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Abstract
Background Lipid-metabolizing enzymes and their metabolites affect inflammation and fibrosis, but their roles in chronic 
kidney disease (CKD) have not been completely understood.
Methods To clarify their role in CKD, we measured the mRNA levels of major lipid-metabolizing enzymes in 5/6 nephrec-
tomized (Nx) kidneys of C57BL/6 J mice. Mediator lipidomics was performed to reveal lipid profiles of CKD kidneys.
Results In 5/6 Nx kidneys, both mRNA and protein levels of Alox15 were higher when compared with those in sham kidneys. 
With respect to in situ hybridization, the mRNA level of Alox15 was higher in renal tubules of 5/6 Nx kidneys. To examine 
the role of Alox15 in CKD pathogenesis, we performed 5/6 Nx on Alox15−/− mice. Alox15−/− CKD mice exhibited better 
renal functions than wild-type mice. Interstitial fibrosis was also inhibited in Alox15−/− CKD mice. Mediator lipidomics 
revealed that Alox15−/− CKD mouse kidneys had significantly higher levels of  PGD2 than the control. To investigate the 
effects of  PGD2 on renal fibrosis, we administered  PGD2 to TGF-β1-stimulated NRK-52E cells and HK-2 cells, which lead 
to a dose-dependent suppression of type I collagen and αSMA in both cell lines.
Conclusion Increased  PGD2 in Alox15−/− CKD mouse kidneys could inhibit fibrosis, thereby resulting in CKD improvement. 
Thus, Alox15 inhibition and  PGD2 administration may be novel therapeutic targets for CKD.

Keywords Chronic kidney disease · Lipoxygenase · ALOX15 · Mediator lipidomics · Polyunsaturated fatty acids · Fibrosis

Introduction

Polyunsaturated fatty acids (PUFA) and their metabolites 
are linked to inflammation and its resolution in several 
organs [1]. Oxylipins, which are produced by the oxida-
tion of PUFA, are important for PUFA biological activ-
ity as lipid mediators [1, 2]. Biosynthesis of oxylipins is 
mediated by several enzymes, such as lipoxygenase (LOX), 
cyclooxygenase (COX) and cytochrome P450 (CYP) [3]. 
These enzymes produce several lipid metabolites, such as 
prostaglandins, leukotrienes, and lipoxins, which are all 
heavily involved in the regulation of inflammation [1, 4]. 
For instance, ALOX15, a major subtype of LOX, has a dual 
aspect of proinflammatory and anti-inflammatory properties 
through its metabolites [5]: ALOX15 is highly expressed 
in eosinophils, bronchoalveolar epithelial cells and alveolar 
macrophages under nonpathological condition [5, 6], and 
promotes severity of asthma [7], lung injury [8], and heart 
failure [9], whereas it counteracts inflammation in arthritis 
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[10] and ischemic brain [11]. Additionally, lipid mediators 
and their enzymes affect organ fibrosis as well as inflamma-
tion. Specific lipid mediators are involved in the pathogen-
esis of lung [12], liver [13], and heart [14] fibrosis. Similarly, 
the above-mentioned ALOX15 is also linked to the patho-
genesis of fibrosis such as dermal fibrosis [15].

One of the common chronic diseases is chronic kidney 
disease (CKD), which affects approximately 8–16% of the 
general population in all stages combined [16]. Although 
CKD pathogenesis is complex and varies depending on the 
underlying disease, the kidney tissue generally becomes 
dysfunctional, leading to end-stage renal failure caused 
by chronic inflammation and subsequent fibrosis [17]. 
As mentioned, lipid mediators derived from PUFAs are 
strongly linked to inflammation and its resulting fibrosis. 
For instance, lipoxins and resolvins inhibit renal fibrosis [18, 
19], but these effects are not yet examined in the CKD model 
with impaired kidney function. Moreover, comprehensive 
lipidomic profiles in CKD kidney tissues are still unreported. 
Thus, the role of lipid metabolic enzymes and their products 
in CKD pathogenesis has remained poorly understood.

This study aimed to elucidate the involvement of fatty 
acid metabolizing enzymes and their products in the renal 
impairment of 5/6 nephrectomized (Nx) CKD model mice. 
This study revealed that both of the transcription and protein 
expression levels of Alox15 were increased in CKD kidneys, 
and Alox15−/− mice demonstrated improved kidney dysfunc-
tion and fibrosis in the CKD model. Moreover,  PGD2, which 
is the increased lipid metabolite in the CKD kidneys of 
Alox15−/− mice, inhibited the epithelial–mesenchymal tran-
sition (EMT) in proximal tubular cultured cells. Therefore, 
Alox15 inhibition and/or  PGD2 administration could be a 
novel therapeutic target of CKD and fibrosis.

Materials and methods

Animals and experiments

This study used 8-week-old male C57BL/6 J mice (CLEA 
Japan), which were acclimatized for 1 week before all the 
experiments were performed. Moreover, Alox15−/− mice 
were generated in the C57BL/6 J background (Jackson Labo-
ratory), and the 5/6 Nx model was established according to 
a previous study [20]. We collected blood samples for the 
evaluation of renal function and kidney tissue samples for 
immunoblotting and polymerase chain reaction at 8 weeks 
after 5/6 Nx, and for histological analysis at 40 weeks after 
5/6 Nx. All experiments conformed to the guidelines for 
animal research of TMDU, and The Animal Care and Use 
Committee of TMDU approved our study protocol (approval 
number: A2019-117C4).

LC–MS/MS‑based mediator lipidomics

We conducted LC–MS/MS analysis as described previously 
[21, 22]. Details of the procedure are described in Supple-
mentary Methods.

Other experimental methods

We described other experimental methods in Supplementary 
Methods.

Results

mRNA level of Alox15 was increased in 5/6 Nx kidney

The quantitative changes of oxylipin enzymes in the CKD 
kidney were investigated by applying C57BL/6 mice to sham 
operation or 5/6 Nx as described previously [20]. To ana-
lyze the expression of major oxylipin enzymes expressed in 
the kidney (Alox15, Alox5, Ptgs1 (COX1), Ptgs2 (COX2), 
Cyp4a12 and Cyp2c44) [23, 24], we extracted kidney sam-
ples. Among the enzymes, Alox15 in 5/6 Nx kidneys had a 
significantly elevated mRNA level (P = 0.0004) compared 
with that in sham kidneys (Fig. 1). Conversely, the mRNA 
levels of the other major enzymes did not significantly 
change in this CKD model.

Protein level of Alox15 was increased in renal 
proximal tubular cells

In 5/6 Nx kidneys, the ALOX15 protein levels were also 
increased (P = 0.0078), as expected by increased transcrip-
tional levels (Fig. 2a). To determine which cell types had 
increased Alox15 protein level in the CKD kidney, we exam-
ined the localization of Alox15 mRNA by in situ hybridiza-
tion. In situ hybridization to mRNA revealed that the high 
expression level of Alox15 was localized at renal tubular 
cells in the 5/6 Nx model, but not in glomeruli (Fig. 2b). 
Histological features suggested that Alox15 mRNA was 
strongly expressed in the proximal tubules.

Alox15−/− mice were resistant to renal damage 
and fibrosis in the 5/6 Nx model

In 5/6 Nx CKD kidneys, the transcriptional and protein 
expression levels of ALOX15 were elevated. Therefore, 
we investigated whether and how ALOX15 plays a role 
in CKD in terms of kidney dysfunction and renal fibrosis. 
For this purpose, Alox15−/− mice were applied to the 5/6 
Nx CKD model. Interestingly, serum Cre and blood urea 
nitrogen (BUN) levels were lower in Alox15−/− 5/6 Nx mice 
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Fig. 1  mRNA levels of major renal oxylipin enzymes in CKD kidney 
samples. Quantitative reverse transcription-polymerase chain reac-
tion (qRT-PCR) analysis of major oxylipin enzymes expressed in the 
kidney (Alox15, Alox5, Ptgs1 [COX1], Ptgs2 [COX2], Cyp4a12 and 
Cyp2c44) was performed using sham and 5/6 nephrectomized (Nx) 

kidney samples. Compared with the sham kidneys, the 5/6 Nx kid-
neys had significantly increased mRNA level of Alox15 (P = 0.0004). 
The number of samples is shown at the bottom of the bar graph. Val-
ues are mean ± SEM. Unpaired Student’s t test, *P < 0.05

Fig. 2  Alox15 expression in 5/6 Nx kidney at the protein level and 
localization of the mRNA of Alox15 in kidney tissues. a (upper) Rep-
resentative immunoblots of ALOX15 of kidneys from sham-control 
and 5/6 nephrectomized (Nx) CKD mice. The band of ALOX15 was 
confirmed by the absence of ALOX15 band in Alox15−/− mice sam-
ples. (lower) Densitometry analysis of immunoblots. The ALOX15 
in 5/6 Nx mouse kidneys was significantly increased compared with 

sham-control mouse kidneys (P = 0.0078). The number of samples 
is given at the bottom of the bar graph. Values are mean ± SEM. 
Unpaired Student’s t test, *P < 0.05. b in situ hybridization of kidneys 
from 5/6 Nx Alox15+/+ mice and 5/6 Nx Alox15−/− mice. In 5/6 Nx 
mouse kidneys, Alox15 mRNA was strongly expressed in the tubules, 
especially proximal tubules. The glomerulus had no mRNA expres-
sion of Alox15 (the blue border indicates a glomerulus)
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than those in wild-type (WT) mice (Fig. 3a), indicating that 
Alox15 depletion showed a protective effect in CKD patho-
genesis. Accordingly, NGAL (a renal damage marker) pro-
tein expression was suppressed in Alox15−/− mice compared 
with that in WT mice (Fig. 3b). In addition, Alox15−/− mouse 
kidneys showed reduced Col1a1, Fn and Acta2 (αSMA) 
mRNA levels (Fig. 3c), and also showed decreased fibronec-
tin and αSMA protein expression (Fig.  3d). Moreover, 
Alox15−/− mouse kidneys exhibited clearly suppressed inter-
stitial fibrotic changes shown in Masson’s trichrome stain-
ing (Fig. 3e). Therefore, Alox15 deletion ameliorates kidney 
dysfunction and fibrosis in the CKD animal model.

Mediator lipidomics revealed altered PUFA 
metabolism in Alox15−/− CKD kidneys

As mentioned in the Introduction section of this paper, 
the biological effects of Alox15 are related with the lipid 
mediators generated by Alox15. To elucidate the profile of 
lipid metabolites produced by Alox15 in the CKD kidney, 
we examined and compared the sham and 5/6 Nx kidney 
samples by LC–MS/MS-based mediator lipidomics to 
determine the lipid mediator profiles between WT mice and 
Alox15−/− CKD mice (Supplementary Table 1). Table 1 
shows lipid metabolites which were significantly different 
between Alox15+/+ and Alox15−/− mice under 5/6 Nx condi-
tion. In addition, we made pathway maps of lipid mediators 

Fig. 3  Alox15−/− mice demonstrated kidney function and renal 
fibrosis amelioration in the CKD model. a Serological data from 
CKD mice at 8 weeks after 5/6 nephrectomy (Nx) showed that both 
serum creatinine and blood urea nitrogen levels of Alox15−/− CKD 
mice were significantly lower than those of WT CKD mice. The 
number of samples is shown at the bottom of the bar graph. Val-
ues are mean ± SEM. One-way analysis of variance was followed 
by Tukey’s multiple comparisons test, *P < 0.05. b Representative 
immunoblots of NGAL (a renal damage marker) of kidneys from 
5/6 Nx mice. NGAL was suppressed in Alox15−/− CKD mouse kid-
neys compared with that in WT CKD mice. The number of samples 
is shown at the bottom of the bar graph. Values are mean ± SEM. 
Unpaired Student’s t test, *P < 0.05. c The mRNA of collagen type 
I and fibronectin (fibrosis markers), and Acta2 (αSMA; an EMT 
marker) were significantly suppressed in Alox15−/− mouse kidneys 

under 5/6 Nx condition compared with WT CKD mouse kidneys. The 
number of samples is shown at the bottom of the bar graph. Values 
are mean ± SEM. Unpaired Student’s t test, *P < 0.05. d Representa-
tive immunoblots of fibronectin and αSMA of kidneys from 5/6 Nx 
mice. Both of fibronectin and αSMA were suppressed in Alox15−/− 
CKD mouse kidneys compared with that in WT CKD mice. The 
number of samples is shown at the bottom of the bar graph. Values 
are mean ± SEM. Unpaired Student’s t test, *P < 0.05. e Kidney with 
Masson’s trichrome staining. Kidneys from Alox15+/+ and Alox15−/− 
mice under sham and 5/6 Nx conditions, respectively. Kidney tissues 
were obtained at 40 weeks after 5/6 Nx. Although interstitial fibrotic 
changes are evident in 5/6 Nx mouse kidneys, interstitial fibrosis in 
5/6 Nx Alox15−/− mouse kidneys was significantly improved com-
pared with that in 5/6 Nx Alox15+/+ mouse kidneys
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with classification by their substrates and their metaboliz-
ing enzymes (Fig. 4). A series of Alox15-derived PUFA 
metabolites such as 14-HDoHE, 17-HDoHE, and 15-HEPE 
[5, 25–27] was significantly increased in CKD models that 
correlated well to the increased level of ALOX15 expression 
in the kidneys (P = 0.0018, 0.0008, < 0.0001, respectively), 
and their elevations under CKD conditions were completely 
suppressed in Alox15−/− mice (Fig. 5). Besides 14-HDoHE, 
17-HDoHE, and 15-HEPE, the levels of 18-HEPE, 
10-HDoHE, 11-HDoHE, 13-HDoHE, 16-HDoHE and 
DGLA were also significantly decreased in Alox15−/− CKD 
kidneys compared to those in WT CKD kidneys, whereas 
only  PGD2 was significantly increased in Alox15−/− CKD 
kidneys (Fig. 6).

PGD2 suppressed EMT in cultured kidney cells

The effects of lipid metabolites which were significantly dif-
ferent between Alox15+/+ and Alox15−/− mice under 5/6 Nx 
condition were examined by administering these lipids to 
NRK-52E cells that were activated by pro-fibrotic cytokine 
TGF-β1. We assessed the mRNA expression of Cola1a 
and Acta2 (αSMA) in response to TGF-β1 to determine the 
effects of these lipids in culture (Fig. 7a). Among those, 
 PGD2 conferred potent antifibrotic effect on NRK-52E cells 
in response to TGF-β1. The suppressive effect of  PGD2 on 
COL1A1 and αSMA expression were dose dependent with 
the EC50 of 7.12 μM and 6.48 μM, respectively (Fig. 7b). 
Additionally, we conducted the same experiments in HK-2 
cells, which are immortalized proximal tubule epithe-
lial cells from normal adult human kidneys, and found a 
similar outcome, that is, COL1A1 and αSMA inhibition 
in a dose-dependent manner, in response to treatment with 
 PGD2 (Fig. 7c). Therefore, increased levels of  PGD2 in 

Alox15−/− CKD kidneys may contribute to the antifibrotic 
effects in CKD.

15‑PGDH, a major  PGD2‑metabolizing enzyme, 
was reduced in Alox15−/− CKD kidneys

To clarify the mechanism of the increase in  PGD2 in the 
kidneys of Alox15−/− CKD model mice, we measured the 
mRNA level of  PGD2 synthase.  PGD2 synthase (PGDS) has 
two isoforms: lipocalin PGDS (L-PGDS) and hematopoi-
etic PGDS (H-PGDS) [28]. Both L-PGDS and H-PGDS 
levels were significantly increased under 5/6 Nx condi-
tions when compared with those under sham conditions in 
the kidneys of WT mice (Fig. 8a, both P < 0.0001) indi-
cating that increased  PGD2 in CKD is due to increased 
 PGD2 synthases. Conversely, the increase in L-PGDS and 
H-PGDS under 5/6 Nx conditions was significantly inhib-
ited in Alox15−/− mice (Fig. 8a) indicating that the increase 
in  PGD2 in Alox15−/− CKD model mice was not due to 
increased production by PGDS. Then, we examined mRNA 
levels of COX-1 and COX-2 as more upstream synthases 
of the prostaglandin-producing pathway. We also meas-
ured mRNA levels of 15-PGDH and AKR1C18, which are 
known to be major  PGD2-metabolizing enzymes [29, 30]. 
While the mRNA levels of COX-1, COX-2, and AKR1C18 
were unchanged, the mRNA level of 15-PGDH was signifi-
cantly reduced in CKD kidneys of Alox15−/− mice when 
compared with those of WT mice (Fig. 8b, P = 0.0325), that 
potentially lead to the increase in  PGD2 in CKD kidneys of 
Alox15−/− mice.

Table 1  List of lipid metabolites which were significantly different between Alox15+/+ and Alox15−/− mice under 5/6 Nx condition

By mediator lipidomics, the above fatty acid metabolites were detected in the kidney tissue (30 mg). The P values in the table were obtained by 
comparing Alox15+/+ and Alox15−/− mice under 5/6 Nx condition. The number of samples is as follows: sham (WT), n = 6, sham (KO), n = 6, Nx 
(WT), n = 4, Nx (KO), n = 4. One-way analysis of variance was followed by Tukey’s multiple comparisons test

Sample name Sham WT (n = 6) Sham KO (n = 6) Nx WT (n = 4) Nx KO (n = 4) P value
(Nx WT vs 
Nx KO)

Increased or decreased 
in KO compared to WT

Ave SE Ave SE Ave SE Ave SE

PGD2 10.0 1.5 16.5 5.9 53.4 14.5 163.1 45.1 0.0093 Increased
15-HEPE 78.8 8.7 99.4 8.1 219.2 26.7 89.5 25.9 0.0006 Decreased
18-HEPE 136.9 13.3 215.7 17.6 260.8 55.7 118.3 21.7 0.0186 Decreased
10-HDoHE 128.8 16.5 256.9 30.7 288.1 54.7 126.7 25.4 0.0246 Decreased
11-HDoHE 245.9 43.2 488.0 74.5 678.4 146.6 305.5 57.8 0.0443 Decreased
13-HDoHE 140.8 17.4 255.2 26.8 388.1 104.6 162.8 31.2 0.0341 Decreased
14-HDoHE 289.5 25.1 368.6 26.2 673.2 128.3 328.0 57.6 0.0092 Decreased
16-HDoHE 232.1 25.1 369.1 38.3 471.7 106.7 227.0 53.4 0.0497 Decreased
17-HDoHE 468.5 82.0 513.1 59.0 1253.0 218.2 350.6 88.7 0.0005 Decreased
DGLA 9794.6 349.6 8797.8 791.8 22,167.8 3136.0 13,040.0 2866.7 0.0195 Decreased
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Discussion

This study demonstrated that in CKD kidney samples, 
both of the transcription and protein levels of Alox15 were 
increased, and kidney dysfunction and fibrosis were ame-
liorated in Alox15−/− mice. In addition, LC–MS/MS-based 
mediator lipidomics revealed that Alox15−/− CKD mouse 
kidneys had significantly increased level of  PGD2 compared 
with WT mice.  PGD2 inhibited the EMT of NRK-52E and 
HK-2 cells; hence,  PGD2 increase may contribute to the 
resistance of Alox15−/− mice to renal injury and fibrosis.

The relationship between renal disease and lipid profiles 
using lipidomics on human serum or plasma have been 

extensively investigated [31–33], but not on kidney tissue. 
Similarly, although reports on lipidomics using CKD ani-
mal models are few [34–36], all of these studies performed 
lipidomics on plasma samples from a CKD animal model; 
however, no comprehensive lipidomics on kidney tissues 
from the CKD model have been reported yet. Direct lipid-
omics on tissue is also effective, as well as plasma samples, 
in identifying functional metabolites. Moreover, metabolite 
changes in tissues, as well as blood samples, are consider-
ably different by organ [20]. In the present study, we thor-
oughly analyzed the profile of PUFA-derived lipid mediators 
in the kidney tissues of a CKD animal model.

Fig. 4  Pathway maps of lipid mediators derived from omega-6 and 
omega-3 fatty acids. a Pathway map of lipid mediators derived from 
arachidonic acids (AA). b Pathway map of lipid mediators derived 

from eicosapentaenoic acids (EPA). c Pathway map of lipid mediators 
derived from docosahexaenoic acids (DHA)
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This study focused on ALOX15, which is one of the 
major enzymes that metabolize PUFAs. In this study, both 
protein and mRNA expression levels of ALOX15 were 
clearly increased in CKD kidneys. We addressed the cell 

types responsible for the ALOX15 expression in CKD kid-
neys, and by in situ hybridization, we found an increased 
expression of ALOX15 mRNA in renal tubular cells in the 
5/6 Nx model.

Fig. 5  Lipidomics confirmed that the production of ALOX15-
dependent lipid metabolites was suppressed in Alox15−/− CKD kid-
neys. 14-HDoHE, 17-HDoHE, and 15-HEPE, which are ALOX15-
dependent lipid metabolites, were significantly increased in WT CKD 
kidneys (P = 0.0018, 0.0008, < 0.0001 respectively). The increase was 

suppressed in Alox15−/− mice. The number of samples is as follows: 
sham (WT), n = 6, sham (KO), n = 6, Nx (WT), n = 4, Nx (KO), n = 4. 
Values are mean ± SEM. One-way analysis of variance was followed 
by Tukey’s multiple comparisons test, *P < 0.05

Fig. 6  Lipid metabolites which were significantly different between 
Alox15+/+ and Alox15−/− mice under 5/6 Nx condition. Alox15−/− 
CKD kidneys had significantly increased levels of  PGD2 compared 
with WT CKD kidneys (P = 0.0093). In contrast, Alox15−/− CKD 
kidneys had significantly decreased levels of 18-HEPE, 10-HDoHE, 
11-HDoHE, 13-HDoHE, 16-HDoHE and DGLA compared with WT 

CKD kidneys (P = 0.0186, 0.0246, 0.0443, 0.0341, 0.0497, 0.0195 
respectively). Additionally, 30 mg of each sample was analyzed with 
lipidomics. Sham (WT); n = 6, sham (KO); n = 6, Nx (WT); n = 4, Nx 
(KO); n = 4. Values are mean ± SEM. One-way analysis of variance 
was followed by Tukey’s multiple comparisons test, *P < 0.05
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ALOX15 is involved in chronic diseases, such as ath-
erosclerosis, and its deletion in animal disease models 
improves these diseases [5]. Regarding the association of 
ALOX15 with renal disease, proteinuria is decreased in 
Alox15−/− mice under glomerular injury by a streptozotocin-
induced diabetic nephropathy model [37]. However, this dia-
betes mellitus mouse model does not show any decline in 
kidney function; thus, the mechanism on how ALOX15 is 
associated with impaired kidney function in CKD models 
has remained unclear. In the present study, using the 5/6 Nx 
mouse model, we found that ALOX15 deletion ameliorated 
kidney dysfunction and renal fibrosis in a CKD model.

To date, only IL-4 and IL-13 in monocytes are known to 
be regulatory factors that directly increase the expression of 
ALOX15 [5]. However, it remains unclear what increases 
ALOX15 in renal tubular cells. A variety of cytokines and 
uremic toxins are known to be increased in the plasma and 
kidney in CKD [38, 39]. Among them, there might be novel 
regulators of ALOX15. Further studies are needed to eluci-
date the major regulatory factors of ALOX15 in CKD.

In our studies to identify specific intervening oxylipins 
that link Alox15 deletion to its renoprotective effect in the 
5/6 Nx model, we found that  PGD2 may be involved in the 
resistance to renal damage caused by ALOX15 deletion. 
As a general understanding, to generate  PGD2, COX-1 and 

Fig. 7  PGD2 suppressed EMT in cultured kidney cells. a Effects 
of lipid metabolites which were significantly different between 
Alox15+/+ and Alox15−/− mice under 5/6 Nx condition on the EMT 
of NRK-52E cells. These lipid metabolites were administered at 8 μM 
each to NRK-52E cells with TGF-β1 (5 ng/mL).  PGD2 significantly 
suppressed Col1a1 and αSMA (Acta2) expression. None of the other 
fatty acid metabolites inhibited or promoted Col1a1 and αSMA. b 
Effects of  PGD2 on the EMT of NRK-52E cells.  PGD2 significantly 

suppressed Col1a1 and Acta2 expression induced with TGF-β1 (5 ng/
mL) in NRK-52E cells dose-dependently. c Effects of  PGD2 on the 
EMT of HK-2 cells.  PGD2 also suppressed Col1a1 and Acta2 expres-
sion induced with TGF-β1 (5  ng/mL) in HK-2 cells dose-depend-
ently. n = 3 for each group. Values are mean ± SEM. One-way analy-
sis of variance was followed by Tukey’s multiple comparisons test, 
*P < 0.05
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COX-2 produce  PGG2 from arachidonic acids, which is 
then converted into  PGH2. When  PGH2 is metabolized by 
 PGD2 synthase (PGDS),  PGD2 is produced [28]. PGDS 
has two genetically distinct isoforms, namely, lipocalin-
type PGDS (L-PGDS) and hematopoietic-type PGDS 
(H-PGDS) [28]. Although  PGD2 was increased in the 
Alox15−/− CKD mouse kidneys, neither L-PGDS nor 
H-PGDS was increased in the Alox15−/− CKD mouse kid-
neys, despite the large increase in PGDS in the WT CKD 
mouse kidneys (Fig. 8a). Furthermore, we also revealed 
that neither COX-1 nor COX-2 was increased in the 
Alox15−/− CKD mouse kidneys (Fig. 8b).

These results suggest that the increase in  PGD2 in the 
Alox15−/− CKD mouse kidneys was not due to an increase 
in synthases but due to the increased substrate availability or 

an inhibition of degradation, and in fact, we have revealed a 
reduction in 15-PGDH, one of the major  PGD2 metaboliz-
ing enzymes [29], in the Alox15−/− CKD mouse kidneys 
(Fig. 8b). Further investigation is needed to elucidate the 
reason why the deletion of Alox15 leads to decrease in 
15-PGDH.

As mentioned above,  PGD2 could be involved in the 
resistance to renal injury caused by ALOX15 loss. In this 
study,  PGD2 inhibited EMT by TGF-β1 in NRK-52E and 
HK-2 cells, representing proximal tubular cells.  PGD2 binds 
to two different G protein-coupled receptors, namely, DP1 
and DP2, whose functions are different [28]. However, in our 
in vitro experiments,  PGD2 was effective at concentrations 
ranging from 4 to 32 μM, which are relatively high, con-
sidering that the Ki values of DP1 and DP2 are 1.7 nM and 

Fig. 8  15-PGDH, a major  PGD2-metabolizing enzyme, was reduced 
in Alox15−/− CKD kidneys. a Relative mRNA levels of each of the 
two PGDS synthase isoforms in the kidney tissue of sham or CKD 
model mice. In WT mice, both L-PGDS and H-PGDS levels were 
significantly increased under 5/6 Nx conditions when compared 
with those under sham conditions (both P < 0.0001). Conversely, the 
increase in L-PGDS and H-PGDS under 5/6 Nx conditions was sig-
nificantly inhibited in Alox15−/− mice (P = 0.0004, < 0.0001, respec-
tively), and their mRNA levels did not differ from those of sham WT 
mice. The number of samples is shown at the bottom of the bar graph. 

Values are mean ± SEM. One-way analysis of variance was followed 
by Tukey’s multiple comparisons test, *P < 0.05. b Relative mRNA 
levels of  PGD2-related enzymes in the kidneys of CKD model mice. 
The mRNA level of 15-PGDH was significantly reduced in CKD 
kidneys of Alox15−/− mice when compared with those of WT mice 
(P = 0.0325). The mRNA levels of COX-1, COX-2 and AKR1C18 
were not significantly changed between WT mice and Alox15−/− mice 
under 5/6 Nx conditions. The number of samples is shown at the bot-
tom of the bar graph. Values are mean ± SEM. Unpaired Student’s t 
test, *P < 0.05
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2.4 nM, respectively [28]. This result indicates that  PGD2 
may exert antifibrotic effects not via G protein-coupled 
receptors but via other pathways such as PPARγ, through 
which 15-d-PGJ2, a downstream  PGD2 metabolite, is known 
to exert its effects [28].

In this study, which focuses on lipid metabolic enzymes 
and their metabolites, ALOX15 inhibition and/or  PGD2 
administration could be a promising therapeutic target for 
CKD. Unfortunately, no ALOX15 specific inhibitor that can 
be used in clinical practice has been developed [40, 41]. 
Therapeutic targeting of downstream functional metabolites, 
such as  PGD2, rather than inhibition of fatty acid metaboliz-
ing enzymes, which affect various metabolites, could be a 
novel ideal CKD therapy.
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