysis.

Taken together, AD remains a non-unitary syn-
drome, with heterogenic individual neuroimaging
and cognitive profiles, most likely due to a multi-
factorial pathogenesis. Moreover, brain atrophy is
not specific for AD. Therefore, it remains essential
to use additional biomarker measures in a comple-
mentary fashion. Working toward implementation of
automated volumetric tools in a clinical setting, the
use of a standard imaging acquisition protocol, of
which sequences can be tailored at individual sites
depending on the type of MRI scanner available,
together with a standardized method of interpretation,
can minimize inter- and inter-site variability. Lastly,
intra and inter-scanner variability on automated volu-
metric output should be further investigated to assess
the effect of additional brain volume differences not
related to AD pathology.

Based on this study, we conclude that automated
volumetric tools are useful to improve diagnostic cer-
tainty of AD in routine clinical practice. In addition,
combining brain structures can improve diagnostic
accuracy when using real-world imaging data from a
clinical setting.
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(ULB), Hôpital Erasme, Brussels (N◦P2016/187);
Cliniques Universitaires Saint-Luc (UCL), Brussels
(N◦2016/07jui/261); Clinique St-Pierre Ottignies,
Ottignies (N◦OM045); Universitair Ziekenhuis Brus-
sel, Brussels (N◦2016/183); and Ziekenhuis Netwerk
Antwerp (ZNA), Antwerp (N◦4730).

icobrain dm is a proprietary software, developed
by icometrix for the automated quantification of brain
volumes and white matter hyperintensities.

SUPPLEMENTARY MATERIAL

The supplementary material is available in the
electronic version of this article: https://dx.doi.org/
10.3233/JAD-210450.

REFERENCES

[1] Yi HA, Moller C, Dieleman N, Bouwman FH, Barkhof F,
Scheltens P, van der Flier WM, Vrenken H (2016) Rela-
tion between subcortical grey matter atrophy and conversion
from mild cognitive impairment to Alzheimer’s disease. J
Neurol Neurosurg Psychiatry 87, 425-432.

[2] Ledig C, Schuh A, Guerrero R, Heckemann RA, Rueckert D
(2018) Structural brain imaging in Alzheimer’s disease and
mild cognitive impairment: Biomarker analysis and shared
morphometry database. Sci Rep 8, 11258.

[3] Frisoni GB, Fox NC, Jack CR, Jr., Scheltens P, Thompson
PM (2010) The clinical use of structural MRI in Alzheimer
disease. Nat Rev Neurol 6, 67-77.

[4] Ridha BH, Anderson VM, Barnes J, Boyes RG, Price SL,
Rossor MN, Whitwell JL, Jenkins L, Black RS, Grundman
M, Fox NC (2008) Volumetric MRI and cognitive measures
in Alzheimer disease : Comparison of markers of progres-
sion. J Neurol 255, 567-574.

[5] Pini L, Pievani M, Bocchetta M, Altomare D, Bosco P,
Cavedo E, Galluzzi S, Marizzoni M, Frisoni GB (2016)
Brain atrophy in Alzheimer’s disease and aging. Ageing Res
Rev 30, 25-48.

[6] Ferreira D, Verhagen C, Hernandez-Cabrera JA, Cavallin
L, Guo CJ, Ekman U, Muehlboeck JS, Simmons A, Bar-
roso J, Wahlund LO, Westman E (2017) Distinct subtypes

https://www.j-alz.com/manuscript-disclosures/21-0450r1
https://www.j-alz.com/manuscript-disclosures/21-0450r1
https://dx.doi.org/10.3233/JAD-210450
https://dx.doi.org/10.3233/JAD-210450


638 M.M.J. Wittens et al. / Diagnostic Performance of Automated MRI Volumetry

of Alzheimer’s disease based on patterns of brain atrophy:
Longitudinal trajectories and clinical applications. Sci Rep
7, 46263.

[7] McRae-McKee K, Evans S, Hadjichrysanthou C, Wong
MM, de Wolf F, Anderson RM (2019) Combining hip-
pocampal volume metrics to better understand Alzheimer’s
disease progression in at-risk individuals. Sci Rep 9,
7499.

[8] Ottoy J, Niemantsverdriet E, Verhaeghe J, De Roeck E,
Struyfs H, Somers C, Wyffels L, Ceyssens S, Van Mos-
sevelde S, Van den Bossche T, Van Broeckhoven C,
Ribbens A, Bjerke M, Stroobants S, Engelborghs S, Stae-
lens S (2019) Association of short-term cognitive decline
and MCI-to-AD dementia conversion with CSF, MRI,
amyloid- and (18)F-FDG-PET imaging. Neuroimage Clin
22, 101771.

[9] Albert MS, DeKosky ST, Dickson D, Dubois B, Feldman
HH, Fox NC, Gamst A, Holtzman DM, Jagust WJ, Petersen
RC, Snyder PJ, Carrillo MC, Thies B, Phelps CH (2011) The
diagnosis of mild cognitive impairment due to Alzheimer’s
disease: Recommendations from the National Institute on
Aging-Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimers Dement 7,
270-279.

[10] Dubois B, Feldman HH, Jacova C, Hampel H, Molinuevo
JL, Blennow K, DeKosky ST, Gauthier S, Selkoe D, Bate-
man R, Cappa S, Crutch S, Engelborghs S, Frisoni GB,
Fox NC, Galasko D, Habert MO, Jicha GA, Nordberg A,
Pasquier F, Rabinovici G, Robert P, Rowe C, Salloway S,
Sarazin M, Epelbaum S, de Souza LC, Vellas B, Visser PJ,
Schneider L, Stern Y, Scheltens P, Cummings JL (2014)
Advancing research diagnostic criteria for Alzheimer’s dis-
ease: The IWG-2 criteria. Lancet Neurol 13, 614-629.

[11] Jack CR, Jr., Albert MS, Knopman DS, McKhann GM,
Sperling RA, Carrillo MC, Thies B, Phelps CH (2011) Intro-
duction to the recommendations from the National Institute
on Aging-Alzheimer’s Association workgroups on diagnos-
tic guidelines for Alzheimer’s disease. Alzheimers Dement
7, 257-262.

[12] McKhann GM, Knopman DS, Chertkow H, Hyman BT,
Jack CR, Jr., Kawas CH, Klunk WE, Koroshetz WJ, Manly
JJ, Mayeux R, Mohs RC, Morris JC, Rossor MN, Schel-
tens P, Carrillo MC, Thies B, Weintraub S, Phelps CH
(2011) The diagnosis of dementia due to Alzheimer’s dis-
ease: Recommendations from the National Institute on
Aging-Alzheimer’s Association workgroups on diagnostic
guidelines for Alzheimer’s disease. Alzheimers Dement 7,
263-269.

[13] Sperling RA, Aisen PS, Beckett LA, Bennett DA, Craft
S, Fagan AM, Iwatsubo T, Jack CR, Jr., Kaye J, Montine
TJ, Park DC, Reiman EM, Rowe CC, Siemers E, Stern Y,
Yaffe K, Carrillo MC, Thies B, Morrison-Bogorad M, Wag-
ster MV, Phelps CH (2011) Toward defining the preclinical
stages of Alzheimer’s disease: Recommendations from the
National Institute on Aging-Alzheimer’s Association work-
groups on diagnostic guidelines for Alzheimer’s disease.
Alzheimers Dement 7, 280-292.

[14] Sanchez-Benavides G, Gomez-Anson B, Sainz A, Vives
Y, Delfino M, Pena-Casanova J (2010) Manual validation
of FreeSurfer’s automated hippocampal segmentation in
normal aging, mild cognitive impairment, and Alzheimer
disease subjects. Psychiatry Res 181, 219-225.

[15] Boccardi M, Ganzola R, Bocchetta M, Pievani M, Redolfi
A, Bartzokis G, Camicioli R, Csernansky JG, de Leon
MJ, deToledo-Morrell L, Killiany RJ, Lehericy S, Pan-

tel J, Pruessner JC, Soininen H, Watson C, Duchesne S,
Jack CR, Jr., Frisoni GB (2011) Survey of protocols for
the manual segmentation of the hippocampus: Preparatory
steps towards a joint EADC-ADNI harmonized protocol. J
Alzheimers Dis 26 Suppl 3, 61-75.

[16] Niemantsverdriet E, Ribbens A, Bastin C, Benoit F,
Bergmans B, Bier JC, Bladt R, Claes L, De Deyn PP, Deryck
O, Hanseeuw B, Ivanoiu A, Lemper JC, Mormont E, Picard
G, Salmon E, Segers K, Sieben A, Smeets D, Struyfs H,
Thiery E, Tournoy J, Triau E, Vanbinst AM, Versijpt J,
Bjerke M, Engelborghs S (2018) A Retrospective Belgian
Multi-Center MRI Biomarker Study in Alzheimer’s Disease
(REMEMBER). J Alzheimers Dis 63, 1509-1522.

[17] Hurtz S, Chow N, Watson AE, Somme JH, Goukasian N,
Hwang KS, Morra J, Elashoff D, Gao S, Petersen RC, Aisen
PS, Thompson PM, Apostolova LG (2019) Automated and
manual hippocampal segmentation techniques: Comparison
of results, reproducibility and clinical applicability. Neu-
roimage Clin 21, 101574.

[18] Struyfs H, Sima DM, Wittens M, Ribbens A, Pedrosa
de Barros N, Phan TV, Ferraz Meyer MI, Claes L, Nie-
mantsverdriet E, Engelborghs S, Van Hecke W, Smeets D
(2020) Automated MRI volumetry as a diagnostic tool for
Alzheimer’s disease: Validation of icobrain dm. Neuroim-
age Clin 26, 102243.

[19] Martensson G, Hakansson C, Pereira JB, Palmqvist S,
Hansson O, van Westen D, Westman E (2020) Medial tem-
poral atrophy in preclinical dementia: Visual and automated
assessment during six year follow-up. Neuroimage Clin 27,
102310.

[20] Desikan RS, Cabral HJ, Settecase F, Hess CP, Dillon
WP, Glastonbury CM, Weiner MW, Schmansky NJ, Salat
DH, Fischl B, Alzheimer’s Disease Neuroimaging Initia-
tive (2010) Automated MRI measures predict progression
to Alzheimer’s disease. Neurobiol Aging 31, 1364-1374.

[21] Schmitter D, Roche A, Marechal B, Ribes D, Abdulkadir
A, Bach-Cuadra M, Daducci A, Granziera C, Kloppel S,
Maeder P, Meuli R, Krueger G, Alzheimer’s Disease Neu-
roimaging Initiative (2015) An evaluation of volume-based
morphometry for prediction of mild cognitive impairment
and Alzheimer’s disease. Neuroimage Clin 7, 7-17.

[22] Jessen F, Amariglio RE, van Boxtel M, Breteler M, Cec-
caldi M, Chetelat G, Dubois B, Dufouil C, Ellis KA, van
der Flier WM, Glodzik L, van Harten AC, de Leon MJ,
McHugh P, Mielke MM, Molinuevo JL, Mosconi L, Osorio
RS, Perrotin A, Petersen RC, Rabin LA, Rami L, Reisberg
B, Rentz DM, Sachdev PS, de la Sayette V, Saykin AJ,
Scheltens P, Shulman MB, Slavin MJ, Sperling RA, Stewart
R, Uspenskaya O, Vellas B, Visser PJ, Wagner M, Sub-
jective Cognitive Decline Initiative Working Group (2014)
A conceptual framework for research on subjective cogni-
tive decline in preclinical Alzheimer’s disease. Alzheimers
Dement 10, 844-852.

[23] Smeets D, Ribbens A, Sima DM, Cambron M, Horakova D,
Jain S, Maertens A, Van Vlierberghe E, Terzopoulos V, Van
Binst AM, Vaneckova M, Krasensky J, Uher T, Seidl Z, De
Keyser J, Nagels G, De Mey J, Havrdova E, Van Hecke W
(2016) Reliable measurements of brain atrophy in individual
patients with multiple sclerosis. Brain Behav 6, e00518.

[24] Jain S, Sima DM, Ribbens A, Cambron M, Maertens A,
Van Hecke W, De Mey J, Barkhof F, Steenwijk MD, Daams
M, Maes F, Van Huffel S, Vrenken H, Smeets D (2015)
Automatic segmentation and volumetry of multiple scle-
rosis brain lesions from MR images. Neuroimage Clin 8,
367-375.



M.M.J. Wittens et al. / Diagnostic Performance of Automated MRI Volumetry 639

[25] Boccardi M, Bocchetta M, Apostolova LG, Barnes J, Bart-
zokis G, Corbetta G, DeCarli C, deToledo-Morrell L,
Firbank M, Ganzola R, Gerritsen L, Henneman W, Killiany
RJ, Malykhin N, Pasqualetti P, Pruessner JC, Redolfi A,
Robitaille N, Soininen H, Tolomeo D, Wang L, Watson C,
Wolf H, Duvernoy H, Duchesne S, Jack CR, Jr., Frisoni
GB (2015) Delphi definition of the EADC-ADNI Harmo-
nized Protocol for hippocampal segmentation on magnetic
resonance. Alzheimers Dement 11, 126-138.

[26] Fischl B, Salat DH, Busa E, Albert M, Dieterich M,
Haselgrove C, van der Kouwe A, Killiany R, Kennedy D,
Klaveness S, Montillo A, Makris N, Rosen B, Dale AM
(2002) Whole brain segmentation: Automated labeling of
neuroanatomical structures in the human brain. Neuron 33,
341-355.

[27] Fischl B (2012) FreeSurfer. Neuroimage 62, 774-781.
[28] R Core Team (2020) R Foundation for Statistical Comput-

ing, Vienna, Austria.
[29] Patil I (2018) ggstatsplot: ‘ggplot2’ Based Plots with

Statistical Details. CRAN. https://cran.r-project.org/web/
packages/ggstatsplot/index.html

[30] Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez
JC, Muller M (2011) pROC: An open-source package for
R and S+to analyze and compare ROC curves. BMC Bioin-
formatics 12, 77.

[31] DeLong ER, DeLong DM, Clarke-Pearson DL (1988) Com-
paring the areas under two or more correlated receiver
operating characteristic curves: A nonparametric approach.
Biometrics 44, 837-845.

[32] Kassambara A (2020) ggpubr: ‘ggplot2’ Based Publi-
cation Ready Plots. Version: R package version 0.4.0.
https://CRAN.R-project.org/package=ggpubr.

[33] Kim JH (2019) Multicollinearity and misleading statistical
results. Korean J Anesthesiol 72, 558-569.

[34] Backhausen LL, Herting MM, Buse J, Roessner V, Smolka
MN, Vetter NC (2016) Quality control of structural MRI
images applied using FreeSurfer-A hands-on workflow to
rate motion artifacts. Front Neurosci 10, 558.

[35] Aisen PS, Cummings J, Jack CR, Jr., Morris JC, Sperling R,
Frolich L, Jones RW, Dowsett SA, Matthews BR, Raskin J,
Scheltens P, Dubois B (2017) On the path to 2025: Under-
standing the Alzheimer’s disease continuum. Alzheimers
Res Ther 9, 60.

[36] Gomar JJ, Bobes-Bascaran MT, Conejero-Goldberg C,
Davies P, Goldberg TE, Alzheimer’s Disease Neuroimaging
Initiative (2011) Utility of combinations of biomarkers, cog-
nitive markers, and risk factors to predict conversion from
mild cognitive impairment to Alzheimer disease in patients
in the Alzheimer’s Disease Neuroimaging Initiative. Arch
Gen Psychiatry 68, 961-969.

[37] Henneman WJ, Sluimer JD, Barnes J, van der Flier WM,
Sluimer IC, Fox NC, Scheltens P, Vrenken H, Barkhof F
(2009) Hippocampal atrophy rates in Alzheimer disease:
Added value over whole brain volume measures. Neurology
72, 999-1007.

[38] Nestor SM, Rupsingh R, Borrie M, Smith M, Accomazzi V,
Wells JL, Fogarty J, Bartha R, Alzheimer’s Disease Neu-
roimaging Initiative (2008) Ventricular enlargement as a
possible measure of Alzheimer’s disease progression vali-
dated using the Alzheimer’s disease neuroimaging initiative
database. Brain 131, 2443-2454.

[39] Hill NL, Mogle J, Wion R, Munoz E, DePasquale N,
Yevchak AM, Parisi JM (2016) Subjective cognitive
impairment and affective symptoms: A systematic review.
Gerontologist 56, e109-e127.

[40] Liew TM (2020) Subjective cognitive decline, anxiety
symptoms, and the risk of mild cognitive impairment and
dementia. Alzheimers Res Ther 12, 107.

[41] Miebach L, Wolfsgruber S, Polcher A, Peters O, Menne
F, Luther K, Incesoy E, Priller J, Spruth E, Altenstein S,
Buerger K, Catak C, Janowitz D, Perneczky R, Utecht J,
Laske C, Buchmann M, Schneider A, Fliessbach K, Kalbhen
P, Heneka MT, Brosseron F, Spottke A, Roy N, Teipel SJ,
Kilimann I, Wiltfang J, Bartels C, Düzel E, Dobisch L, Met-
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