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CD47 is ubiquitously expressed on the surface of cells and plays a critical role in

self-recognition. By interacting with SIRPa, TSP-1 and integrins, CD47

modulates cellular phagocytosis by macrophages, determines life span of

individual erythrocytes, regulates activation of immune cells, and manipulates

synaptic pruning during neuronal development. As such, CD47 has recently be

regarded as one of novel innate checkpoint receptor targets for cancer

immunotherapy. In this review, we will discuss increasing awareness about

the diverse functions of CD47 and its role in immune system homeostasis.

Then, we will discuss its potential therapeutic roles against cancer and outlines,

the possible future research directions of CD47- based therapeutics

against cancer.
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Introduction

CD47 is a membrane receptor glycoprotein composed of a heavily glycosylated N-

terminal IgV domain and five transmembrane helices domain with a short cytoplasmic

tail (1–3). It was originally identified as a tumor antigen on human ovarian cancer

specimens (4). This transmembrane protein is well recognized for its role in “don’t eat

me” anti-phagocytic signals by binding to SIRPa (signal regulatory protein alpha) (5).

Additionally, TSP-1 (thrombospondin-1) and integrin a2b1 and avb3 have also been

shown to be CD47 ligands (1, 6) (Figure 1).

CD47 is involved in multiple fundamental cellular functions, including cell

migration, apoptosis, and axon development (7–9). It is widely expressed on the

surfaces of normal cells, especially hematopoietic cells and is best known for its

interaction with SIRPa (10). SIRPa is a myeloid-specific immune checkpoint and has

been classically described as counterbalanced by a variety of activating membrane

receptors (11).The interaction between CD47 and SIRPa emerges as a key regulatory

component of innate immune checkpoint by regulating signal transduction and cell
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clearance. In addition, CD47 is recognized as pivotal for

erythrocyte homeostasis, during which both SIRPa and TSP

ligands have been shown to be involved (12).

In this article, we will discuss basic functions of CD47 and its

associated ligands, review the current knowledge about the

involvement of CD47 in host cell phagocytosis, and survey

current strategies for developing CD47-based immunotherapy

for tumors. In addition, side effects and future research

directions for CD47-based immunotherapy will be evaluated.
Ligands of CD47

The most investigated binding partner of CD47 is SIRPa,
which is highly expressed in neurons and a subset of myeloid

hematopoietic cells such as dendritic cells (DCs) and

macrophages (13). SIRPa is a transmembrane protein

comprised of cytoplasmic region with four immunoreceptor

tyrosine-based inhibition motifs (ITIMs) and extracellular

region with three immunoglobulin (Ig)-like domains (14). The

NH2-terminal V-like domain of SIRPa is responsible for the

binding the extracellular Ig-domain of CD47, whereas ITIMs

provide the binding sites for the src homology-2 (SH2)-domain-

containing protein tyrosine phosphatases SHP-1 and SHP-2

(15). Recruitment of SHP-1 and SHP-2 phosphatases prevents

myosin-IIA accumulation at the phagocytic synapse (16).

By combining different ligands, different signaling pathways

can be triggered: When CD47 interacts with SIRPa on the

surface of phagocytes, it promotes phosphorylation of the

intracellular ITIMs and activates the inhibitory phosphatases

SHP-1 and SHP-2, which will inhibit the activation of immune
Frontiers in Immunology 02
cel ls by dephosphorylat ion of prote ins containing

immunoreceptor tyrosine-based activation motifs (10)

(Figure 1). Meanwhile, the dephosphorylation cascade initiated

by CD47 inside phagocytes lead to deactivation of myosin-II and

thereby preventing contractile engulfment (16). Molecular

modeling revealed that a VMM motif in C-terminus of TSP-1

is an optimal locus to bind to CD47 (17). TSP-1-CD47

interaction regulates multiple biological functions such as

cellular migration, angiogenesis, adhesion, cell aging (18).

4N1K, a peptide corresponding to the CD47 binding region of

TSP on IL-12 and TNF-a production, was reported to mediate

significant biological effects that were CD47‐independent (19–

21). PKHB1, the first‐described serum‐stable soluble CD47‐

agonist peptide, directly induced T‐leukemic cell death by

engaging the CD47 receptor (20).

CD47 was originally also known as integrin-associated

protein (IAP) in earlier studies because of its interaction with

aIIbb3 and a2b1 and avb3 integrins (22). In this manner, CD47

functions as a key regulator of migration of smooth muscle cell

and platelet activation, etc. (6, 23).

There are other SIRP-family members sharing significantly

conserved amino acid sequences within the extracellular

domains but different signaling potentials, which are

recognized as “paired receptors” (10, 24). In addition to

aforementioned SIRPa, the SIRP family have the other

members, SIRPb1, SIRPb2, SIRPg, and SIRPd (13, 25). Among

these members, only SIRPg exhibit a lower affinity with CD47

than that for SIRPa (Figure 2).

In addition, several cytoplasmic binding partners of CD47

have been identified, including protein linking IAP and

cytoskeleton-1 (PLIC-1), ubiquilin-2 (PLIC-2), vascular
FIGURE 1

CD47 binding partners and downstream signaling mediators of CD47-SIRPa interaction.The type of signals triggered by CD47 relies on many
factors, of which the foremost is the type of ligand that it binds. Three major groups of ligands are identified to exhibit capacity of binding to
CD47, namely, SIRPa, TSP-1, and integrins. The interaction between CD47 and SIRPa causes cytoplasmic ITIM phosphorylation and
subsequently recruits SHP-1/2. Both of SHP-1 and SHP-2 can inhibit accumulation of myosin-IIA at the phagocytic synapse, which finally inhibit
the process of phagocytosis.
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endothelial growth factor receptor (VEGFR2), and exportin-1

(18, 29–31). These binding receptors are being exploited in the

design of new immune-therapeutic approaches and more robust

data are yet to follow on clinical significance of them.
Host Cell Phagocytosis

In earlier times, CD47-SIRPa interaction was best known for

its role as a negative regulator during erythrocytes clearance (32,

33). The original evidence for this came from compelling research

in which CD47 knockdown red blood cells, which were quickly

cleared by spleen macrophage (33). In contrast, normal

erythrocytes can survive for more than 40 days in mice by the

reason of CD47 expression (33). Subsequently, it was found that

aging erythrocytes have some conformational changes (possibly

induced by oxidative modification) in CD47, which change from a

“don’t-eat me” configuration into an “eat-me” signal (12). By this

token, CD47 not only serves as a pro-phagocytic signal but also

behaves as a molecular switch regulating erythrocyte homeostasis

(Figure 3). This process is thought to be highly associated with

Gaucher disease, which is a genetic disorders with glucocerebroside

accumulations in cells (40). Comparative analyses of membranous

CD47 expression showed that erythrocytes from untreated

Gaucher patients have week CD47 expression but can be

overturned upon enzyme-replacement remedy (41).
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Kusakari and colleagues’ study revealed that CD47-SIRPa
interaction lead to the internalization of partial membrane by

contiguous cells (42). Then it is proved that CD47 did not

inhibit, but rather facilitated both phosphatidylserine-

independent and phosphatidylserine-dependent uptake of

apoptotic cells in the murine system (43). These results

confirm prior evidence that CD47 is responsible for removal

of some cells rather than just one negative regulator

of phagocytosis.
CD47 and immune cells

CD47 and effector T cells

CD47 can be found expressed on virtually all immune

cells, but the level of expression varies markedly in severity

depending on cell types and pathologic conditions (2). For T

cells, CD47 signaling is associated with a wide array of

cellular processes, from activation to induction of deaths

(44). For example, intracellular signaling induced by CD4

stimulates their proliferation, thereby improving the

immunological response (45–47). Additionally, CD47 is

preferentially expressed on long-lived memory T cell

progenitors, which may increase their survival time by

preventing clearance by macrophages (48).
FIGURE 2

Schematics of structure of SIRP family members. Besides SIRPa, SIRPb1, and SIRPg have also been identified in humans. Both of SIRPb1 and
SIRPg consist of three Ig-like loops in their extracellular domains. SIRPb1 is characterized by a basic amino acid side chain in its transmembrane
domain with a very short cytoplasmic region. This transmembrane region is indispensable for binding of DAP12 (DNAX activation protein 12). It
has been established that SIRPb1 can mobilize the tyrosine kinase Syk, which was followed by MAPK (mitogen-activated protein kinase)
activation and microglial phagocytosis enhancement (26). However, it remains unknown what the extracellular ligand for SIRPb1 and how it
might regulate cellular function. There is also a short cytoplasmic region in SIRPg, but it is quite different from SIRPb1. The former lacks a
charged amino acid residue in its transmembrane region. Nevertheless, SIRPg can still interact with CD47 by the way of protein-protein binding
studies (27). One study has demonstrated that endothelial cell CD47 interacting with SIRPg plays an important role in T-cell trans-endothelial
migration (28). SIRPb2 is expressed by cells of the monocyte-macrophage lineage and presumably has an association with DAP12 or a similar
adaptor (14). SIRPd has only one domain and has not yet been found any obvious means of membrane attachment (10).
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CD4+ T cells differentiation can be regulated not only by

CD47 on themselves but also on antigen presenting cells (APCs).

Avice et al. demonstrated that CD47 ligation can selectively

inhibit the development of naive T cells into Th1 effectors, which

are characterized by production of high levels of IFN-g,
lymphotoxin-a (LT-a), and TNF-a (49, 50). Specifically,

inhibiting the expression of IL-12R via T cells, impairing the

responsiveness of T cells to IL-12, and decreasing IFN-g
production by dendritic cells are among different options how

CD47 influence Th1 response (49, 51). Moreover, application of

F(ab’)2 fragments from CD47-binding peptides or an anti-CD47

mAb has been shown to elicit similar effects (49, 52). The

research from Cham recently indicated that CD47 blockade

enhances T cel l responses and speeds lymphocytic

choriomeningitis virus clearance (53). These evidences suggest

that targeting CD47 holds much promise to treat a wide range of

immuni ty func t ion d i s turbance wi th undes i rab l e

immune responses.

Liu et al. reveal data suggesting that T cells are required for

tumor regression and mediate most of the anti-tumor effects of

the CD47 blockade (54). Using syngeneic mouse models of

cancer, rather than transplanted xenografts, they first

demonstrated that the therapeutic effect mediated by the

CD47 blockade is specifically CD8+ cytotoxic T cell–

dependent. Phagocytosis of tumor cells by DCs and cross-

present antigens to activate downstream CD8+ T initiate

adaptive immunity, thereby effectively bridge innate immunity

and adaptive immunity. Mechanistically, these anti-tumor
Frontiers in Immunology 04
effects rely on the cytosolic DNA sensor STING expressed by

CD11c+ DCs instead of signaling through MyD88, for example

by Toll-like receptors.
CD47 and Treg Cells

CD47 promotes the differentiation of Treg cells and

regulates homeostasis of activated CD103+ Treg cells (18, 55);

however, a deficiency of CD47 does not alter the inhibitory

function of Treg cells (56). Interestingly, naive T cells exhibit an

elevated expression of FoxP3 after treatment with anti-CD47/

anti-TSP-1, which is akin to the effects of TGF-b and IL-10 (55).

CD47 is found highly expressed in the Treg cells in atopic

dermatitis patients, suggesting it may contribute to the increased

population of Treg cells in this type of eczema (57). In addition,

Tregs can protect dopaminergic neurons against MPP+

neurotoxicity underlying CD47-SIRPa interaction (58). This

finding provides a novel perspective into how to effect

neurodegenerative disease progression by sustaining

neuroprotective immunity.
CD47 and antigen presenting cells

Macrophages are involved in recruitment of immune cells to

eliminate foreign materials, aid in tissue repair, and eventually

return the tissue to homeostasis (59, 60). CD47 is the dominant
FIGURE 3

Signals involved in the interaction between macrophages and erythrocytes regulating clearance.Macrophages exhibit some receptors for
phosphatidylserine, such as Tim- 1, CD300, Stabilin-2, and Tim-4, which are presumed to deliver a pro-phagocytic signal (34–37). Band 3 is the
major target of Nabs. Band 3 clustering and opsonization with Nabs and complements on the erythrocytes facilitates binding to the
macrophage via Fc receptors and CR-1 and thereby promotes phagocytosis (38, 39). CD47 is a “don’t eat me” signal that plays a crucial role in
erythrocytes homeostasis. Binding of CD47 to SIRPa generates an erythrocyte phagocytosis-associated deactivation of myosin IIA, which is a
primary contributor to phagocytosis because of its participation in macrophage actinomyosin contraction. Tim, T cell immunoglobulin; Nabs,
natural occurring antibodies; CR-1, complement receptor.
frontiersin.org

https://doi.org/10.3389/fimmu.2022.757480
https://www.frontiersin.org/journals/immunology
https://www.frontiersin.org


Hai et al. 10.3389/fimmu.2022.757480
macrophage checkpoint, which acts as a “don’t eat me signal”

(33). Through its interaction with SIRPa, aged erythrocytes and

other ineffective normal cells are quickly cleared by macrophage

in the spleen along with accelerated phagocytosis. Further

evidence suggest that CD47-SIRPa axis contributes to

macrophage activity regulation and alters the polarization state

of macrophages (61).

DCs are professional antigen presenting cells with the

unique ability to induce naïve T cells activation. They also

represent an abundant and stable source of TSP, which can

function as an autocrine factor suppressing IL-12 and IFN-g
production by means of interaction with CD47 (62, 63).

Meanwhile, the contact between CD47 on T cells and SIRPa
on DCs may also participate in the maintenance of immune

hemostasis (52). Compared with macrophages, DCs appeared to

be the major APCs that cross-prime cytotoxic T cells following

CD47 blockade since the therapeutic effect was severely impaired

after DC depletion rather than macrophages (54). The authors

attributed this different efficiency to higher expression of Ifna

mRNA on DCs (54).
CD47 and nature killer cells

CD47 plays negative roles in NK cells activation and

proliferations upon binding its ligand TSP-1, while lack of

CD47 increase NK cells activation and cytotoxicity (64, 65).

As a SIRPa counter-receptor, CD47 is involved in NK

precursors engraftment in humanized mice (66, 67). In

tumor microenvironment, CD47 impairs the recruitment of

NK cells, whereas treatment with anti-CD47 antibody

increases NK cells killing against tumor cells by enhancing

expression of granzyme B and IFN-g (65). Though future

studies are still needed to better understand the intricate

mechanisms recruiting NK cells, targeting CD47 has a

therapeutic potential as a NK cell checkpoint in tumor

micro-environment (68).
CD47 and other cell types

Emerging evidences indicate that CD47 plays an important

role in trans-endothelial migration of neutrophil and other

leukocytes (69, 70). Diverse anti-CD47 mAbs have been

illustrated to suppress neutrophil movements across cell

mono-layers in vitro (7, 71, 72). Additionally, neutrophil

mobilization was shown to be retarded in vivo in CD47-

deficient mice by means of intraperitoneal inoculation of

Escherichia coli (70). Also, recent studies demonstrated that

CD47 molecule expressed on myeloid DCs is a critical factor

in controlling efficiently traffic across lymphatic and endothelial

vessels, seeding in secondary lymphoid organs and participating

in T-cell priming (54, 73).
Frontiers in Immunology 05
Targeting CD47 for cancer
immunotherapy

In the current era in oncology, checkpoints immunotherapy

of hematopoietic and solid malignancies are becoming a

promising mode of treatment for cancer patients (74, 75). But

the fact that not all cancer patients benefit from adaptive

checkpoints immunotherapy catalyzed enormous interests in

the targeting of novel immune checkpoint receptors.

Considering innate immune system is the first line of defense

directly target cancer cells, harnessing innate immunity

represents another potential therapeutic avenue for cancer

treatments. Innate checkpoints have recently received some

attention regarding their possible roles in tumor-mediated

immune escape. A list of innate checkpoints of interest are

under investigation, including CD47-SIPa axis, TAM family

(Tyro3, Axl, andMerTK), Siglec-9, CD24-Siglec-10 axis (76–79).
Mechanisms of action of
CD47 targeted therapy

The theoretical basis for CD47 functioning as a promising

checkpoint in cancer therapy is due to its pivotal role in

balancing both inhibitory and stimulating activities of myeloid

cells (Figure 4). Firstly, CD47 ligation induce apoptosis of tumor

cell through a caspase-independent mechanism (Figure 5) (84,

85). Secondly, anti-CD47 leads to tumor cell phagocytic uptake

by antigen presenting cells and subsequent antigen presentation

to T cells (76, 86). Thirdly, anti-CD47 abrogates the TSP-1-

mediated inhibitory effect against human NK cells but increase

NK cells activation and cytotoxicity (65). CD47 blockades have

shown initial success in early- phase clinical trials for many

human cancers, either alone or in combination with other agents

(Table 1) (87, 88). Fourthly, preclinical study by Xiaojuan L et al.

demonstrated that therapeutic effect of CD47 blockade depends

on STING (stimulator of interferon genes), which induces a type

I/II IFN response mediated by dendritic cells and CD8+ T-cells

(54). Fifthly, some literatures revealed that CD47/TSP-1

pathway also has pleiotropic effects on immunity system and

may present a new target for potential cancer therapeutics

(89, 90).
Molecular mechanisms underlying
anti-CD47 therapy

Whether blocking CD47 alone is sufficient to induce

phagocytosis is a matter of dispute (91, 92). Some evidence

supports that targeting CD47 would be sufficient for elimination

of tumor cells by macrophage (93, 94). It should be noted that

most of the antibodies tested before include an Fc region, which
frontiersin.org
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recognizes Fc receptor g-chain (FcRg) on macrophage,

neutrophils, and NK cells (95, 96). On one hand, activating

FcRs associated with FcRg of immunoreceptor tyrosine-based

activation motif (ITAM) and, thereby, trigger phagocytosis of

macrophage (96). On the other hand, the interaction between Fc

region and FcRs simultaneously opsonize the target cells for

antibody-dependent cell-mediated cytotoxicity (ADCC) since

NK cells are the crucial mediators of this reaction in vivo (87,
Frontiers in Immunology 06
97). Moreover, FcR-activated NK cells can also secrete IFN-g,
TNF-a, and lead to increased expression of interleukin-21

receptor that suppress tumor growth (98, 99). Therefore,

insights raise intriguing questions as to whether anti-tumor

effects induced by CD47-antibodies occur through Fc-

dependent mechanisms? Which acts as the predominant signal

responsible for anti-tumor effects, modulation of phagocytosis

or ADCC?
FIGURE 4

Targeting CD47 immune checkpoint for cancer immunotherapy.Cancer cells rely on the expression of “don’t eat me” signals such as CD47 to
inhibit their phagocytotic clearance by macrophages, while blocking CD47 reduces tumor growth by enabling macrophages to phagocytose the
cancer cells [reviewed in refs (22)].
FIGURE 5

Mechanisms of CD47-induced caspase-independent cell death.CD47 induces a caspase-independent cell death, characterized by intact or
slightly modified nuclei, reduced cell viability (80). The process of cell apoptosis includes PS (phosphatidylserine) exposure, disruption of
mitochondrial function, and cytoskeleton rearrangement (1): K+ is a critical component of volume regulatory response, and leakage of K+ is a
simple way to accommodate a rapid decrease in cell volume; CD47-induced cell death was dependent on K+ efflux (81); (2) Mechanisms
involved in PS exposure remain poorly understood. Veronique M et al. proposed that CD47 ligation initially induce triggering of actin
polymerization, perhaps via Cdc42/WASP pathway. This event then leads to mitochondrial changes including matrix swelling and DYm
(mitochondrial transmembrane potential) loss, followed by PS exposure or bypass of mitochondria and direct induction of PS externalization
(81); (3) In addition, Bcl-2 homology 3 (BH3)-only protein 19 kDa interacting protein-3 (BNIP3) is indispensable for the pro-apoptotic effect of
CD47 (82). A simple model-based on the translocation of BNIP3 from the inner surface of the cell membrane to the mitochondria is proposed
since BNIP3 can only exert its pro-apoptotic effect at the mitochondria membrane (83).
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It is of great significance to the development of

therapeutic agents because of balance between their direct

killing effect against cancer cells and their potentially

hazardous side effects on normal CD47-positive cells. If

ADCC generally dominates during the stage of immune

response, tolerable toxicity can be achieved with an

impaired therapeutic efficacy (100).

To minimize the effect of Fc-dependent effector functions,

investigators designed a chimeric antibody (Hu5F9-G4)

containing the Fc portion that binds to FcRs with a lower

affinity compared to other human IgG subclasses (101). ADCC

and complement- dependent cytotoxicity (CDC) activities were

tested, and Hu5F9-G4 was unable to induce ADCC and CDC at

any of the concentration tested (101). But it still triggered potent

macrophage-mediated phagocytosis against human

hematological cells, suggesting that CD47-SIRPa blockade

alone may be sufficient to induce tumor regression (101).

However, the application of the agent having lower affinity

with FcRs did not completely exclude the direct ADCC since

even minimal engagement of FcRs could be enough to activate

signaling cascade of phagocytosis.
Frontiers in Immunology 07
The best way to completely exclude direct ADCC is to use F

(ab’)2 fragment antibodies. F(ab’)2 fragment is characterized

with removal of most of the Fc fragment, while leaving the

hinge region intact. Research data showed that anti-CD47 F(ab’)

2 fragment was able to promote engulfment of Raji and other

lymphoma cells in vitro (88, 102). Intriguingly, this

phenomenon of engulfment activation was not applicable to

Jurkat and various colon carcinoma cell lines (91, 102). Studies

later confirmed that the first group of tumor cells expressed

other phagocytic receptors that can bypass the need for FcR

engagement (88).

CD47 antibodies with devoid of Fc portion are theoretically

an ideal candidate for the development of therapy approaches to

modulate CD47-SIRPa interaction. This can be achieved via the

form of nanobody or single-chain variable fragment (103). For

example, HuNb1-IgG4, an innovative anti-CD47 nanobody, has

been developed to reduce adverse effects of blocking CD47-

SIRPa interaction (103). It was shown that HuNb1-IgG4

presented potent anti-tumor activities in vivo, and more

importantly, it exhibited high safety for hematopoietic system

in cynomolgus monkeys (103).
TABLE 1 Registered clinical trials on clinicaltrials.gov focused on CD47-SIRP axis.

Sponsor (Lead
Drug)

Clinical Trials.gov Identi-
fier

Intervention Cancer type Phase

Gilead
Magrolimab

NCT02953509 + Rituximab Relapsed/Refractory B-cell Non-Hodgkin Lymphoma I/II

NCT02953782 + Cetuximab Solid Tumors and advanced colorectal cancer; I/II

NCT03248479 Monotherapy or
+ Azacitidine

Hematological Malignancies I

NCT03558139 + Avelumab Ovarian Cancer I

Celgene
CC-90002

NCT02641002 Monotherapy Acute myeloid leukemia; myelodysplastic syndromes I

NCT02367196 Monotherapy or
+ Rituximab

Hematologic Neoplasms

Surface Oncology
SRF231

NCT03512340 Monotherapy Advanced Solid and Hematologic Cancers I

ALX Oncology
ALX148

NCT03013218 Monotherapy or
+ Rituximab
/Pembrolizumab
/Trastuzumab

Advanced Solid Tumors and Lymphoma I

Trillium
TTI-621

NCT02663518 Monotherapy or
+Rituximab
/Nivolumab

Hematological Malignancies and Selected Solid Tumors Ia/Ib

NCT02890368 Monotherapy or +
PD1/PD-L1 Inhibitor
/pegylated interferon-a2a
/T-Vec/radiation

Relapsed and Refractory Solid Tumors and Mycosis
Fungoides

I

Trillium
TTI-622

NCT03530683 +Rituximab Relapsed or refractory lymphoma or myeloma I

Arch Oncology
AO-176

NCT03834948 Monotherapy Multiple solid tumor malignancies I

Innovent Biologics IBI188 NCT03763149 Monotherapy Advanced malignant tumors and lymphomas I

NCT03717103 Monotherapy or +
Rituximab

Advanced Malignancies I
frontie
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As is discussed before, CD47-SIRPa blockade alone, in most

cases, is not sufficient for the induction of significant

phagocytosis and subsequent antitumor activity. A secondary

stimulus, such as other prophagocytic signal (i.e., calreticulin,

SLAMF7, and macrophage-1 antigen) or an opsonizing antibody

(i.e., rituximab) is indispensable (104). Calreticulin is proposed

to be a pro-phagocytic signal recognized by lipoprotein receptor-

related protein-1 (LRP-1) on macrophage (105, 106). SLAMF7

(signaling lymphocytic activation molecule family 7, also known

as CRACC, CS1, and CD319) remarkably facilitates engulfment

of a few hematopoietic tumor cells expressing SLAMF7 such as

Raji during CD47-SIRPa blockade (45, 102). This explains why

anti-CD47 F(ab’)2 fragment was able to promote engulfment of

Raji (107). In addition, SLAMF7 interact with macrophage-1

antigen (MAC-1) to form a protein complex on the macrophage

surface (102). The complex consists of two ITAM-containing

receptors, FcRg and DAP12, which trigger the phagocytic

machinery through SRC kinase, spleen tyrosine kinase, and

Bruton’s tyrosine kinase (102). All the three prophagocytic

receptors can be exploited to enhance anti-tumor response

during CD47-SIRPa blockade.
Small-molecule inhibitors
targeting CD47

In some aspects, small-molecule agents are superior to

therapeutic antibodies since they can increase active time

period and absorbability in the body (108). Research on small-

molecule inhibitors targeting CD47 has also been one of the

focuses for cancer immunotherapy. These inhibitors can

modulate CD47 at the transcriptional, translational, and post-

translational modification levels. In a concentration-dependent

manner, both NCGC00138783 and pep-20 bind to CD47 and
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exert their blocking functions (109, 110). Some small-molecule

agents can suppress CD47 expression at transcriptional or

translational levels, including RRx-001, metformin, 4-

methylumbelliferone, JQ1, and gefitinib (111). Excitedly, RRx-

001 has showed potent anti-cancer activities via different

pathways and has been proceeded into Phase III clinical trial

(NCT03699956) (112, 113). At the post-translational

modification level, QPCTL (glutaminyl-peptide cyclo-

transferase-like protein) disrupts CD47 pyroglutamate

formation and is regarded a novel target to augment antibody

therapy of cancer (114, 115). To sum up, there have been big

progress in this endeavor recently and this field deserves

increased attention in future.
Side effects of anti-CD47 treatments
and proposed solutions

Given the ubiquitous expression of CD47 on normal cells,

potential side effects such as anemia will need to be considered

though several clinical trials are underway and have produced

impressive clinical results in recent years (Figure 6).

In several preclinical solid tumor models, tumor-specific

delivery of CD47 blockade demonstrated superior accumulation

and fewer side effects at tumor sites compared with systemic

administration (118) (119). Novel drug delivery system has

emerged as a critical modulator in the development of anti-

CD47 therapeutics, such as nanomedicine and gel matrix (117,

120–122).

Bispecific antibodies are helpful for the purpose to limit

bystander effects due to widespread CD47 expression.

Heretofore, some bispecific antibodies have been developed

with one arm binding and blocking CD47 to prohibit its
FIGURE 6

Proposed solutions to the side effects of anti-CD47 treatments. (A) antibody fusion proteins, e.g., TTI-621 (116) or ALX-148 (26); (B) “initiation
doses” followed by “therapeutic doses”, e.g., Hu5F9-G4 (117); (C) pro-drug vesicle-induced immunogenic cell death combined with CD47
blockade (54); or (D) tumor-targeting nanoparticles loaded with anti-CD47 antibody (27).
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interaction with SIRPa, and the other arm binding tumor-

associated antigens such as CD19, CD20, and PD-L1 (123). In

comparison to other CD47 antibodies, bispecific antibody was

engineered to have a lower affinity towards CD47, limiting

binding activity with normal cells expressing CD47. Here,

proof was provided by an anti-CD47/CD19 bispecific antibody

that selectively block the CD47-SIRPa on malignant cells

expressing CD19 and interact weakly with normal cells

expressing CD47 (124). Such a bispecific design could be

applied to limit the negatively impacts caused by “antigen sink”.

In addition to drug delivery system and bispecific antibody,

there are many other strategies to prevent anemia caused by

anti-CD47 therapeutics: gradually increase therapeutic dose

(125); differentiate erythrocytes CD47 and tumor cell-

expressing CD47 (114, 126–130); sacrifice antibodies mediated

ADCP (antibody-dependent cellular phagocytosis) (131–133);

pro-body technology (134) (120). Apart from anemia, issues

with thrombocytopenia, hyperbilirubinemia, and neutropenia

have also limited the use of anti-CD47. For further reading on

this field, we recommend to the curious reader one excellent

review by Yuchen W et al. (135). The review also high-light

recent advances in tumor therapy targeted on the CD47-SIRPa
axis and provides ideas for further clinical transformation.
Future perspective

Although early data with agents targeting either CD47 or

SIRPa have highlighted the therapeutic potential by sending a

potent “don’t eat me” signal to prevent phagocytosis, no Phase

III study convincingly demonstrated the efficacy of these novel

therapeutic targets for cancer treatment so far. ENHANCE

(NCT04313881), a randomized, double-blind, placebo-

controlled multicenter Phase III study from Forty-Seven

(Gilead Sciences) aimed to compare the effects of treatment

with magrolimab plus azacitidine and placebo plus azacitidine in

untreated patients with myelodysplastic syndrome, has recently

resumed after FDA lifted the partial clinical hold placed on the

item. This is the only Phase III clinical trial related to CD47

blocking therapy. Inhibitors and antibodies against CD47 in

immunotherapy have several limitations to emerge, and some

features of the therapy must be considered.

The first limitation is to search for safe potent antibodies that

are not highly bound to erythrocytes at early step in terms of

safety. Earlier detection of the potential toxicity during antibody

development can help cut costs and improve success rate. Dual

targeting bi-specific antibodies of both TAA (tumor-associated

antigens) and CD47 can also be designed to resolve this issue,

which can direct CD47 blockade selectively to cancer target cells,

thereby improving the safety of CD47 blocking therapy

(136) (137).

Secondly, immunotherapy with CD47 blockade has achieved

impressive successes in treatment of hematological
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malignancies. But the clinical efficacy of CD47 blockades in

solid tumors has been much less rewarding due to the tumor

heterogeneity and intricacies of the tumor microenvironment.

Compared with macromolecule agents, small molecule

inhibitors are more penetrative to the targets and have broad

prospects for development and application in solid tumors

(138). For example, a humanized CD47/GPC3 (Glypican-3)

BsAb enhances the Fc-mediated effector function and has

significantly better efficacy than the combined treatment using

CD47 and GPC3 monoclonal antibodies in the hepatocellular

carcinoma model of xeno-transplantation (139). Apart from

bispecific antibodies, nanobodies have also received

widespread attention due to their deeper penetration in solid

tumors. HuNb1-IgG4, a new type of CD47 nano-antibody that

has a low affinity for human erythrocytes, enhances tumor

phagocytosis mediated by macrophages in vitro, and shows

strong anti-tumor activity in ovarian cancer and lymphoma

(103). Thirdly, CD47 can also be used in other therapeutic areas,

including atherosclerosis, neurological disorders, and

autoimmune diseases. By administration of CD47-blocking

antibodies, the atheroprone mice would develop significantly

smaller atherosclerotic plaques compared to IgG controls (140).

A potential role for CD47 in Alzheimer’s disease has been

identified with studies showing CD47 facilitates Ab oligomers

internalization by microglia (141, 142). Even in the infancy of

understanding its diverse function and potentiality, CD47 will be

further revealed as an important mediator in these

therapeutic areas.
Conclusions

Inspiring progress has been made with respect to the

understanding of the role of CD47 in normal cell growth cycle

as well as in the molecular pathogenesis of diverse diseases.

CD47 serves as a receptor for TSP, integrins, and SIRP family

members and has been shown to trigger a wide variety of cellular

functions. For example, several lines of evidence suggests CD47

ligation appears to co-stimulate T cell proliferation and induce

their arrest (54).

Utilizing anti-CD47 antibodies open up exciting avenues in

cancer, but there are still unsolved questions in this field. First,

the underlying mechanisms need to be elucidated. What is the

importance of FcR engagement during CD47 blockade? How to

avoid an uncontrolled immune response since the ubiquitous

expression of CD47? The cell specific function of CD47 is not

fully understood so far and its downstream signaling is still

unclear. Secondly, there exists more than one binding receptor of

CD47. It, therefore, would be challenging to decide what are the

specific contribution of each partner in this intricate network?

Thirdly, the question remains whether NK cells or other

immune cells contribute to the effect of CD47 blockade rather

than macrophage. Finally, some researchers asserted that anti-
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CD47 antibody did not induce apparent side effects in animal

models, but whether if it is equally safe in human body still needs

further elucidation. In conclusion, though there is still long way

to go about mechanistic issue of CD47 blockade, immunological

and clinical studies are yielding impressive results in this field.

An exciting new era of innate checkpoint strategy targeting

CD47 is likely to come especially when we fully understand

underlying mechanisms.
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