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Finding gene network topologies for given
biological function with recurrent neural network

Jingxiang Shen"2, Feng Liu® "2, Yuhai Tu® 3 & Chao Tang® 24

Searching for possible biochemical networks that perform a certain function is a challenge in
systems biology. For simple functions and small networks, this can be achieved through an
exhaustive search of the network topology space. However, it is difficult to scale this
approach up to larger networks and more complex functions. Here we tackle this problem by
training a recurrent neural network (RNN) to perform the desired function. By developing a
systematic perturbative method to interrogate the successfully trained RNNs, we are able to
distill the underlying regulatory network among the biological elements (genes, proteins,
etc.). Furthermore, we show several cases where the regulation networks found by RNN can
achieve the desired biological function when its edges are expressed by more realistic
response functions, such as the Hill-function. This method can be used to link topology and
function by helping uncover the regulation logic and network topology for complex tasks.
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iological functions are carried out by the interaction of

genes and proteins. The mapping between the interaction

network topology and its function is one of the central
themes in biology. Searching computationally for possible reg-
ulation networks that will give rise to a certain biological function
has been an active and important area in systems biology. Such an
approach may provide unified mechanistic understandings, help
uncover and interpret natural regulation networks, as well as
suggest new designs for artificial synthetic circuits.

In simple cases, where the network size being studied is small
(~3 nodes) and the functional requirements can be abstracted to
simple mathematical descriptions, functional network topologies
can be found via exhaustive search!~°. Although the exhaustive
search scheme has been fruitful in dealing with small network
modules and functions with relatively low complexity, it faces
fundamental challenges in scaling up to larger and more complex
systems—the search space for network topology increases expo-
nentially with the network size, which could easily reach the limit
of the available computation power even for four-node networks.
In some extension of the enumeration method, regulatory
dynamics are modeled by Logistic regression (equivalent to
single-layer artificial neural network, i.e., linear model plus sig-
moidal saturation)”:8. This formulation brings remarkable
improvement for parameter sampling, but in general, the com-
putational difficulty of brutal-force enumeration still exists.
Another extension is using knowledge from small modules to
construct larger networks®?, but such a constructionist approach
requires certain prior knowledge of the building blocks and can
only explore a very limited subset for larger networks. There exist
other searching schemes under the trail-and-error spirit, for
example, the in-silico evolution!®-12, in which mutation and
selection are repeatedly performed on the network structure to
optimize a target fitness function. However, the applicability of
the method is very much dependent on the fitness landscape and
the implementation of the algorithm.

On the other side of the spectrum, if the biological function is
described by large amount of gene expression data, the regulation
network structure can be obtained through statistical regression
methods, known as the task of network inference!314, However,
large amounts of data are usually needed to make those data-
driven methods work. If only sparse and incomplete descriptions
of the target function is available, finding the most probable
trajectory (i.e., interpolating the data) is itself a hard task.

We reason that the search for functional network structures
(topologies) may be carried out more efficiently by employing
deep artificial neural networks (NN). Firstly, unlike the enu-
meration or evolution approaches, which rely on trails and errors
to find a satisfactory network topology, training the deep neural
network (DNN)!>16 is a more targeted process. NN rewires itself
directly using the information propagated back from fitting.
Secondly, NN-based models can still be successfully trained even
the target dynamics are only partially observable (i.e., with limited
data on some genes at some time points). To be specific, in our
approach the gene regulation network (time-evolution-function)
is represented by a feed-forward NN. Numerical integration of
the dynamic system corresponds to stacking this feed-forward
module into a recurrent neural network (RNN), which can be
trained efficiently by backpropagation if the desired biological
function has been properly formulated as a loss function (Fig. 1a).

The idea of learning differential equations from data has
attracted much attention recently, and there have been many
successful attempts in this direction!”-20, These studies are
mainly focused on developing the mathematical method itself,
especially on finding efficient ways for training an accurate NN
simulator of the underlying unidentified dynamical system. In
this paper our aim is to find the underlying regulation network(s)

for a given biological function. Thus, we not only have to train the
RNN, but more importantly also to interpret it biochemically, by
performing sensitivity analysis?!22, to establish a connection
between the trained RNN simulator and the more traditional
description of gene regulation network.

Besides training and interpreting the RNN, we also put effort in
validating whether the networks obtained are biologically feasible.
DNNs have the potential of overfitting. For our application here,
there are possibilities that the RNN relies on some highly non-
monotonic forms of regulations that no biochemical system can
achieve. We tackle this problem by verifying whether the reg-
ulation network found by RNN can still achieve the desired
biological function after its links being expressed by Hill-
functions (HF).

In this paper, we demonstrate our methods with four bio-
inspired examples, adaptation, controlled oscillation, pattern
formation and a set of 10-node cellular automata. RNNs can be
trained to achieve all functions easily. After training, an in silico
mutation method is applied to obtain a biochemically meaningful
regulation network, which describes what the RNN learns. (This
technique is also extended to sparsen the effective regulation
network, thus help to seek for minimal functional modules). For
the resulting network topologies, we can explain intuitively how
their structures could give rise to their functions, compare them
against existing biological networks, as well as demonstrate that
many of them can still achieve the target function if being cast
into more traditional HF models.

Results

Idea demonstration with adaptation. We first demonstrate the
basic idea and the implementation of our method with adapta-
tion, a simple, ubiquitous, and well-studied cellular function. In
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Fig. 1 Method demonstration with adaptation of a two-node network. a
The functional dependency of the synthesis terms f; and f, for g; and g, are
evaluated by a small feed-forward NN (dashed box). f; and f» (shaded blue
and green circles) can depend on all the three variables: g;, g» and the input
signal I. Time evolution of the dynamic system corresponds to recurrent
iteration of the NN block. The output g(t) = (g1(t), g»(t)) is compared with
the target value to define the Loss function for training. b We require g; to
be adaptive to the input change (pink line) and set its target time-course
values as indicated by the blue dotted line. No constraints on g, are
imposed. Blue and green solid lines are the time evolution of g; and g,
respectively, after training. ¢ f; (blue dotted line) and f, (green dotted line)
as functions of I, g; and g,, after training. The three panels show their
dependence on |, g; or g» with the other two variables fixed. In all three
subpanels, the horizontal and vertical axis both ranges from O to 1. d The
regulation network drawn from the information of (c). For example, the first
panel of (¢) indicates that f; increases with I, implying I activates g;.
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this task, the output node should sense the change of the input
stimulus and then return to its pre-stimuli level even the stimulus
persists (Fig. 1b). Regulatory networks (with no more than three
nodes) for this function have been exhaustively studied323. Only
two genes (g,,g,) = g plus one input signal I are considered here
for simplicity. Here, f = (f,,f,) represents the synthesis rate of
the genes.

dg; )
E=fi(g17g271)_ygi; i=1,2 (1)

The function f(g,I) contains information about gene-gene
interactions, which is usually written in explicit formulas but is
now simulated by a small feed-forward NN (Fig. 1a). This feed-
forward NN uses the current value of g(¢) and I(¢) as its input and
generates f as its output, thereby computes g(t + dt). So, this is a
kind of NN-based auto-regressor. By defining f to be non-
negative (between 0 and 1), and with the explicit liner
degradation terms —yg;, our formulation automatically prevents
g from diverging. (We simply set y = 1, since degradation in
reality can also be accounted by diagonal terms in f). Time
evolution of the regulatory system then corresponds to iteration
of this NN block, yielding an RNN model. Note that while a full-
fledged RNN passes hidden-layer information from each time
point to the next, in our case, only observables g are passed from ¢
to t+dt.

The Euclidian distance between model trajectory and the target
response curve ¢ is used as Loss function for training. Here, we
require the output node (g;) to carry out the adaptation function
(Fig. 1b). The other node (g,) has no functional constraints and can

play a regulatory role. Therefore, Loss = , /> (g,(t) — <él(t))z. With
t

a step-like input signal I(f), the target response curve g, should in
general be pulse-like—having a fast response phase and a slower
recover phase. Any curve with this kind of shape can serve as the
training target, and that used in Fig. 1 is simply defined as the sum of
two exponentials. (See Fig. Sla-c for another case). Training
converges quickly, yielding perfect adaptation (Fig. 1b)—that is, a
negligible adaptation error (difference between the pre-stimulus and
the fully adapted g; levels) as well as high sensitivity (response peak).

For this low-dimensional system, the trained f function can be
plotted directly (see Fig. lc for typical cross-sections and
Supplementary Fig. 1d for the entire surface). Note that the f
function is rather smooth and monotonic, indicating that the
RNN is not overfitting at least in the narrowest sense. By
observing whether f, and f, are increasing or decreasing with g,
g,> and input I (i.e., sign of the partial derivative), one can easily
find the regulatory logic hidden in the trained RNN. For example,
the fact that f, increases with I (Fig. 1c, left panel) implies that I
activates g;. The underlying regulation network adopted by the
RNN can thus be constructed (Fig. 1d).

The network consists of both an incoherent feed-forward loop
and a feedback loop, both known as the elementary motifs for
adaptation®23. Intuitively, this small network works as g, is first
activated by I, and later repressed by g, after g, reaches to a
functional level.

The in-silico mutation method: uncover learnt regulations and
guide training. For systems with more genes, direct visualization
the f function may be difficult. In this case, one could use the
partial derivative of; /0g; to reflect the regulation effect of g; on 8-
Theoretically, this provides an effective way to reveal the learnt
regulation network without having to read the high-dimensional
NN weights. But two points need to be discussed to make it
actually work. First, it matters where these derivatives are

evaluated, because only parts of the phase-space region (g,I) are
relevant to the task on which the NN are properly trained.
Therefore, one should evaluate the derivatives near the wild-type
trajectories (corresponding to A & 1 as discussed below. See also
Supplemental text S1). Second, magnitude of the derivative by
itself may not be an accurate representation of the regulation
strength. Imagine the case that g; synthesis is strongly repressed

ij/agi‘ does not

tend to be large, although in this case g; is actually the main
repressor of g;. Thus, a more accurate measure would be the

change of f; upon the fold change of g;.
Aszfj(""gi) _fj(”'7/\gi>;0<A<1 (2)

This definition is reminiscent of the knockdown experiments
biologically. The discount factor A controls the magnitude of the
perturbation—zero means link-knockout, i.e., deleting the bind-
ing sites of transcription factor i on the regulatory region of gene
j» while a close-to-one value yields kind of “knockdown
derivative” of the regulation link ij. In Table S2 we compare the
results with different values of A. Smaller perturbations (A >0.9)
work better in general. If averaged along a WT trajectory, (A;),
quantifies the effective gene regulation from g; to g;. (This is the
implementation used later in Figs. 5 and 6).

An alternative and maybe biologically more direct way to
reveal the regulation is to simulate the dynamics of the link-
knockdown/knockout mutant with the learnt f function. For
example, the mutant trajectory with the regulatory link from g, to
g, being knocked down is given by:

{ = f1(g.80]) — 18

by a high-expressing gene g; . Since f; ~ 0,

it ! ; 0<A<.
S =1008.81) — 8,

The regulation logic of the underlying gene network can then
be obtained by comparing the resulting dynamics with that of the
WT trajectory. An increase in g, level in this mutant would imply
a negative regulation or inhibition of g, by g,, and vice versa.
Figure 2b shows three examples of such link-knockout study (i.e.,
A = 1). For example, in first panel, upon blocking the interaction
from g, to f,, the level of g, drops slightly (from the lighter to the
darker green line), indicating activation of g, by g,. Performing
such link mutation on each and all possible interactions yield the
regulation network shown as topology #1 in the lower panel of
Fig. 2¢, which is identical to that obtained by directly plotting the
f function in this case (Fig. 1d).

In the A — 1 limit, the mutant trajectory approaches that of
the WT, thus the link-knockdown study becomes equivalent to
computing the partial derivative (Eq. 2). However, the knock-
down (or knockout) trajectory introduced here can also be used
in another way—to search for sparse or minimal networks as
discussed below.

The network shown as topology #1 in Fig. 2c¢ contains both of
the elementary adaptation motifs: negative feedback loop and
incoherent feed-forward loop, any one of which suffices to
achieve adaptation®. This kind of redundancy is typical for the
regulation network learned by RNN without any structural
constraints. RNN simply searches for a time-iteration rule that
works rather than being minimal or sparse. Simple regularizations
like weight decay do make the f function smoother, but help little
in sparsening the effective regulation network, as NN parameters
do not have explicit correspondence to effective regulatory links
(Supplementary Fig. 2, and Supplemental text S2 for an different
regularization attempt).

Efficient reduction of the redundant or undesirable links can be
achieved by implementing the link mutation technique (Fig. 2a)
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Fig. 2 Manipulating RNN to simulate link-knockout mutation. a Method for blocking the regulation link from g; to g,, i.e., g is set to O when computing f,.
b This perturbed f function can be iterated to simulate the effect of the mutant in which a specific regulation link is deleted. For example, with an RNN
trained on the adaptation task, blocking the regulatory effect of g; on g5 results in an increase in g, (from lighter to darker solid green line), indicating a self-
inhibition (left panel). Difference in the g; level is not important here (dashed lines). Similar arguments apply to the other two panels. Summarizing this
information gives a regulation network shown as topology #1in (c), bottom left. ¢ Sparsening the regulation network iteratively by removing non-necessary
links sequentially, as described in the main text. The upper panel plots the sensitivity and adaptation error for the sequence of networks. The lower panels
show the network topologies at steps 1to 4. The minimum incoherent feed forward motif appears naturally (topology #4), before the network has too few
links to adapt. d With the regulation from I to g, blocked at the very begging, similar procedures as in (¢) would find the minimum negative feedback loop,

the other core motif for adaptation besides the incoherent feed forward loop.

before training. The RNN is thus constrained to find solutions
without certain regulatory links. Since in most situations the truly
necessary links are not known a priori, an iteration of the RNN-
based model is needed to find sparse core networks. Starting with
a redundantly connected solution (#1 in Fig. 2c), apply the link-
mutation test for every existing link, find the one that has
minimal phenotype change upon deletion, then retrain the model
with this link deleted, and iterate. This idea is somewhat similar
to learning both NN architecture and weights through training?.
In this way, a sequence of regulation networks with a decreasing
number of links can be obtained. The minimum incoherent feed-
forward network emerges (#4 in Fig. 2c) before the network has
too few links to achieve adaptation.

The same iteration procedure can also be carried out with the
constraint that input I should act only on the output node g;:
deleting the link from I to g, at the very beginning. The
incoherent feed-forward structure is now impossible, and the
minimum negative feedback loop emerges (Fig. 2d).

Controlled oscillation. Our second example is controlled oscil-
lation. That is, the same core regulatory module exhibits quali-
tatively distinct dynamic behaviors under different kinds of
external stimuli2>—oscillatory response to input I, and steady-
state response to I, (Fig. 3a). With this example, we will first
demonstrate the applicability of the above introduced methods,
and systematically compare the network topologies found by
RNN with those found through the exhaustive search.

The task is defined as follows. The output node g, should have:
1) low basal level in the absence of both stimuli, 2) oscillation
when input I, is present but not I,, and 3) sustained high
expression when I, exists but not I, (dashed lines in Fig. 3b).

Precise values of oscillation frequency, response plateau, etc., as
well as the oscillation waveform (set as triangular here) does not
affect the resulting network topology in general. In Fig. 3b, the
solid lines show a trained example of a two-gene network. Fig. 3¢
shows its underlying regulation logic, revealed using the link-
mutation method. It contains a negative feedback loop respon-
sible for the oscillation. Input I, activates the feedback module
hence induces oscillation. Input I, also activates g, but at the
same time represses g,, preventing it from being activated later by
g,> therefore the negative feedback gets shut-off in the high-
g, state.

Implementing the RNN-discovered regulation network with
Hill-function model. As has demonstrated, training an RNN to
perform some biological tasks, and mapping it to a regulation
network can be carried out in a straightforward manner. How-
ever, it is important to discuss the issue of overfitting as DNNs
may simply fit everything?6. In the context of biological regula-
tion networks, we need to verify whether the resulting networks
are biologically implementable, not relying on some highly non-
monotonic input-output functions that are unreasonable
biochemically.

It is hard to strictly define whether a proposed network
topology is biologically implementable. Here, as a rough
evaluation, we check the consistency of the RNN-based model
with a biochemically interpretable model where the term f in
Eq. 1 is represented by the Hill function (HF), which is widely
used for modelling biological regulations. (See Methods for our
detailed implementation). Specifically, we will verify whether the
regulation network found by RNN can still achieve the desired
function if being converted to an HF-based model. Note that this
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Fig. 3 Systematic study of RNN-discovered network topologies with the controlled oscillation task. a Task description. The regulatory system is
expected to generate an output (node gy, blue) that shows oscillatory response to input stimulus l; (magenta) and steady-state response to I, (cyan).
b Training the RNN model. The training target consists of three parts, corresponding to resting state without stimuli, oscillation under /; (;=0.8, I, =0),
and sustained high expression under I; (I, = 0.8, I; = 0). Target values for g are shown as dotted blue lines, and can be well fitted by the RNN after training
(solid lines). No constraints on g, are imposed. All links are allowed during training without any special constrains. ¢ The underlying regulation network of
the trained RNN, obtained by the link-mutation method introduced previously. It can also be successfully transferred to a Hill-function model (Fig. S3b).
d Venn diagram for network topologies found by RNN and Hill-function-based enumeration. A total of 64 topologies were found by 200 repeated RNN
trainings (dashed circle); and 104 topologies were obtained by Hill function (HF) based exhaustive search (solid circle). 21 of them are identical (dark red
region). Another 15 RNN discovered topologies differ from the HF topologies only by one more or one less link, thus having the same core topology. They
are drawn “near” the strictly overlapping region (lighter red region). Similar situation also occurs on the HF side. e Regarding the probability of occurrence,
the 21 direct hit topologies account for 38% of total probability; and 55% for all those HF-compatible ones. f The search bias of RNN. And, this bias can be
changed via different training settings. Each successful network found by HF-based exhaustive search is represented by a dot whose size reflects the
chance of finding a successful parameter set with random sampling. They are arranged in four layers according to the number of regulatory links they have
(5, 6, 7, and 8 from bottom to up, respectively). Structurally similar ones are connected by lines. Most RNN-relevant topologies (red part in (d)) lies on
the right-hand-side branch. However, by modifying the detailed training settings (see main text and Supplemental text S6), RNN can be pushed to explore

the left-hand-side branch (yellow).

test is partial at best—while HFs do represent a class of
biologically realizable regulations, they certainly do not cover all
kinds of bioregulation. As expected, HF-consistency also
correlates with input-output monotonicity (Fig. S3e). As shown
in Fig. S3b, the network in Fig. 3¢ can be successfully converted to
HF models, and so do the two basic adaptation networks in
Fig. 2¢, d®3.

Systematic comparison between RNN Model and Hill function-
based model. To make a systematic comparison, we first per-
formed an exhaustive search using the HF model. Among a total
of 2304 possible network topologies, 104 can achieve the con-
trolled oscillation task under HF model. Also, we train the RNN
model repeatedly 200 times, with different weight initialization
and run-time Langevin noise. When identifying network topol-
ogies found by RNN with the link-mutation method, some reg-
ulation links are extremely weak, so a cutoff is certainly needed to
decide whether a weak link can be regarded as non-existent.
Without a cutoff, topologies with fewer links may become
indistinguishable with other denser ones; on the other hand, if
the cutoff value is too high, topologies with more links would be
missed. So, there exists an optimal cutoff value that gives a
maximum number of distinct network topologies (Fig. S3c),
which is used here.

A first observation is that RNN solutions are highly
degenerated. Although the 200 trained RNNs have quite different
final weight values, only 64 different effective regulation networks

emerged. Furthermore, the most frequently occurring 30%
topologies take up 80% of the total probability.

Among the 64 topologies obtained, 21 appear in our HF-based
exhaustive search result, and another 15 differ from the HF
topologies only by one more or one less link (Fig. 3d). As adding
or removing a link will not change the core network topology,
these 15 solutions should also be regarded as “HF-compatible”.
Regarding the probability of occurrence, the 21 direct-hit
topologies account for 38.3% of total probability; and 54.9% for
all those HF-compatible ones (Fig. 3e), which is rather high. As a
comparison, a total of 2304 topologies that satisfy the basic
connectivity requirements are studied in the enumeration, of
which only 104 (about 4.5%) are successful.

On the other hand, those RNN-discovered topologies (21 +
16 = 37 in total) are not evenly distributed among the total 104
topologies obtained by HF-based exhaustive search. Following
the visualization scheme adapted from ref. 7, we organize all
these 104 HF topologies into a graph, according to the number
of regulatory links and their structural similarity (Fig. 3f). Each
topology is represented by a node, whose size reflects its
robustness with HF model (the number of valid parameter sets
found in 160,000 random samples). Their structural similarities
are shown by connecting pairs of them by lines if they differ
from each other by only one regulatory link. By coloring those
RNN-discovered topologies in red, it is clear that they span
mainly the right-hand-side branch. A closer investigation
reveals their common core module - g, activates both itself
and g,, while g, represses g,. This is the most robust two-node
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Fig. 4 Searching sparse three-node network topologies for controlled oscillation task. a The method in Fig. 2c, d is applied to the controlled oscillation
task. The resulting networks with decreasing number of links are labeled by numbers 1 to 8. The darker and lighter blue regions show the range of
oscillation and level of steady state response under I; and I, respectively, after training. Networks #7 and #8 are too sparse to be successfully trained. b
Effective regulation networks mapped out from this sequence of models. ¢ Possible branching at step #6 for panel (b). Several repeats of this step give
another three types of topology #6: named #6-2, #6-3, and #6-4, respectively. Topology #6, #6-2, and #6-3 share a common underlying structure. Just
reversing the sign of certain nodes would make them identical (dashed gray arrows). d Topology #6-3 (marked by asterisk in panel ¢) is the same as the
core oscillation module of p53 network. This is a well-known example for controlled oscillation. This panel is adapted from ref. 27 but another node Mdm2
is not included. e Topology #6-3 in panel (¢) can be successfully transferred to Hill-Function models.

oscillatory module according to enumerative study®. But the left
branch is largely unexplored under the current training setting.
RNN seems to have its own bias toward different feasible
regulation structures.

Such bias of RNN model is not unchangeable—it can be
pushed to explore the left branch if its detailed implementation
were modified. For example, we can set the pre-stimulus level of
g, to a fixed high value 0.9 (while in original settings it is a free
parameter), and the RNN is first trained to perform uncondi-
tional oscillation and later the full controlled oscillation task
(Supplemental text S5). With these modifications, the RNN
becomes biased towards the left branch (yellow, in Fig. 3f).

Searching for sparse controlled-oscillation-networks by
sequential removal of regulation links. The method for
searching possible minimal networks presented in Fig. 2c, d is
also applied to the controlled oscillation task. Here, we will search
for sparse three-node networks as they have more redundant
links to be removed than two-node ones. Detailed implementa-
tion is not much differed from the previous adaptation example.
A sequence of regulation networks with decreasing number of
links are obtained in this manner (Fig. 4a, b). The task can be
successfully trained for network #1 throughout #6.

Repeating the above training-and-deletion sequence several
times result in different sparse regulation network solutions. See
Fig. S5 for another example. Indeed, several repeated training
with the allowed links of #6 yield another three possibilities of its
topology (Fig. 4c). Among them, topologies #6-2 and #6-3 share a
common underlying high-level structure with #6. Reversing the
sign of g, in #6 (swapping activation and inhibition for all
regulations connecting to g,, as well as reversing its own
expression level) will turn it into topology #6-2. Similarly, #6-3
is equivalent to #6-2 if g, were reversed in this way. Interestingly,
the topology #6-3 is identical to the core p53 oscillation module, a
well-known example for controlled oscillation (Fig. 4d, adapted
from ref. 27, but Mdm?2 is not included). Also, as expected, this
topology (#6-3) can be successfully transferred to HF models
(Fig. 4e and Table S4).

Gap gene patterning. In the next example, we demonstrate our
method on a more complex case using real data from experiments
—the spatial patterning of gap-gene expression in Drosophila
embryogenesis. This is a well-studied system both experimentally

and by modelling?82°. Here, the RNN model is used to solve the
inverse (reverse-engineering) problem: given the observed gap
gene expression pattern as the desired output, find possible
underlying regulation networks. The results are further compared
with the known biological network obtained from decades of
experimental studies.

Roughly speaking, four gap genes (hb, Kr, kni, gt) respond to
the input signals provided by maternal morphogen gradients (Bed
and Tor), forming band-like expression patterns along the
Anterior-Posterior (A-P) axis (Fig. 5a). Though spatial degree
of freedom (A-P axis) is involved, our model here is not spatially
coupled - the effect of short-range diffusion of gap gene products
is neglected. Thus at every single spatial position the gene
regulation is modeled by an RNN following Fig. 1a, with g and f
both being four dimensional vectors (hb, Kr, kni, gt), and the
input I has two components (Bcd, Tor). Target expression pattern
is a typical pattern (at a single timepoint) taken from the FlyEX
databaseY, and the morphogen gradients are treated to be static.
No time series data is used for training. The RNN runs freely for
several steps and is compared with this target profile at the final
time point, giving the Loss function for training.

The RNN can be easily trained to generate this pattern
accurately. Results of 40 repetitive trainings all overlap with the
target pattern (Fig. 5b, lower). When being mapped out to effective
regulation networks using the link-mutation method, all of the 40
trained RNNs turned out to have similar effective structures. In
Fig. 5¢, each regulatory link is represented by a block, in which the
frequencies of this link being activating/non-exist/inhibiting among
the 40 solutions are listed, and is colored following the majority
(blue for activation and red for inhibition). This majority network
(redrawn as Fig. 5d) has very similar structure as the known
biological gap gene network revealed by experiments?8. The latter is
represented in Fig. 5c by colored dots in the lower-right corner.
Such similarity between the RNN-discovered gap gene network and
the biological one is further illustrated by the Kr mutant. As both hb
and gt are inhibited by Kr, in Kr mutant these domains expand
towards the center, eliminating the kni domain through repression
(Fig. 5e). These features are consistent with experimental
observations3!. We would not claim that our approach provides a
better model for the Drosophila gap gene system than the one
obtained by decades of experimental work on many mutants.
Instead, this example helps to demonstrate the capability and
flexibility of our approach for reverse-engineering more complex
networks from very limited experimental data.
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Fig. 5 Train RNN to generate the gap gene pattern. a At each spatial
point, the gap genes interact with each other under the inputs of maternal
morphogens, generating stripe-like patterns along the Drosophila Anterior-
Posterior body axis (anterior to the left and posterior to the right,

same for b). The RNN is trained to simulate the gap gene network to
generate the given output pattern. b Upper: the morphogen profiles, serving
as static inputs (Bcd: Bicoid, Tor: Torso). Lower: the target gap gene profiles
(dotted lines, cited from the FIyEX database3©) and the patterns generated
by RNN after training (colored solid lines). Blue, green, red and yellow lines
stand for hunchback(hb), Kriippel(Kr), knirps(kni) and giant(gt) expressions,
respectively. Results of 40 parallel trainings are shown. ¢ Statistics of the
underlying regulation network of these 40 RNN solutions. For each of the
regulatory link, the frequencies of this link being activating/non-exist/
inhibiting are shown, and the block is colored following the majority (blue/
white/red for activation/non-exist/inhibition). Colored dots on the lower
right corner represent the biological gap gene interactions revealed by
experiments, which is very similar to the majority network learnt by RNN. d
The majority network found by RNN, same as the colored blocks in (c). e
The similarity between the RNN-discovered network and the biological one
is further illustrated in the Kr mutant. Being negatively regulated by Kr, both
hb and gt domains expand thus eliminate the kni domain. This prediction is
consistent with experimental observations[31].

Continuous-state cellular automata in 10-dimensional state
space. The final example deals with a much larger regulation
network (10 nodes) with much more complex spatial-temporal
behaviors. The RNN models are trained to simulate the dynamics
generated by some in silico ground truth regulation networks,
and are used to predict the underlying activating/ inhibiting gene
interactions (through the link-mutation method).

The spatially coupled dynamical systems, serving as ground
truth here, is a kind of continuous-state cellular automata (CA)
(Fig. 6a and Supplemental text S10). CA is widely used in
modelling complex interacting systems2. Here, the gene regula-
tion network shared by all cells computes the synthesis rate (f, 10
component) of each gene within the current cell using the current
expression state of itself (g) as well as that of its neighboring cells
(h). Here, we study only regulatory rules with reflection
symmetry, hence defining h, = (g,_, + g,,,)/2 where x labels
cell position. Therefore, the regulation network (or CA-rule) have
200 possible regulatory links. The ground truth networks are first
generated at random; each link has 35% probability to be
activating or inhibiting respectively and 30% probability to be
non-existent, and then is converted to HF models with randomly-
sampled parameters. Those CA-rules that display non-uniform
spatial-temporal patterns are selected as ground truth networks.

Spatial-temporal data generated by the ground truth network is
used to train the RNN model. As demonstrated by the previous
examples that our method does not rely on detailed time-series
data, we down sampled the spatial-temporal profiles for 10-fold

along the temporal direction to prepare the training data, (i.e., the
CA dynamics is observed every 10 timesteps). The RNN model
starts with an observed state, run freely for 10 timesteps to predict
the next one. Even for this much more complex case, RNN
training converges fast (~7 min on a 4-core laptop).

Since CA dynamics are in general chaotic, it is natural that
different initial conditions should give rise to different spatial
temporal patterns. To see if the trained RNN has some predictive
power, it is tested on some random new initial conditions—it
runs freely after initialization to generate the entire predicted
pattern, which is compared to that generated by the ground truth
network with the same new initial condition (Fig. 6b, c).
Although the two dynamic trajectories diverge after long enough
time, the RNN model has nonetheless captured the main spatial-
temporal features. For the g values along a test CA trajectory, the f
term computed by RNN is in most cases close to that given by the
ground truth HF model (Fig. 6d). The RNN is indeed a good
approximation to the underlying regulation function.

For each regulatory link, the RNN model (with the link-mutation
method) give a scalar-valued evaluation of its sign and strength. In
predicting the underlying network topology, we discard the weakest
30% links, and the remaining positive and negative ones are
predicted as activation and inhibiting, respectively. Figure 6e shows
the counts of correct and incorrect predictions for CA-model #24
following this definition (the case in Fig. 6b). The accuracy is fairly
good. For example, there are a total of 61 true inhibiting links in this
case, and 39 of them are correctly predicted.

On the other hand, the strength threshold for identifying an
activating link against non-existing or inhibiting ones can be
tuned continuously to give a receiver operating characteristic
(ROC) curve (Fig. 6f for CA-model #24). The same applies to
distinguishing inhibiting links. Note that our RNN model, which
is effectively an auto-regressive model, significantly out performs
the simple and widely used linear auto-regressor (whose ROC on
CA-model #24 is presented in Fig. 6g). The RNN-based method
has similar performances on all 25 different ground truth CA
models studied (Figs. 6h and S6).

Discussion

In this paper, we explored the possibility of searching feasible reg-
ulation networks behind given biological functions (represented by
the expression level of one or more genes) through training and
interpreting RNN. RNN is first trained to perform the biological
function (with or without some external constraints). Then, a link-
mutation method is introduced to interrogate it to give an effective
underlying regulation network. Different aspects of our general
approach are demonstrated with four examples.

There are multiple advantages of simulating unidentified
dynamical systems with RNN. Firstly, model fitting is accelerated
greatly by using RNN and backpropagation. (Table S1 lists the
time requirements of RNN training versus random parameter
sampling for the cases studied in this paper.) Secondly, the RNN
model is demonstrated to be effective even if there are only sparse
descriptions of the target biological functions. In our first two
examples (Figs. 1-4), only the target response curves on a single
gene is provided for training. And in the next two examples
(Figs. 5 and 6), RNN can still be successfully trained without or
with only down-sampled time series data. Thirdly, multilayer
NNs have a less rigid form for the input-output function than
predefined equations. Training can be viewed as establishing the
necessary logical information connections between the input and
output nodes, without being restricted by details in conventional
modeling approach such as the way to describe cooperativity, the
form of nonlinearity, etc. Our implementation of time integration
in this paper is carried out by simple forward Euler method
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Fig. 6 Uncovering regulatory links in 10-node continuous-state cellular automata. a Illustration of the cellular automata (CA) system. Expression levels
of 10 genes define the state of each cell. The cells are arranged in a 1-dimensional array, and at each time step, each cell updates its state according to its
current state (g) as well as the average of its nearest neighbors (h). We first implement the regulation network, or CA rule, by Hill functions to generate
“ground truth” CA models, then use the time-course data generated by them to train the RNN. Periodic boundary condition is used. b After training, the
RNN model simulates the underlying dynamical system accurately. Starting from an unforeseen initial condition, the RNN model (left) generate spatial-
temporal dynamics quite similar to that generated by the ground truth model (right). Only three genes that varies significantly are shown as red, yellow and
blue here. € Another case just like (b). d A set of g values (as well as that of neighboring cells) are generated by the ground truth CA model #24 (that of
panel b) starting from a set of random initial conditions. With these same set of input, the f term computed by RNN frnnz24 (g, h) is plot against that given
by the ground truth HF model fgound truth (@, ). @ For the RNN model of panel (b), the weakest 30% of links revealed by the link mutation study is predicted
to be non-exist, and the remaining negative/positive ones are classified as inhibiting/activating. The confusion matrix of such a link-type classifier is

shown. More than half of existing links are correctly predicted. f The link mutation results can also be used to define a binary classifier, which distinguishes
activating links against non-activating ones (non-exist or inhibiting). The receiver operating characteristic (ROC) curve of this activating link predictor is
shown in blue (for CA #24). Similar situation applies to distinguishing inhibiting links as well (red). Our RNN based models significantly out performs the
simplest linear auto-regressor, whose ROC curves under the same definition are shown in (g). This feature holds for all 25 different CA models studied (h).

(Fig. 1a). For more demanding tasks, more advanced numerical
framework like the neural-ODE!? can be used instead.

An important issue is whether the network topologies pro-
posed by RNN can have biological realizations. Although about
half of the RNN-discovered networks can pass a stringent con-
sistency check using HF-based models, some unrealistic solutions
do appear. However, these unrealistic (or kind of undesired
alternative) solutions may be consequences of insufficient con-
straints in training, rather than unavoidable model limitations.
Consider an example in the adaptation case. If only a single input
strength (platform height of the step function) were used for
training, in some RNN solutions adaptation is not achieved
through appropriately structured regulation network but by some
non-monotonic regulation function form - g, increases slowly
due to activation from input I, and g, is activated by low con-
centration of g, and inhibited by high concentration of g,, hence
generating a pulse-like response. One can reformulate the loss
function, or introduce additional training constraints, to avoid
such undesirable solutions. For example, in our treatment of
adaptation in Figs. 1 and 2 these solutions are eliminated by
varying the input strength in training.

Another issue is that the networks proposed by RNN may bias
towards certain sub-class in the solution space as discussed in

Fig. 3f. As gradient descent (backpropagation) is a history-
dependent searching algorithm, this bias should be largely deter-
mined by the training dynamics (hence, details of the model and
Loss function). Although in principle RNN with a multi-layered
recurrent module should be able to simulate all possible network
topologies, the fact that it is trained through backpropagation
actually makes it explore only a subset of the entire solution space
given a specific implementation. Especially, as NN weights are
usually initialized near zero to avoid gradient exploding, repeated
trainings of NN tend to fall into the same degenerated minimum.
One may explore other possibilities by using different imple-
mentations of the loss function, different detailed forms of target
response curves, or introducing different regularization for RNN.

Finally, we note that the network topology may not be the sole
determinant for function. For example, according to ODE-based
network model study>33, self-sustained oscillation should rely on
delayed negative feedback loop. But this “rule” can be broken by
including stochasticity3*. Moreover, there exist more complex
cellular processes that cannot be simply attributed to activating or
inhibiting regulations. The concept and structure of regulatory
network itself could be revisited in a broader context’>. The
exercise and lessons presented here may serve as a starting point
for further exploration.
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Methods
Training the RNN model. The NN simulators for simulating the synthesis rates f in
this paper are basically multilayer perceptrons (MLP). For the results of Figs. 1, 5, and 6,
a single MLP is used, with the input layer having the dimensionality of the number of
genes plus the number of inputs (Ngeye + Nipur)s and output dimension Ne,,e. Two
hidden layers with equal numbers of nodes are used. The case of Figs. 2, 3, 4 are slightly
different, where each output node has its private MLP (Ngee 4 Nippur dimensional
inputs and one-dimensional output), thus implementing the structure shown in Fig. 2a
explicitly. A total of Ny, MLPs of this kind are used. Throughout this paper, ReLU is
the activation function for the hidden layers, and for the output layer we use sigmoid to
keep the output value (synthesis rate f) bounded between 0 and 1.

This MLP computes the synthesis term f. The f term is then integrated through
time to compute a time-course trajectory. Numerical integration follows the Euler
method (¢ =i df). Decay rate y is set to 1.

g(i+1)= (1—ydt)g(i) +f(g,I)dt (4)

By using a relatively large timestep dt = 0.2, typical simulations can be
completed within a few tens of iterations (i form 1 to N, Ny =40 for the
adaptation task, 60 for the controlled oscillation, and 30 for the gap gene example).
We use the forward Euler discretization mainly for simplicity, and are fully aware
that a large timestep may introduce large numerical error. Yet, the aim of
employing NN in this paper is to search for necessary logical regulatory
connections (i.e., network topologies), which are actually qualitative features. If in
some future cases numerical accuracy do matters a lot, the neural-ODE
framework!? can be employed to train the RNN with much higher numerical
accuracy.

The initial condition should also be specified to complete the definition of a
dynamic system. For Figs. 1-4, initial value of the output node g is set to be the
desired output at the pre-stimulus state (0.4 for the adaptation task, and 0.1 for the
controlled oscillation task). Initial pre-stimulus value of the other nodes (g,, etc.)
are set to be trainable variables. For the gap gene case, the initial condition for all
gap genes are simply zero everywhere, representing a newly formed fertilized egg
before the expression of zygotic genes. In the CA example, initial values of all genes
are provided explicitly by the first frame of the time-course of training data. All
detailed information concerning model definition and training data selection is
listed in Table S1.

The link-mutation technique. The trained NN represents a black-box function F
with input layer (g,,---,g,,) and output layer (f,,---.f,). Perturbing the reg-
ulation link from g; to g, can be implemented by running the function F twice with
different inputs: (where 0 <A< 1)

(Froforfs o fu) = F(81:82 2 8m)
(Fofofanf1) = FOgr 820+ 18m)
And stacking the output dimensions (f,,f5.f5, - .f,) gives the perturbed f
term. That is, replace g, value with the discounted value Ag, when and only when
computing f,. This kind of sensitivity analysis procedure can be applied to
arbitrary black-box function. Comparison of different detailed implementations of
the link mutation method is listed in Table S2.

©)

Enumeration with Hill-function model. Enumerating all topologies is straight-
forward. The directed link between each pair of nodes (8 links in total) are allowed
to be activating, inhibiting, or non-exist. Multiple regulations, like g, is at the same
time activated and inhibited by g,, are not allowed. Among these 3% topologies,
2304 satisfy basic requirements of connectivity. That is, both inputs should be
connected to the core network, and g, and g, should be connected bidirectionally
to keep the 2-node network irreducible to a single-node one. These 2304 topolo-
gies, having 4 to 8 links, are used for subsequent searching.

Hill function model of regulation links are implemented as follows. Activation
and repression are formulated by terms h" and h™ respectively. For example, if g;
is activated by g;, and repressed by g;, the corresponding HF terms are:

+ _ bﬁgjn o Ky"
UK g K g

(©)

We set the Hill coefficient # =2 in the enumerative study for simplicity. The
synthesis rate f; in Eq. 1 integrates multiple regulatory effects of this kind. We take
the convention that treats the Hill activation terms to be additive, and those
repression terms to be multiplicative. Basal expression is ignored.

5= (o) (H hg) @)

With this formulation, each activating link (each k' term) has two parameters K
and b, and a repressive link only has one parameter K.

For each network topology, the parameters (K and b) are sampled in
independently from the exponential distribution p(x) = e™*. For each network
topology, 160,000 sets of random parameters are sampled. A topology is considered
to be “successful” only if no less than 2 successful parameter sets were obtained.

Dynamic trajectories are simulated with forward Euler method for 200 steps; and
we judged whether the output level oscillates first by simply calculating its temporal
variance over steps 101~200, followed by a manual check. As the exhaustive search
serves only as a validation step in this paper, there surely could be some omission
and false positive, but they should not affect our general conclusions.

(All numerical simulation and data analysis in this paper are performed using
custom code3® programmed in Python 3.6.5, Tensorflow 1.8.0 and MATLAB 2017a.)

Reporting summary. Further information on research design is available in the Nature
Research Reporting Summary linked to this article.

Data availability

Minimal datasets for the generation of the main figures are deposited to GitHub at
https://github.com/sjx93/rnn_for_gene_network_2020/tree/v1.0. The raw datasets
generated and/or analyzed during the current study are available without any restrictions
within a month from the corresponding author on reasonable request.

Code availability
The custom code generated during the current study are available in the Zenodo
repository, https://zenodo.org/record/4705184. DOI: 10.5281/zenodo.47051843¢
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