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Efficacy of immunotherapy in hepatocellular carcinoma (HCC) is blocked

by its high degree of inter- and intra-tumor heterogeneity and immunosup-

pressive tumor microenvironment. However, the correlation between tumor

heterogeneity and immunosuppressive microenvironment in HCC has not

been well addressed. Here, we endeavored to dissect inter- and intra-tumor

heterogeneity in HCC and uncover how they contribute to the immunosup-

pressive microenvironment. We performed consensus molecular subtyping

with non-negative matrix factorization (NMF) clustering to stratify the

inter-heterogeneity profile of HCC tumors. We grouped HCC tumors from

the Cancer Genome Atlas (TCGA) patients into three subtypes (S1, S2 and

S3), where S1 was characterized as a ‘hot tumor’ profile with high expres-

sion level of T cell genes and rate of immune scores. S2 was characterized

as a ‘cold tumor’ profile with the highest tumor purity score, and S3 as

an ‘immunosuppressed tumor’ profile with the poorest prognosis and a

high expression level of immunosuppressive genes such as cytotoxic

T-lymphocyte-associated protein-4, TIGIT, and PDCD1. Moreover, we

combined weighted gene co-expression network analysis and single-cell

regulatory network inference and clustering (SCENIC) in the single-cell

dataset of the S3-like subtype (CS3) and identified a transcription factor,

BATF, which could upregulate immunosuppressive genes. Finally, we

identified a cell interaction network in which a myeloid-derived suppressor
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cell-like macrophage subtype could promote the formation of immunosup-

pressive T-cells.

1. Introduction

Hepatocellular carcinoma (HCC) is the most common

form of primary liver cancer, with a 5-year survival rate

of 12–18% [1]. HCC is characterized by both inter- and

intra-tumor heterogeneity. Uncovering the molecular

mechanisms underlying HCC heterogeneity is critical

for the development of targeted therapies [2]. In recent

years, genome-wide analyses of mRNA expression pro-

files of large cohorts of HCC samples have been con-

ducted [3]. However, most studies have focused on bulk

RNA sequencing profiles, hindering the investigation of

intra- and inter-tumor heterogeneity.

To date, several medicines have been approved for

HCC treatment with unsatisfactory results. The emer-

gence of drug resistance in HCC treatment is inevita-

ble due to tumor heterogeneity. Over 50% of HCC

patients are currently administered systemic

chemotherapies proven to be barely effective and toxic

to the remaining normal liver [4]. In particular, anti-

cancer immunotherapy inhibiting programmed cell

death protein-1 (PD-1)/PD-L1, cytotoxic T-

lymphocyte-associated protein-4 (CTLA4), and various

immune cell therapies, as well as vaccines, have

sparked interest in the application of immuno-

therapeutics to HCC [5].

The effect of immunotherapy in HCC is reconciled

by overall immune infiltration and enriched co-

occurrence of immune subpopulations [6]. Complex

cell composition and characteristics in the tumor

microenvironment (TME) highlight the presence of

multiple non-redundant mechanisms of cancer immune

suppression. To improve immunotherapy efficacy, we

should further investigate the heterogeneity of immune

cells in different patient subtypes and identify suitable

patients for specific immunotherapy. We should also

study the mechanisms of tumor suppression and enrich

immunotherapy efficacy. In recent years, single-cell

RNA sequencing (scRNAseq) has emerged as a power-

ful tool for revealing the heterogeneity of cells in the

tumor immune microenvironment. For example, It has

been reported that intrahepatic cholangiocarcinoma

(CCA) could interact with regulatory T cells (Treg)

through the ligand-receptor (L-R) pair of TIGIT-PVR,

leading to immunosuppression in intrahepatic CCA

(ICC) [7,8]. It has been reported that exhausted CD8+

T and Treg cells are preferentially enriched and poten-

tially clonally expanded in HCC [9]. However, the

correlation and consistency between inter- and intra-

tumor heterogeneity have not been evaluated.

In this study, we integrated analysis of scRNAseq

and multi-omics data unravel the tumor heterogeneity

and immunosuppressive mechanism in HCC. The find-

ings could facilitate clinical diagnosis and enrich HCC

immunotherapy.

2. Materials and methods

2.1. Bulk RNA and single-cell datasets

All the datasets applied in this study are listed in

Table S1.

2.2. Bulk RNA data preprocessing

HCC bulk RNA data were retrieved from the Cancer

Genome Atlas (TCGA; https://www.cancer.gov/tcga)

and International Cancer Genome Consortium (ICGC;

https://www.icgc-argo.org), through GDC API, respec-

tively. Samples without complete survival or clinical

information were removed. We obtained 353 samples

from TCGA and 232 samples from ICGC for subse-

quent analysis.

2.3. Identification of HCC subclasses

Genes with a mean absolute deviation of > 1 top genes

were chosen for NMF clustering [10]. Subsequently,

unsupervised NMF clustering methods were performed

on the normalized expression data using the NMF R

package [11]. The values of k when the magnitude of

the cophenetic correlation coefficient began to fall

were chosen as the optimal number of clusters [12].

2.4. Multi-omics data acquisition and processing

Somatic mutation data of all HCC patients from the

‘Masked Somatic Mutation’ category in TCGA were

processed using VARSCAN software (https://portal.gdc.

cancer.gov/). Mutations were analyzed and visualized

using maftools (version 2.10.0) [13]. Enrichment scores
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of the hallmark genes were evaluated using single-

sample gene set enrichment analysis (GSEA, ssGSEA)

using the gene set variation analysis (‘GSVA’) R pack-

age (version 1.42.0) [14]. The hallmark gene sets were

obtained from MSigDB database from GSEA software

(http://www.gsea-msigdb.org/gsea/downloads.jsp).

2.5. Differentially expressed gene analysis

The ‘Limma’ package was used to perform the differ-

entially expressed gene (DEG) analysis. An empirical

Bayesian method was applied to estimate the differen-

tial genes between two clusters identified by the NMF

clustering method using moderated t-tests [15]. Consid-

ering the high immune cell infiltration in S1 and S3,

and high tumor purity in S2, we then overlapped the

differentially expressed genes in S1 and S3 with

immune genes from ImmPort (https://immport.niaid.

nih.gov/home) and excluded the immune genes in S2

to obtain the final candidate genes. The adjusted

P-value for multiple testing was calculated using the

Benjamini–Hochberg correction. Genes with an abso-

lute log2 fold change greater than one and FDR

< 0.05 were identified as signatures between two clus-

ters. We performed differential analysis for each clus-

ter, which was compared with both of the other two

clusters to select either significantly upregulated

(log2FC > 1; FDR < 0.05) or significantly down-

regulated (log2FC < �1; FDR < 0.05) genes.

2.6. Estimation of immune infiltration and tumor

purity

We downloaded the ‘CIBERSORT’ scripts (https://

cibersort.stanford.edu/) to estimate the immune com-

position of HCC patients using the normalized express

matrix, and the patients whose P-value was < 0.05

were adopted in the immune infiltration [16]. Immune,

stromal and tumor purity scores were calculated using

the ‘Estimate’ R package [17].

2.7. Single-cell RNAseq data processing

The raw gene expression matrix was imported and

processed using the Seurat R package (version 3.1.2)

[18]. Single-cell datasets were downloaded from the

Gene Expression Omnibus dataset (Table S1). Cells

with UMI counts < 200 were removed. Library size

normalization was performed in each group on the

raw matrix to obtain the normalized counts via Seurat

(version 3.1.2). We then applied the mean-dependent

trend method in the Scran package (version 1.10.1) to

identify highly variable genes [19]. Significant genes

(FDR ≤ 1e�3) were selected for principal component

analysis (PCA) to reveal biologically meaningful varia-

tions. The number of components used was deter-

mined based on the JackStraw function. Clusters were

computed using the FindClusters function (resolu-

tion = 0.8). Clusters were visualized using uniform

manifold approximation and projection (UMAP) as

implemented in Seurat. Differential expression between

clusters was calculated using a likelihood-ratio test for

single-cell gene expression implemented in Seurat at a

family-wise error rate of 5%. Cell types were defined

according to lineage-specific marker genes. The batch

effect was removed using CCA.

2.8. Enrichment score

The enrichment score was calculated to evaluate sub-

type distribution in each cluster. First, we calculated

the frequency of each subtype in each cluster [20].

Then, we divided the gP by cluster frequency (cell

number in the cluster divided by total cell number)

and obtained the enrichment score of each subtype in

every cluster.

2.9. Co-expression network construction

A normalized expression matrix was used to construct

a weighted co-expression network (WGCNA) using

the R package (1.69) [21]. To attenuate the effects

of noise and outliers, the analyses were performed

on pseudocells, calculated as averages of 10 cells

randomly chosen within each cell type [22]. A

co-expression network was constructed using the

blockwiseModules function with default parameters.

Correlation between module eigengenes and cell-type

information determined the significance of modules

using Pearson’s test. Afterward, the hub genes were

selected based on each gene’s modular connectivity

and phenotypic trait relationship in the hub module.

Module connectivity was defined as the absolute value

of Pearson’s correlation between genes (module mem-

bership). The clinical trait relationship was defined as

the absolute value of Pearson’s correlation between

each gene and cell type (gene significance). We set the

module membership at > 0.7 and the gene significance

at > 0.6 for candidate hub genes.

2.10. SCENIC analysis

We used the R package SCENIC (https://github.com/

aertslab/SCENIC, version 1.1.1-10, RcisTarget 1.6.0,

and AUCell 1.8.0) to analyze the enrichment of tran-

scriptome factors in cell subtypes [23]. The input
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matrices for each sample in SCENIC were the raw

UMI counts from Seurat. We kept genes with a sum

of expression > 3 9 0.005 9 cell numbers detected in

at least 0.5% of the cells. Following the standard SCE-

NIC procedure, we used GENIE3 method (for a single

sample) and GRNBoost (for the combined sample) to

identify potential transcription factor (TF) targets. In

addition, the activity of each regulon in each cell was

evaluated using AUCell, which calculates the area

under the recovery curve and integrates the expression

ranks across all genes in a regulon.

2.11. Statistical analysis

All computational and statistical analyses were per-

formed using the R software (https://www.r-project.

org/). The unpaired Student’s t-test was used to com-

pare two groups with normally distributed variables,

and the Mann–Whitney U-test was used to compare

two groups with non-normally distributed variables.

Survival analysis was performed using the ‘survival’ R

package. An optimal cutoff value defining two groups

of patients with different survival curves was deter-

mined using the program X-tile [24]. The log-rank test

was used to determine whether the survival curves

were significantly different.

2.12. Immunosuppressed score, liver score and

activated T cells scores

We adopted the expression of repressed T marker

genes as well as liver marker genes to further calculate

the immunosuppressed score and liver score. Liver

score was calculated as the average expression of 24

liver marker genes from Kim et al. [25] (Table S7).

Likewise, immunosuppressed score and activated T cell

score were defined based on 35 known repressed mark-

ers and 28 activated GZMK-CD8 genes from Guo

et al. [26] (Table S7).

3. Results

3.1. Non-negative matrix factorization identifies

three subtypes in HCC

A schematic of the study design is shown in Fig. 1A.

First, we obtained the transcriptome and somatic

mutation profiles of 353 HCC patients from TCGA.

We utilized consensus clustering analysis of the NMF

algorithm and identified three distinct modification

pattern clusters, including 120 cases in pattern cluster

S1, 144 cases in cluster S2 and 89 cases in cluster S3.

The heatmap of the consensus matrix exhibited sharp

boundaries, indicating the accuracy and robustness of

the clustering results (Fig. 1B, Fig. S1A). We also vali-

dated the clustering result in ICGC cohort and did the

replication analysis using the SubMap (http://

genepatern.broadinstitute.org/, Fig. S1B–E). Interest-

ingly, we found that patients in S3 had the worst prog-

nosis among the three subtypes (Fig. 1D). Meanwhile,

we analyzed the heterogeneity of the clinical indicators

in these three subtypes and found that patients in S3

had a significantly higher tumor stage (AJCC-T3/T4

and Neoplasm disease stage III and IV; Table S2),

which might partially explain the poor prognosis of

this subtype.

3.2. Inter-tumor TME heterogeneity in HCC

Next, we analyzed the heterogeneity of immune infil-

tration and tumor purity in the three subtypes using

the ESTIMATE algorithm [17]. The results showed

that the immune and stromal scores of S2 were signifi-

cantly lower than those of S1 and S3 (P < 0.001),

whereas S2 exhibited the highest tumor purity score

(P < 0.001; Fig. 2A, Fig. S2A). Since S3 had the poor-

est prognosis among the three subtypes, we further

characterized their immunologic landscape across the

Fig. 1. Identification of HCC subclasses using NMF consensus clustering. (A) Overview of the study design. We first classified the patients

into three subtypes in TCGA LIHC cohort via NMF clustering method, and analyzed their inter-tumor heterogeneity including immune

infiltration status and mutation profile. We defined the subtype S1 as ‘hot tumor’ with the high immune infiltration score, S2 as ‘cold tumor’

with high tumor purity score, and S3 as ‘immunosuppressed tumor’ with a high level of immune-repressed score. Patients in

immunosuppressed subtype S3 exhibited the poorest prognosis. We then construed a 108-gene classifier by integrating bulk RNA data with

scRNAseq data using the differential genes from the three HCC subtypes. The scRNAseq samples could also be grouped into the

corresponding HCC subtypes (S1-CS1, S2-CS2, S3-CS3) using the 108-gene classifier. Subsequently, we investigated the intra-tumor

heterogeneity in the three subtypes. Of note, we found that transcript factor BATF could promote the expression level of immune-

repressed genes such as CTLA4 and TIGIT, and we verified the BATF regulon in the BATF-knock out cell line data and other two single-cell

datasets. In this study, we demonstrated that BATF could promote the immunosuppressed genes and induce the poorest clinical prognosis

in HCC. (B) Heatmap plot showing the consensus matrix of NMF clustering results using the gene expression data in TCGA LIHC cohort,

colored by three HCC subtypes. (C) Overall survival curves showing the prognosis result of the three subtypes (S1, S2 and S3) obtained

from NMF clustering in the TCGA LIHC cohort. Statistical significance was calculated using the log-rank test (S1:120, S2:144, S3:89).
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Fig. 2. Investigation of the immunologic inter-tumor heterogeneity in the three HCC subtypes. (A) Boxplots showing the immune and tumor

purity scores in the three distinct malignant subtypes (S1:120, S2:144, S3:89; ns = no significance, *P < 0.05, **P < 0.01, ***P < 0.001).

Pairwise comparison in the TCGA LIHC cohort was conducted by Wilcoxon rank-sum test. For the boxplot, the centerline represents the

median and box limits represent upper and lower quartiles. Each dot represents a sample. (B) Boxplots showing the 22 immune cell

infiltrates ratio in the three distinct malignant subtypes in the significantly enriched patients (S1:27, S2:32, S3:61; ns, no significance,

*P < 0.05, **P < 0.01, ***P < 0.001). Pairwise comparison was conducted by Wilcoxon rank-sum test in the TCGA LIHC cohort. For the

boxplot, the centerline represents the median and box limits represent upper and lower quartiles. (C) Comparisons of the gene expression

level of immune genes in the three distinct malignant subtypes (S1:120, S2:144, S3:89; ns = no significance, *P < 0.05, **P < 0.01,

***P < 0.001). Pairwise comparison was conducted by Wilcoxon rank-sum test in the TCGA LIHC cohort. In the boxplot, the centerline

represents the median and box limits represent upper and lower quartiles. Each dot represents a sample. (D) We performed the GSVA

analysis for the three HCC subtypes in the TCGA cohort, and made a pairwise comparison using the GSVA enrichment scores via Wilcoxon

rank-sum test. GSVA results show the heterogeneity of gene function in the three distinct malignant subtypes. Color indicates the GSVA

enrichment score. Colors from blue to red indicate the GSVA score from low to high.
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22 immune-related cell types with CIBERSORT (Sec-

tion ‘Estimation of immune infiltration and tumor pur-

ity’). The results demonstrated that S1 had a higher

abundance of activated NK cells (aNK), CD8+ T cells,

M1 cells, and CD4 memory resting T cells but a lower

abundance of Treg and M0 cells compared with S3. S2

had a lower abundance of M2 cells (Fig. 2B). In par-

ticular, T cell marker genes, such as CD3E, were

highly expressed in S1 and S3 (Fig. 2C). We further

investigated the profiles of immunosuppressed marker

genes in the three subtypes and calculated the

immunosuppressed score (Section ‘Estimation of

immune infiltration and tumor purity’). Results indi-

cated that immunosuppressed score (Fig. S2B) and

marker genes such as VEGFA, CTLA4, HAVCR2 and

TIGIT were highly expressed in S3 (Fig. 2C,

Fig. S2D). The high rate of immune-repressive T cells

might be correlated with a poor prognosis. In addi-

tion, patients in S3 had high levels of the macrophage

marker gene CD68 and EMT marker genes such as

MMP2 and MMP9, indicating that these cells in the

tumor microenvironment may play important roles in

tumor progression (Fig. S2D,E). In contrast, patients

in S1 had the best prognosis result, with a higher level

of activated T cell markers such as CD3E, PRF1 and

GZMK and exhausted marker genes of T cells such as

PDCD1 and HAVCR2 than that in S2, as well as a

lower immunosuppressed score than S3 (Fig. 2C,

Fig. S2C,D). We also performed enrichment in

GO_BP and HALLMARKER pathways using the dif-

ferential genes in the three subtypes (Sec-

tion ‘Enrichment score’) via GSVA to investigate the

functional signatures intergroup. Results showed that

immune-related pathways, such as IL6-STAT3 and

thymic T cell selection, were enriched in S1 and S3,

whereas CD4 activation, inflammatory response and T

cell differentiation pathways showed a higher enrich-

ment score in S1. In addition, higher enrichment scores

of B cell apoptotic and WNT pathways were found in

S3, compared with fatty acid, lipid metabolism and

oxidative phosphorylation in S2 (Fig. 2D, Table S3).

Taken together, S2 demonstrated features of ‘cold

tumors’ due to a lower immune infiltration ratio, and

S1 features of ‘hot tumors,’ while S3 showed ‘immuno-

suppressed tumors’ for the highly expressed immune-

repressive genes.

It has been reported that tumor genomic mutation is

correlated with antitumor immunity [27]. We therefore

analyzed frequency differences of somatic and copy num-

ber variation (CNV) mutations among HCC subtypes

and distinct subtype-specific mutation characteristics

(Fig. 2A, detailed statistical analysis is shown in the

Table S4). Specifically, S2 had a significantly higher

frequency of cadherin-associated protein beta 1

(CTNNB1) and ARID1A (45% and 11%, respectively)

than S1 (14% and 4%) or S3 (9% and 4%). S3 exhibited

higher frequency of TP53 (49%) and BAP1 (10%) com-

pared with S1 (22% and 4%, respectively) and S2 (25%

and 3%). Of note, we found that the immune score and

expression of CD3D and CTLA4 was higher in the

CTNNB1-non mutated group (Fig. S3B,C). It has been

reported that a patient with CTNNB1 mutation showed

lower immune infiltration in HCC, and ARID1A muta-

tion in ovarian clear cell carcinoma also has a role for

immune inhibition [28,29], which is consistent with our

result. BAP1 regulates cell death and mitochondrial

metabolism [30], which is consistent with the higher

expression level of exhausted marker genes in S3.

In addition, there was significant heterogeneity of

the CNV profiles in the three subtypes. S1 had the

most amplified variant samples, whereas S2 had the

most deleted ones (Fig. 3B). In CNV mutated regions,

patients in S1 were mainly amplified in the regions

such as 1q, 5p, 8q, 6p and 11q, patients in S2 were

amplified regions in 1q, 11q, 1q and 2q, and patients

in S3 in S2, and 8q, and 13q (Fig. 3C, Fig. S4B).

Remarkably, YEATS4 and VIMP, which were highly

expressed in S3, were deleted in S1 but amplified in S3

(Fig. 3D, Fig. S4A). YEATS4 promotes HCC cell pro-

liferation and colony formation [31]. VIMP inhibits

cytokine production in human CD4+ effector T cells

[32]. By contrast, CYFIP2 and ABLIM3, which were

highly expressed in S1, were simultaneously amplified

in S1 but deleted in S3 (Fig. 3D, Fig. S4A). CYFIP2

is highly abundant in CD4+ cells from multiple sclero-

sis patients and is involved in T cell adhesion, and

ABLIM3 is a component of adherent junctions with

actin-binding activity [33,34]. Taken together, the high-

est mutation of BAP1, amplification of YEATS4 and

VIMP, and deletion of CYFIP2 and ABLIM3, might

induce an immune-repressed environment in S3, while

high mutation of CTNNB1 might inhibit immune infil-

tration in S2.

3.3. A novel gene classifier obtained from

integrating bulk and single-cell transcriptomic

data

To integrate scRNAseq and bulk RNA samples, we

first construed a classifier reference set. Specifically, 10

scRNAseq samples from the GSE149614 dataset were

initially bulked according to the mean expression val-

ues across the genes. Next, immunosuppressed, acti-

vated T cells (aT) and liver scores were calculated

using the method given in Section onEstimation of

immune infiltration and tumor purity’ and their upper
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Fig. 3. Investigation of the mutation profile inter-tumor heterogeneity profiles in the three HCC subtypes. (A) The top 10 mutated genes in

HCC across the three subtypes. The colors of rectangles in the body of the heatmap indicate different types of somatic mutations; the

key identifying each mutation type is shown at the bottom below the color bar. The bar plot on the top shows the counts of mutations

for each patient and the colors in the bar plots correspond to the colors showing mutation types in the body of the heatmap. The title of

the heatmap showing the mutation sample number in each subtype includes amplification, missense mutations and deep deletions. The

number on the left shows the gene mutation frequency in the three subtypes. (B) The number of mutations and copy number aberrations

in the HCC subtypes in the TCGA LIHC cohort. Pairwise comparison was conducted by the Wilcoxon rank-sum test (S1:120, S2:144,

S3:89; ns, no significance, **P < 0.01, ***P < 0.001). In the boxplot, the centerline represents the median and box limits represent upper

and lower quartiles. Each dot represents a sample. (C) Circos plot showing the amplification and deletion regions in the three subtypes.

The width of the plot indicated the CNV mutation regions numbers in each subtype across the chromosomes. (D) Venn plots shows the

genes amplified in S3 but deleted in S1 simultaneously (the first row), and the genes deleted in S3 but amplified in S1 simultaneously

(the second row).
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quartile was defined as cutoff values of positive sam-

ples. Meanwhile, we evaluated immune and tumor

purity scores of the 10 samples using ESTIMATE soft-

ware. Among those 10 scRNAseq samples, we found

that individual samples HCC02T, HCC03T, HCC04T

and HCC05T possessed the highest liver and the low-

est immunosuppressed scores (Fig. 4A), so they were

defined as ‘cold tumor’ samples. In contrast, HCC08T,

HCC09T and HCC10T had the highest immunosup-

pressed scores, indicating they were ‘immunosup-

pressed tumor’ samples (Fig. 4B). Likewise, HCC01T,

HCC06T and HCC07T with high activated T cell

scores were ‘hot tumor’ samples (Fig. 4C).

Next, we built a classifier by selecting the most

specific genes to identify all the positive samples in the

above reference set. We performed classification analy-

sis in the reference set using series numbers of differen-

tially expressed genes (30–126, sorted by log2-fold

change) obtained from the signatures in the three sub-

types (S1, S2 and S3) (Section ‘Differentially expressed

gene analysis’). The results showed that all false-

positive rates (FPRs) were 0 and all true-positive rates

(TPRs) were 1 when the top 108 genes were selected

(Fig. 4D, Tables S5 and S6). When more genes were

included, FPRs and TPRs values were not changed for

classification of the reference set.

Next, we validated the classification effect in the

TCGA and ICGC cohorts using a panel covering these

108 genes (Table S7). The samples were also grouped

into three subtypes in the two large cohorts (Fig. S5A,

B). S3 still had the poorest prognosis in TCGA

(Fig. S5A) and had high expression levels of immuno-

suppressive genes, high immune scores, low tumor pur-

ity score, as well as the poorest prognosis (CTLA4,

TIGIT; Fig. S5B,C,E,F) in ICGC. Moreover, the Sub-

Map analysis among the subtypes obtained from the

108-gene classifier validated the consistency between

the TCGA and ICGC cohorts (Fig. S5D). The

enriched pathways were also consistent between the

two cohorts (Fig. S6). These results further confirmed

that the 108-gene classifier could map the single-cell

samples into the three subtypes and group the HCCs

into the different immune status subtypes.

3.4. TME heterogeneity among the three HCC

subtypes

We investigated regulatory mechanism of the immune-

repressive subtype and analyzed the heterogeneity of the

tumor immune microenvironment at the cell level in the

three single-cell subtypes (CS1, CS2 and CS3). CS3 sam-

ples had the highest immune and immunosuppressed

scores, and CS2 the highest tumor purity and liver

scores (Fig. 5A). Therefore, CS1 was similar to S1, CS2

to S2, and CS3 to S3. Following gene expression nor-

malization, dimensionality reduction, clustering and

characterization based on cell lineage-specific marker

genes, these cells were grouped into 16 types, including

6007 T cells, 1845 B cells, 14 552 epithelial cells, 350

NK cells, 1850 endothelial cells and 1548 fibroblasts

(Table S8, Fig. 5C). Then, four T cells, two B cells, and

three macrophage sub-cell types were obtained. There-

after, the immune cells were classified by analyzing their

gene expression profiles and functions via GSVA analy-

sis using the immunological gene sets obtained from

Chung et al. [35]. In T and NK cells, mT is a memory T

cell type overexpressing genes such as IL7R, CCR7 and

CD69, as well as enrichment of na€ıve or mT signaling in

GSVA. tT is an immune-repressive T cell type with high

expression levels of HAVCR2, TIGIT, BATF and

CTLA4 (Fig. 5D,E, Fig. S7A,B). T cells with high levels

of MKI67 and TIGIT were designated as proliferation T

cells (pT) cells. Cytotoxic genes such as PRF1 and

GZMA were highly expressed in aT and NK cells, and

CD8A was expressed in aT, indicating that they were

effective CD8 T and NK cells, respectively (Fig. S7A). B

cells enriched in either na€ıve or memory B cell signaling

in GSVA and overexpression of CCR7 and CD69 were

designated as memory-like B cells (mB). Likewise,

macrophages were divided into two subtypes: TAM-like

macrophages (TAM-Mφ) with high expression levels of

M2 signatures in GSVA, and TAM-like genes, such as

APOE, C1QA, SLC40A1 and GPNMB (Fig. S7A,C),

which was similar to the Mφ-c2-C1QA subtype in a pre-

vious report [36]. However, MDSC-like macrophages

(mMφ) showed both M1 and M2 signatures exhibiting

high expression levels of pro-inflammatory genes such as

FCN1 and VCAN, as well as the immune-repressive gene

IL10 (Fig. S7A,C). The mMφ was similar to the Mφ-c1-
THBS1 subtype reported previously, which is a myeloid-

derived suppressor cell (MDSC-like) subtype [36]. In

addition, CAF expressed high levels of aSMA (ACTA2),

which are designated as myofibroblast cells (myCAF;

Fig. S7C). The group distribution enrichment results

showed that NK and aT cells were enriched in CS1,

mT, mB, tT and mMφ, myCAF cells were enriched in

CS3, and epithelial cells (H1, H2, H3, H4) were enriched

in CS2, which further validates the classification effect of

the gene classifier (Fig. 5F).

3.5. Transcription factor BATF and MDSC-like

macrophage cells could promote the formation

of immunosuppressive cells

Since CS3 exhibited similarity with the immunosup-

pressive subtype S3 in TCGA, we analyzed the
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regulatory mechanisms and cell interactions that pro-

mote the formation of immune-repressive T cells in

this subtype. First, we obtained gene modules corre-

lated with CS3-specific subtypes (mT, tT, myCAF and

mMφ). Thereafter, we combined WGCNA with TF

results calculated using SCENIC to mine the key

immunosuppression-promoting TF regulons. In the

WGCNA analysis, we treated the cell type information

as a phenotype. We then obtained 12 gene modules

from WGCNA (Fig. 6A), in which the green module

was correlated with mT (R = 0.82, P < 0.001),

magenta module with tT (R = 0.94, P < 0.001), yellow

module with myCAF (R = 0.95, P < 0.001) and purple

module with mMφ (R = 0.93, P < 0.001). Afterward,

we obtained hub genes in each gene module (Sec-

tion ‘Co-expression network construction’). The mT

hub genes were enriched in T cell selection and T cell

differential pathways, whereas tT hub genes negatively

regulated T cell activation and interleukin 10 secretion

(Fig. S8A, Fig. 6B). Subsequently, we performed a

hypergeometric test between the tT hub genes and TF

regulon results and selected the critical TF (Sec-

tion ‘SCENIC analysis’); the TF, BATF, was among the

hits (Table S9). Of note, BATF could regulate TIGIT

and CTLA4 and the co-stimulatory gene ICOS

(Fig. 6C). The heatmap of TF-activated scores in SCE-

NIC also confirmed the cell-type specificity of BATF in

tT (Fig. S8B). We further confirmed the co-expression

of BATF, CTLA4 and TIGIT in TCGA and ICGC

cohorts. The results showed an obvious co-occurrence

between these gene pairs (Fig. 6D). High expression

levels of BATF were correlated with poor prognosis in

these two datasets (Fig. 6E, Fig. S8C). Critically, gene

expression data from GSE149197 of BATF-knockout

Treg cells showed significantly lower BATF, CTLA4,

TIGIT and FOXP3 expression (Fig. 6F), and BATF

was barely expressed in the healthy liver single-cell data-

set (GSE115469) (Fig. S8D). We then validated the

function of BATF in two other single-cell datasets (T

cell dataset GSE98638 and TME dataset GSE146409)

[9,37]. The same data processing pipeline was used for

these two datasets. There were nine T cell subtypes in

GSE98638, including two immunosuppressive T-reg

subtypes (CD4-CTLA4 and CD4-FOXP3) and a T

cell cluster in GSE146409 (Fig. S9A,B). In these two

datasets, BATF, TIGIT, LAG3 and CTLA4 also had

a co-expression relationship (Fig. S9C,D). Moreover,

BATF could regulate immunosuppressive genes in

both datasets (Fig. S9E,F), further confirming its

function. This indicates that TF BATF could play a

critical role in forming immunosuppressive cells by

upregulating the expression of immunosuppressive

genes.

Because subtype S3 in TCGA had a high rate of

stromal infiltration, we next analyzed the roles of the

tumor microenvironment cells in the formation of a

tumor immunosuppressive microenvironment. The cell

interaction results showed that cells in tT could inter-

act with CS3-specific mMφ through chemokines

CXCL12_CXCR4, CCL4_CCR5 and CCL3_CCR1.

Notably, mMφ was characterized by overexpression of

the immune-repressive gene IL10 and could interact

with tT via NECTIN2_TIGIT. tT could further sup-

press the immune response of T cells and ultimately

promote the production of an immunosuppressive

environment in HCC. In addition, mMφ frequently

interacted with myCAF and endothelial cells in

endothelial (End) type through chemokines such as

CXCL12_CXCR4 and growth factor VEGFA_FLT1

(Fig. 6G). Meanwhile, endothelial cells in End could

also interact with tT through TIGIT_PVR, which may

also promote the formation of immune-repressive cells.

Therefore, mMφ could directly or indirectly promote

the immunosuppressive status of the S3-like HCC sub-

type.

4. Discussion

Immunotherapy is emerging as an important approach

in cancer treatment, but its efficacy varies greatly

Fig. 4. Integrated bulk RNA data with single-cell data to obtain a gene classifier. (A) Scatter plot showing the distribution of liver scores

calculated by the mean of 24 liver marker genes and tumor purity scores by ESTIMATE among the 10 bulked single-cell RNAseq samples.

The black horizontal line showing the positive cutoff value calculated by the upper quartile of liver scores. Red dot illustrates the positive

tumor purity samples whose liver scores were higher than the cutoff value. (B) Scatter plot showing the distribution of immunosuppressed

scores calculated by the mean of 35 repressed marker genes and immune scores by ESTIMATE among the 10 bulked single-cell RNAseq

samples. The black horizontal line showing the positive cutoff value calculated by the upper quartile of immunosuppressed scores. Red dot

illustrates the positively immunosuppressed samples. (C) Scatter plot showing the distribution of aT scores calculated by the mean of 28

activated marker genes and immune scores by ESTIMATE among the 10 bulked single-cell RNAseq samples. The black horizontal line

shows the positive cutoff value calculated by the upper quartile of aT scores. Red dot illustrates the positively activated immune samples.

(D) False-positive rate (FPR) and true-positive rate results in the immunosuppressed samples classification. (E) Ternary phase diagram

showing the differential genes among the three HCC subtypes, colored and shaped by subtype (S1, S2 and S3). (F) Tree plot showing the

hierarchical clustering result in the 10 single-cell RNAseq samples, colored by subtype (CS1, CS2, CS3 in the cohort GSE149614).
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among cancer patients. Due to its robust inflammatory

pathogenesis, HCC remains a strong candidate for the

development of immune-based therapies. However,

current immune checkpoint blockers have shown no

benefits compared with sorafenib treatment, although

the combination of atezolizumab and bevacizumab has

shown promising effects in a front-line phase III trial

(IMbrave150). Systematic investigation of tumor-

infiltrating immune cells (TIICs) is critical for predict-

ing the clinical outcomes and development of

immunotherapies.

In the present study, we integrated multi-single-cell

RNAseq and multi-omics datasets to characterize the

molecular heterogeneity of HCC at the inter- and

intra-tumor levels by analyzing the tumor-infiltrating

immune status in different patient groups. According

to the infiltrating immune cell signatures, we identified

three distinct subtypes: S1, S2 and S3. S1 and S3 had

high rates of immune and stromal ratios, while S2

showed high tumor purity. S3, which had a high level

of immunosuppressive signatures, was correlated with

the poorest prognosis. Moreover, a set of signature

genes was established, and multi bulk RNA and

single-cell datasets could be classified accurately using

these genes. Our study also revealed an

immunosuppression-specific TF regulon and interac-

tion network in the TME cells of subtype S3.

The location and characteristics of immune cells in

the tumor microenvironment, as well as the response

to immunotherapy (TME), are now recognized as

prognostic [38]. In the present study, we obtained two

high immune infiltration subtypes (S1 and S3) and one

‘cold tumor’ (S2). A previous study indicated that a

high immune infiltration score was associated with a

poor prognosis [39]. This subtype is similar to that of

S3 in our data. However, we also obtained another

immune subtype, which had a better prognosis with

high levels of cytotoxic genes such as PRF1 and

GZMA, but low levels of CTLA4 and TIGIT. These

two heterogeneous immune subtypes were also present

in multiple single-cell datasets. These results indicate

that patients with different immune characteristics

have different prognoses. Moreover, there was no sig-

nificant difference in TMB among the three subtypes,

indicating the insufficiency of TMB in diagnosis for

HCC immunotherapy. Recent results from randomized

Phase III trials in front-line non-small cell lung cancer

(NSCLC) also suggest that high TMB may not be

effective at predicting survival benefits from a combi-

nation of PD-1 and CTLA4 inhibitors [40]. Therefore,

it is necessary to refer to both mutation and immune

infiltration characteristics to evaluate immunotherapy

efficacy.

Moreover, our study identified BATF as a critical

modulator that upregulated CTLA4, TIGIT and ICOS

expression. This observation was confirmed by the gene

expression profiling of BATF-knockout Treg cells.

BATF is a basic leucine zipper (bZIP) TF required to

produce IL17, IL21 and IL23 receptors in TH17 cells.

In TH17 cells, BATF is thought to function as a ‘pioneer

factor’, together with IRF4, mediating chromatin

remodeling [41]. Transcriptional analysis of HIV-

specific CD8+ T cells showed that PD-1 inhibits T cell

function by upregulating BATF [42]. Our data showed

for the first time that BATF could promote the forma-

tion of immunosuppressive T cells to inhibit the immune

response in HCC. These results indicate that BATF inhi-

bitors might change the immunosuppressed tumor to an

immune status with a better prognosis, which might

facilitate HCC immunotherapy.

Tumor microenvironment is permissive of existing

functional T cell responses [40]. In the current study,

there was a high rate of macrophages overexpressing

CD68 in the S3 subtype in bulk RNAseq data. Similar

characteristics were observed in the S3-like single-cell

samples. It has been demonstrated that TAMs

Fig. 5. Investigation of the intra-tumor heterogeneity of HCC. (A) Boxplot showing the immune, immunosuppressed, tumor purity and liver

scores in the three subtypes in a single-cell dataset (CS1:3, CS2:4, CS3:3; ns P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001). Pairwise

comparison was conducted by Wilcoxon rank-sum test in the single-cell RNAseq cohort GSE149614). In the boxplot, the centerline repre-

sents the median and box limits represent upper and lower quartiles. Each dot represents a sample. (B) UMAP visualization of the 34 414

cells from 10 primary HCC tumor tissue patients in the single-cell RNAseq cohort GSE149614. Different colors indicate distinct clusters. tT:

treg T cells; pT: proliferative T cells. (C) Heatmap showing the expression of representative marker genes in the each cell type. Color key:

Color gradient blue to red indicates relative expression levels from low to high. (D) The heatmap showing the GSVA enrichment result of

immunological pathways among the immune subtypes (mT, tT, pT, aT, nB, mB, TAM-Mφ and mMφ). Different colors indicate clusters and

cell groups (CS1, CS2 and CS3). Color gradient blue to red indicates GSVA enrichment scores from low to high. (E) Violin plots show the

gene expression level of immune genes in the single-cell RNAseq cohort GSE149614 (aNK: 350, mT: 2763, tT: 1128, pT: 516, aT: 1600). In

the violin plot, the centerline represents the median and box limits represent upper and lower quartiles; whiskers, data range. (F) Bar plot

showing the cell distribution across the three subtypes CS1, CS2 and CS3, colored by subtype (CS1:3368; CS2: 15, 780; CS3: 15 266). The

bar plot indicates that the immune-repressed subtype tT (treg T cells) were enriched in immunosuppressed S3-like subtype CS3.
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overexpressing SLC40A1 and GPNMB are associated

with poor prognosis [36]. However, we found that the

MDSC-like macrophage mMφ also plays a vital role

in formation of immunosuppressive T cells. mMφ co-

existed with M1 and M2 signatures and showed a high

level of IL10. It can interact with fibroblasts and
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endothelial cells via chemokines and growth factors.

The interaction network likely promotes the immuno-

suppressed state in the TME of HCC.

5. Conclusions

This study investigated the inter- and intra-tumor

heterogeneity of HCC using both bulk and single-cell

transcriptomic data. Three three distinct subtypes, S1,

S2 and S3, were identified. In these subtypes, S3, with

the poorest prognosis, had a high degree of macrophage

and immunosuppressive T cell infiltration. Our study

suggests that the TF BATF in Treg cells well as MDSC-

like macrophage cells could promote the formation of

immunosuppressive cells and affect the prognosis of the

HCC patients. These discoveries could facilitate clinical

diagnosis and treatment of HCC.
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Fig. S1. NMF clustering related results and in TCGA

and ICGC cohorts. (A) Cophenetic coefficient result of

NMF clustering in TCGA cohort. The intensely

dropped of cophenetic coefficient values at cluster

number 3 indicate the appropriate cluster number. (B)

Heatmap showing the consensus result in ICGC

cohort. (C) Cophenetic coefficient result of NMF in

ICGC cohort. The intensely dropped of cophenetic

coefficient values at cluster number 3 indicating the

appropriate cluster number. (D) Overall survival

curves showing the prognosis result among the three

subtypes (S1, S2 and S3) in the ICGC cohort. Statisti-

cal significance was calculated using the log-rank test

(S1:72, S2:44, S3:116). (E) Heatmap showing the con-

sistency analysis result among the subtypes in the

TCGA and ICGC cohort, in which red indicates

P < 0.001 and blue P > 0.05.

Fig. S2. Inter-tumor heterogeneity of immunology and

mutation correlation in the three HCC subtypes. (A)

Boxplots showing the stromal score (S1:120, S2:144,

S3:89; nonsignificant (ns) P > 0.05, *P < 0.05,

**P < 0.01, ***P < 0.001). Pairwise comparison was

conducted by Wilcoxon rank-sum test in the TCGA

LIHC cohort. In the boxplot, the centerline represents

the median and box limits represent upper and lower

quartiles. Each dot represents a sample. (B) Boxplots

showing the immunosuppressed score in distinct three

malignant subtypes (S1:120, S2:144, S3:89. ns

P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001). Pair-

wise comparison was conducted by Wilcoxon rank-

sum test in the TCGA LIHC cohort. In the boxplot,

the centerline represents the median and box limits

represent upper and lower quartiles. Each dot repre-

sents a sample. (C) Boxplots showing the expression of

aT in distinct three malignant subtypes (S1:120,

S2:144, S3:89. ns P > 0.05, *P < 0.05, **P < 0.01,

***P < 0.001). Pairwise comparison was carried out

by Wilcoxon rank-sum test in the TCGA LIHC

cohort. In the boxplot, the centerline represents the

median and box limits represent upper and lower

quartiles. Each dot represents a sample. (D) Boxplots

showing the expression of immune genes in distinct

three malignant subtypes (S1:120, S2:144, S3:89; ns

P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001). Pair-

wise comparison was carried out by Wilcoxon rank-

sum test in the TCGA LIHC cohort. In the boxplot,

the centerline represents the median and box limits

represent upper and lower quartiles. Each dot repre-

sents a sample. (E) Boxplots showing the expression of

macrophage and EMT genes in distinct three malig-

nant subtypes (S1:120, S2:144, S3:89; ns P > 0.05,

*P < 0.05, **P < 0.01, ***P < 0.001). Pairwise com-

parison was conducted by Wilcoxon rank-sum test in

the TCGA LIHC cohort. In the boxplot, the centerline

represents the median and box limits represent upper

and lower quartiles. Each dot represents a sample. (F)

Correlation heatmap showing the co-occurrence and

mutually exclusive occurrence of the mutation genes.

Color key from light to dark indicates significant P-

value from low to high (/ P < 0.05, P < 0.1, Pearson’s

correlation test in the TCGA LIHC cohort).

Fig. S3. Profile of mutation-related genes in the differ-

ent subtypes. (A) Boxplots showing the expression of

CTNNB1 and MYC in the three subtypes (S1:120,
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S2:144, S3:89; ns P > 0.05, *P < 0.05, **P < 0.01,

***P < 0.001). Pairwise comparison was conducted by

Wilcoxon rank-sum test in the TCGA LIHC cohort.

In the boxplot, the centerline represents the median

and box limits represent upper and lower quartiles.

Each dot represents a sample. (B) Boxplots showing

the immune score and tumor purity in the CTNNB1-

mutation and CTNNB1-nonMutation groups

(CTNNB1-mut: 90; CTNNB1-nonmut: 263; ns

P > 0.05, *P < 0.05, **P < 0.01, ***P < 0.001). Pair-

wise comparison was conducted by Wilcoxon rank-

sum test in the TCGA LIHC cohort. In the boxplot,

the centerline represents the median and box limits

represent upper and lower quartiles. Each dot repre-

sents a sample. (C) Boxplots showing the expression of

CD3D and CTLA4 in the CTNNB1-mutation and

CTNNB1-nonMutation groups (CTNNB1-mut: 90;

CTNNB1-nonmut: 263; ns P > 0.05, *P < 0.05,

**P < 0.01, ***P < 0.001). Pairwise comparison was

conducted by Wilcoxon rank-sum test in the TCGA

LIHC cohort. In the boxplot, the centerline represents

the median and box limits represent upper and lower

quartiles. Each dot represents a sample.

Fig. S4. Inter-tumor heterogeneity of CNV mutation

profile in the three HCC subtypes. (A) Boxplots show-

ing the expression of CNV-related genes in the three

subtypes (S1:120, S2:144, S3:89;. ns P > 0.05,

*P < 0.05, **P < 0.01, ***P < 0.001). Pairwise com-

parison was conducted by Wilcoxon rank-sum test in

the TCGA LIHC cohort. In the boxplot, the centerline

represents the median and box limits represent upper

and lower quartiles. Each dot represents a sample. (B)

Amplification regions in the three subtypes: columns

represent the chromosomal regions and rows represent

significance of enrichment calculated by GISTIC2. (C)

Deletion regions in the three subtypes: columns repre-

sent the chromosomal regions and rows represent sig-

nificance of enrichment calculated by GISTIC2.

Fig. S5. Validation of the classifier and comparison of

the immune profile of the subtypes between ICGC and

TCGA using the classifier. (A) Overall survival curves

showing the prognosis results for the three subtypes

(S1, S2 and S3) obtained from NMF clustering using

the 108 genes in the TCGA LIHC cohort. Statistical

significance was calculated using the log-rank test

(S1:149, S2:92, S3:112 in the TCGA LIHC cohort).

(B) Overall survival curves showing the prognosis

result for the three subtypes (S1, S2 and S3) in the

ICGC cohort obtained from NMF clustering using the

108 genes. Statistical significance was calculated using

the log-rank test (S1:93, S2:98, S3:41). (C) Boxplots

show the expression of immune genes in ICGC cohort

(S1:93, S2:98, S3:41; ns P > 0.05, *P < 0.05,

**P < 0.01, ***P < 0.001, Wilcoxon rank-sum test). In

the boxplot, the centerline represents the median and

box limits represent upper and lower quartiles. Each

dot represents a sample. (D) Heatmap showing the

consistency analysis result among the subtypes in the

TCGA and ICGC cohort, in which red indicates

P < 0.001 and blue P > 0.05. (E) Boxplots showing

the tumor purity scores in the three subtypes in the

ICGC cohort (S1:93, S2:98, S3:41; ns P > 0.05,

*P < 0.05, **P < 0.01, ***P < 0.001, Wilcoxon rank-

sum test). In the boxplot, the centerline represents the

median and box limits represent upper and lower

quartiles. Each dot represents a sample. (F) Boxplots

showing immune scores of the three subtypes in the

ICGC cohort (S1:93, S2:98, S3:41; ns P > 0.05,

*P < 0.05, **P < 0.01, ***P < 0.001, Wilcoxon rank-

sum test). In the boxplot, the centerline represents the

median and box limits represent upper and lower

quartiles. Each dot represents a sample.

Fig. S6. Consistency of pathways between the two

cohorts. (A) Dot plot showing the enrichment path-

ways in TCGA. Dot size showing the enrichment score

and color from blue to red indicates the �log10 (P-

value) of the enrichment pathways. (B) Dot plot show-

ing the enrichment pathways in ICGC. Dot size show-

ing the enrichment score and color from blue to red

indicate the �log10 (P-value) of the pathways in the

enrichment.

Fig. S7. Expression of marker genes in GSE149614.

(A) Violin plots showing the expression profile of mar-

ker genes in distinct subtypes (mMφ: 1283, myCAF:

1548, End: 1850, tT: 1128, aNK: 350, mT: 2763, tT:

1128, pT: 516, aT: 1600, nB: 1436, mB: 409, H1: 9855,

H2: 1143, H3: 821, H4: 2733). In the violin plot, the

centerline represents the median and box limits repre-

sent upper and lower quartiles; whiskers, data range.

(B) Immune gene expression profile in the single-cell

RNAseq cohort GSE149614, colored from gray to red

indicating the expression level from low to high. (C)

Stromal gene expression profiles in the single-cell

RNAseq cohort GSE149614, colored from gray to red,

indicating the expression level from low to high.

Fig. S8. Gene enrichment and validation of the func-

tion of BATF in GSE149614. (A) Gene enrichment

result in mT subtype (mT). (B) Heatmap showing the

specificity of TF activation scores in the four T cell

subtypes calculated by SCENIC. Color from blue to

red indicates TF activation scores from low to high.

(C) Overall survival curves showing the prognosis

result of TF BATF in the ICGC cohort. Red and blue

color indicates patients with a high expression level of

BATF and low level in this cohort. The grouping cut-

off value was calculated by X-tile. Statistical
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significance was calculated using the log-rank test

(BATF-High: 59, BATF-Low: 173). (D) Expression of

critical TF BATF in healthy human sample. Color key

from white to red indicates the gene expression level

from low to high.

Fig. S9. Expression of BATF and regulon in the other

two single-cell datasets. (A) The UMAP showing the

profile of 4934 cells from single-cell RNAseq dataset

GSE98638. Clusters are indicated by different colors.

(B) The UMAP showing the profile of 7947 cells from

single-cell RNAseq dataset GSE146409. Clusters are

indicated by different colors. cDC: classical DC; SAM:

scar-associated macrophages; TM1: tissue monocytes;

CAF: cancer-associated fibroblasts; LVEC: liver vascu-

lar endothelial cells; LESC: liver sinusoidal endothelial

cells; vSMC: vascular smooth muscle cells. (C) Gene

expression pattern of immune genes in the GSE98638.

Color from white to red indicates the gene expression

level from low to high. (D) Gene expression pattern of

immune genes in GSE146409 dataset. (E) BATF-regu-

lon of immunosuppressive T cells in GSE98638, in

which red node indicates TF and yellow ones indicate

target genes. (F) BATF-regulon of immunosuppressive

T cells in GSE146409, in which red node indicates TF

and yellow ones indicate target genes.

Table S1. Datasets applied in the study.

Table S2. Clinical characteristics among the three

tumor subtypes of LIHC in TCGA cohort. LIHC,

liver hepatocellular carcinoma.

Table S3. GSVA result showing the inter-tumor

heterogeneity of enriched pathways among the three

subtypes in TCGA cohort.

Table S4. Mutation characteristics in distinct HCC

classification.

Table S5. FRP and TPR result to identify the ‘hot

tumor’ samples.

Table S6. FRP and TPR result to identify the ‘cold

tumor’ samples.

Table S7. Classifier signatures, repressed and liver

marker genes.

Table S8. Cell types and marker genes using in the

cluster definition.

Table S9. mMφ-related TF result obtained from SCE-

NIC.

2213Molecular Oncology 16 (2022) 2195–2213 ª 2022 The Authors. Molecular Oncology published by John Wiley & Sons Ltd on behalf of

Federation of European Biochemical Societies

T. Wang et al. Tumor and immune heterogeneity in liver cancer


	Outline placeholder
	mol213190-aff-0001
	mol213190-aff-0002
	mol213190-aff-0003
	mol213190-aff-0004
	mol213190-aff-0005
	mol213190-aff-0006
	mol213190-aff-0007
	mol213190-aff-0008
	mol213190-aff-0009
	mol213190-fig-0001
	mol213190-fig-0002
	mol213190-fig-0003
	mol213190-fig-0004
	mol213190-fig-0005
	mol213190-bib-0001
	mol213190-bib-0002
	mol213190-bib-0003
	mol213190-fig-0006
	mol213190-bib-0004
	mol213190-bib-0005
	mol213190-bib-0006
	mol213190-bib-0007
	mol213190-bib-0008
	mol213190-bib-0009
	mol213190-bib-0010
	mol213190-bib-0011
	mol213190-bib-0012
	mol213190-bib-0013
	mol213190-bib-0014
	mol213190-bib-0015
	mol213190-bib-0016
	mol213190-bib-0017
	mol213190-bib-0018
	mol213190-bib-0019
	mol213190-bib-0020
	mol213190-bib-0021
	mol213190-bib-0022
	mol213190-bib-0023
	mol213190-bib-0024
	mol213190-bib-0025
	mol213190-bib-0026
	mol213190-bib-0027
	mol213190-bib-0028
	mol213190-bib-0029
	mol213190-bib-0030
	mol213190-bib-0031
	mol213190-bib-0032
	mol213190-bib-0033
	mol213190-bib-0034
	mol213190-bib-0035
	mol213190-bib-0036
	mol213190-bib-0037
	mol213190-bib-0038
	mol213190-bib-0039
	mol213190-bib-0040
	mol213190-bib-0041
	mol213190-bib-0042


