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ABSTRACT

Type 2 diabetes (T2D) increases the risk for cerebrovascular disease (CVD) and dementia. 
The underlying molecular mechanisms remain elusive, which hampers the development of 
treatment or/and effective prevention strategies. Recent studies suggest that dyshomeostasis 
of amylin, a satiety hormone that forms pancreatic amyloid in patients with T2D, promotes 
accumulation of amylin in cerebral small blood vessels and interaction with Alzheimer's 
disease (AD) pathology. Overexpression of human amylin in rodents (rodent amylin does not 
form amyloid) leads to late-life onset T2D and neurologic deficits. In this Review, we discuss 
clinical evidence of amylin pathology in CVD and AD and identify critical characteristics of 
animal models that could help to better understand molecular mechanisms underlying the 
increased risk of CVD and AD in patients with prediabetes or T2D.
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INTRODUCTION

Cerebrovascular disease (CVD) and Alzheimer's disease (AD) are common causes of 
dementia.1 The pathological characteristics of CVD include structural and functional 
changes in the vasculature that affect oxygen and nutrient delivery to the brain.2 Several risk 
factors contribute to the development of CVD, including diabetes, obesity, hypertension 
and smoking.3 CVD and cognitive decline have been increasingly recognized as diabetic 
complications.4,5 Despite recent advances in the care of patients with Type 2 diabetes (T2D), 
the risk of CVD and dementia remains higher (up to 2-fold) in the population with T2D or 
prediabetes compared to metabolically normal individuals.6,7 The causative mechanisms 
underlying diabetes-associated cognitive dysfunction and dementia remain elusive. Clinical 
evidence indicates that overt hyperglycemia is linked to diabetes-associated cognitive decline8 
and dementia risk in non-diabetic individuals.9 Multi-centered, randomized controlled 
studies have shown, however, that stringent control of glycemic parameters, i.e., glycated 
hemoglobin (hemoglobin A1c) and fasting plasma glucose levels, does not improve cognitive 
function,10,11 rather, it increased mortality in patients with dementia.11 On the other hand, 
repeated hypoglycemic episodes are clearly linked to cognitive decline and increased 
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dementia risk.8,12 From these studies, we foresee a need to identify novel contributing factors 
to the risk of cognitive impairment in humans with T2D or prediabetes.

Amylin, also known as islet amyloid polypeptide (IAPP), is a hormone co-synthesized 
with insulin by pancreatic β-cells and participates in the central regulation of satiety.13 
Individuals with prediabetic insulin resistance have hypersecretion of both insulin and 
amylin.13 Thus, hyperamylinemia coincides with hyperinsulinemia and prediabetic insulin 
resistance, always.

Recent studies show that amylin accumulates in the cerebral small vessels of patients 
with dementia and T2D.14,15 Amylin deposition and mixed amylin-β amyloid (Aβ) plaques 
were also detected in brains of T2D patients with pathological AD.15,16 These results14-16 
suggest a pathological role of amylin dyshomeostasis in the development and progression 
of CVD and dementia. Here, we review clinical evidence of amylin pathology in CVD and 
dementia, discuss currently available animal models for diabetes and dementia, identify 
existent challenges and suggest future work that could lead to uncovering novel molecular 
mechanisms underlying the impact of diabetes on brain function.

PERIPHERALLY-MEDIATED AMYLIN DYSHOMEOSTASIS 
PROVOKES CEREBRAL SMALL VESSEL DISEASE
Amylin is synthesized and co-secreted with insulin by the pancreatic β-cell.13 The amylin 
peptide crosses normally the blood-brain barrier (BBB)17 and binds to neurons in the cerebral 
feeding centers to regulate satiety.18,19

Amylin from several mammalian species, including humans, cats, dogs, and monkeys 
(but not rodents), forms amyloid when overexpressed.13 Most of the patients with T2D 
(>90%) have amylin amyloid deposition in the pancreatic islets.13,20-23 Aggregated amylin 
induces β-cell dysfunction and apoptosis, contributing to the gradual loss of β-cell mass.23 
Recent studies report that patients with T2D have abnormal accumulation of aggregated 
amylin in extra-pancreatic tissues, including the kidneys24 and the heart.25 Accumulating 
evidence indicates that the presence of amylin deposition in brains of patients with T2D 
and dementia.14-16,26-29 Amylin accumulation is particularly abundant in the cerebral small 
vessels.14,15 We showed that microvascular amylin accumulation is associated with infarction 
and perivascular astrocyte recruitment, indicative of microvascular injury.14 Schultz et al.27 
showed that amylin forms intracellular inclusions in the brain microvascular pericytes of 
AD patients with T2D. Amylin-containing pericytes showed fragmented nuclei and loss of 
neuron-glial antigen 2 expression, which is necessary for pericyte viability and function.27 
Additionally, amylin appears to modulate pericyte autophagy and induces higher toxicity 
compared to Aβ amyloid in vitro.27 Results from the same research team showed the presence 
of aggregated amylin in the retinal microvessels.29 Capillary amylin accumulation in the 
retina appears to correlate with hippocampal amylin angiopathy and amylin burden.29 These 
results14-16,27-29 suggest the possibility of using peripherally-mediated amylin dyshomeostasis as 
a biomarker of cerebrovascular risk in patients with T2D.
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AMYLIN DYSHOMEOSTASIS AS A CONTRIBUTING 
FACTOR TO NEURODEGENERATION
One potential mechanism underlying vascular contributions to cognitive impairment 
and dementia (VCID) involves the interaction of diabetes-related amylin dyshomeostasis 
with AD pathology (Fig. 1). A study by Westermark et al.13 shows that the level of amylin is 
increased in the diffuse and dense cerebral plaques and within vascular amyloid deposits in 
brains of patients with pathological AD, without the clinical diagnosis of T2D.16 The results 
are consistent with previous data showing that ex vivo cross-seeding by amylin aggregates 
exponentially promote mixed amylin-Aβ amyloid formation.16 In line with these findings, 
a recent study demonstrates that mice expressing a mutated form of the amyloid precursor 
protein (APP) in neurons and human amylin in the pancreatic islets develop mixed amylin-
Aβ plaques in the brain,30 similar to the pathology observed in individuals with T2D and 
AD.15,16 When compared to transgenic mice expressing only the human amylin or the 
mutated form of APP protein alone, mice with mixed amylin-Aβ pathology show accelerated 
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Fig. 1. Diabetes-related amylin dyshomeostasis leads to the formation of pancreatic amyloid and promotes 
amylin accumulation in the peripheral circulation. Circulating oligomerized amylin deposits in the brain 
microvasculature and induces small vessels injury by deranging the microvascular endothelium. Oligomerized 
amylin also forms mixed amylin-Aβ plaques in the brain parenchyma, accentuating neurotoxicity. Diabetes-
related amylin dyshomeostasis promotes a feed-forward pathological process by which circulating oligomerized 
amylin injures brain microvasculature and synergizes with Aβ pathology to induce dementia. 
Aβ, β amyloid.



neurological dysfunction.30 The mechanism for exacerbated neurological function in this 
mice model is postulated due to the increased Aβ burden in association with elevated amylin 
accumulation in the brain.30 In contrast, the clinical data shows that Aβ burden is not 
increased in patients with T2D and AD.31,32 Thus, further investigations will be necessary to 
clarify the specific mechanism(s) underlying the effects of amylin dyshomeostasis on the 
brain in humans.

The increased propensity of amylin and Aβ to interact may be due to the fact that the 
amino acid sequence of human amylin is 52% similar to that of Aβ1-40 and Aβ1-42. The studies 
mentioned in above demonstrate the Aβ-seeding ability of human amylin in the brain. 
Nonetheless, one cannot exclude that the Aβ-seeding for amylin deposition is also a possible 
process that may occur parallel or independent from amylin-seeding Aβ.

In addition to protein-protein interaction, intriguingly, amylin and Aβ interaction are 
also found at the genetic level. Genome-wide association analysis further supports the 
interaction between the amylin gene and AD pathophysiology.33 Specifically, near genome-
wide significant interaction effect was observed for an imputed variant rs73069071, located 
on chromosome 12p 12.1, within the amylin gene.33 The rs73069071-by-Aβ deposition 
was found for interaction effect on global cognitive function in AD patients.33 Although 
remaining elusive, the postulated mechanism involves the effect of this single nucleotide 
polymorphism on amylin production, whose product is known to interact with Aβ or 
possibly altering Aβ metabolism, hence modulating the impact of Aβ-deposition on 
cognitive performance.

Within the effort to understand the interaction of amylin and Aβ pathology, results from 
several studies suggest that the interaction is mediated through amylin receptors.34,35 
Experimental data suggest that Aβ directly activates amylin receptors, and that the 
oligomerized Aβ-induced neurotoxicity can be blocked with specific amylin receptor 
antagonists or downregulation of amylin receptor expression.34,35 Interestingly, amylin 
receptor expression in the brain was up-regulated within the area of increased amyloid 
burden in AD transgenic mice which overexpress the mutated form of APP.35 Thus, while 
amylin accumulation appears to have deleterious effects, overexpression of amylin receptor 
(by the unknown mechanisms) possibly provides a platform for Aβ-induced neurotoxicity.

Besides pathological interaction of amylin with Aβ, aggregated amylin itself is neurotoxic. 
Several mechanisms of amylin-induced neuronal toxicity, including calcium dysregulation, 
oxidative stress, and mitochondrial dysfunction have been proposed.28,34,36 In neurons, amylin 
forms adduct with 4-hydroxynonenal, a marker of peroxidative membrane injury, leading to 
increased synthesis of the pro-inflammatory cytokine interleukin 1β.28 The amylin-mediated 
neuronal injuries were blocked ex vivo by membrane stabilizers and lipid peroxidation 
inhibitors.28 Thus, aggregated amylin deranges the lipid membrane and predisposes it to 
peroxidative injury and inflammatory responses.

Given the pathological function of aggregated amylin,14,15,37 the interaction of amylin with Aβ 
may accentuate neurotoxicity. Therefore, prevention strategies to effectively block amylin-
mediated neurodegeneration should involve the inhibition of amylin-induced neuronal 
membrane injury and amylin-Aβ interaction.
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ANIMAL MODELS FOR CONTRIBUTIONS OF T2D TO 
COGNITIVE IMPAIRMENT AND DEMENTIA
Rodents are the most commonly used laboratory models for diabetes and dementia owing to their 
99% similarity to the human genome.38 However, neither diabetes nor dementia-like pathology 
spontaneously occurs in rodents. Conditions associated with diabetes, dementia, or both can 
be induced in rodents.14,37,39-41 For the most part, insights from these interventions have been 
restricted to cerebral effects of inducing diabetes in normal rodents and in rodents genetically 
modified to develop neurodegeneration linked to the accumulation of Aβ in the brain.

In humans with T2D, the variation in the clinical phenotype of cognitive dysfunction or dementia 
may result from multiple pathologies.31,42 An existent challenge of using rodent models to 
uncover mechanisms underlying the impact of T2D on brain structure and function lies on 
the fact that some genetic modifications that lead to T2D phenotype directly impact brain 
structure and function. For example, leptin or leptin-receptor deficiency, which is the commonly 
used genetic modification to induce obesity-related metabolic disturbances in rodents,43 has 
negative effects on learning and memory.44 Thus, interpretations made on specific molecular 
mechanisms of diabetes-induced brain dysfunction need careful consideration.

Overexpression (3-fold) of human amylin in rats leads to the mid-life onset of hyperglycemia 
linked to pancreatic amylin amyloid and β-cell apoptosis.45 Diabetes in human amylin 
expressing rats (HIP rats) is associated with neurological deficits including declined learning 
and memory, vestibulomotor dysfunction, altered balance and gait abnormalities.14,37 In 
brains of the HIP rats with motor abnormalities, amylin deposition in small blood vessels 
correlates with microhemorrhages, decreased tight junction proteins levels and perivascular 
astrocyte activation,14 indicating that systemic amylin dyshomeostasis damages the BBB. 
Magnetic resonance imaging of HIP rat brains shows increased ventricular volumes with 
white matter hyperintensities and brain atrophy.14 Further assessment of cerebral blood 
flow in HIP rats via intravenous infusion of fluorescent microspheres and the measurement 
of the level of fluorescent microspheres retrieved from the brain capillaries reveal that 
amylin dyshomeostasis is associated with capillary loss and decreased cerebral perfusion.14 
Amylin dyshomeostasis occludes or/and damages the brain small vessels, leading to brain 
parenchymal loss. Therefore, the animal model with amylin dyshomeostasis has the 
advantage to recapitulate major lesions, vascular lesion and brain atrophy, seen in brains of 
individuals with T2D (; for a review31).

CURRENT CHALLENGES AND FUTURE DIRECTIONS FOR 
LABORATORY STUDIES
Investigations of human brain tissues and rodent models for T2D suggest that amylin 
dyshomeostasis could play a potential role in the development of CVD and AD in individuals 
with T2D. Because amylin is produced in the pancreas and accumulates in the brain in 
association with CVD and AD, it is of clinical interest to decipher the central aspects of 
amylin dyshomeostasis in diabetes-related CVD and dementia. First, cerebrovascular 
accumulation of amylin may require carrier(s) in the circulation. The possible carrier could 
be macro-/micro-molecules or cellular components in the circulation. The animal model 
for amylin dyshomeostasis discussed above serves as a useful tool for extensive in vivo 
characterization of pharmacological interventions. Second, the translocation of amylin 
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from the blood vessels to the parenchyma may require protein transporter(s). Likely, such 
translocation is concentration-dependent, because high aggregated amylin concentration 
is found to directly induce endothelial apoptosis in our previous study.14 Following the 
assessment of the cerebrovascular injury in the animal model of amylin dyshomeostasis, 
in vitro studies designed to identify specific protein transporter(s) are an important step to 
decipher how amylin interacts with BBB units and its translocation mechanism(s). Third, the 
specific function of amylin and aggregated amylin in vascular, neuronal and glial cells have 
not been fully understood. From our previous studies, we found that aggregated amylin could 
directly participate in cerebrovascular injury14 and neurodegeneration.28 However, much less 
is known about the effects of aggregated amylin on vascular, neuronal and glial function. 
Finally, we propose that understanding the pathways for aggregated amylin clearance from 
the circulation and the brain vasculature could be beneficial for therapeutic development.

Indeed, future research should take into consideration that the pathophysiology of T2D 
involves a complex interaction of multiple deficiencies. Therefore, the multi-facets of the 
T2D requires research models that can represent the complexity of the disease, in order to 
understand the underlying mechanisms attributed to CVD or dementia.

CONCLUSION

Diabetes-related amylin dyshomeostasis has a pathological role in CVD and dementia. 
Existent evidence has suggested that the accumulation of aggregated amylin in the brain 
blood vessels and brain parenchyma, mediated by peripheral amylin dyshomeostasis, is a 
potential mechanism underlying VCID.
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