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ABSTRACT: Next-generation sequencing has aided char-
acterization of genomic variation. While whole-genome
sequencing may capture all possible mutations, whole-
exome sequencing remains cost-effective and captures
most phenotype-altering mutations. Initial strategies for
exome enrichment utilized a hybridization-based capture
approach. Recently, amplicon-based methods were de-
signed to simplify preparation and utilize smaller DNA
inputs. We evaluated two hybridization capture-based and
two amplicon-based whole-exome sequencing approaches,
utilizing both Illumina and Ion Torrent sequencers, com-
paring on-target alignment, uniformity, and variant call-
ing. While the amplicon methods had higher on-target
rates, the hybridization capture-based approaches demon-
strated better uniformity. All methods identified many of
the same single-nucleotide variants, but each amplicon-
based method missed variants detected by the other three
methods and reported additional variants discordant with
all three other technologies. Many of these potential false
positives or negatives appear to result from limited cover-
age, low variant frequency, vicinity to read starts/ends, or
the need for platform-specific variant calling algorithms.
All methods demonstrated effective copy-number variant
calling when evaluated against a single-nucleotide poly-
morphism array. This study illustrates some differences
between whole-exome sequencing approaches, highlights
the need for selecting appropriate variant calling based on
capture method, and will aid laboratories in selecting their
preferred approach.
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Introduction
Next-generation sequencing (NGS) technologies have accelerated

efforts to characterize human genomic variation and disease [Met-
zker, 2010]. However, whole-genome sequencing remains costly for
large-scale studies, and researchers have instead utilized a whole-
exome sequencing approach that focuses on the expressed exons,
which constitute 1% of the genome [Gnirke et al., 2009; Sulonen
et al., 2011]. To this end, microarrays have been utilized to enrich
for the whole human exome prior to sequencing [Albert et al., 2007;
Hodges et al., 2007; Sulonen et al., 2011]. Yet, such array-mediated
capture functions best on DNA fragments around 500-bp long, thus
limiting targeting of closely spaced regions [Hodges et al., 2007;
Gnirke et al., 2009], such as human exons [Clamp et al., 2007]. To
aid focus on smaller DNA fragments, solution-based exon capture
was developed [Gnirke et al., 2009]. This study aims to compare the
merits of several currently available solution-based exome capture
methods in order to aid other research laboratories in their choice
of approach.

Whole-exome methods generally capture from 35 to 70
megabases of target region for sequencing depending on the ref-
erence database utilized and inclusion of 3′ or 5′ untranslated re-
gions (UTRs). Several previous studies have examined the strengths
and weaknesses of the early whole-exome capture methods [Asan
et al., 2011; Clark et al., 2011; Parla et al., 2011; Sulonen et al.,
2011; Chilamakuri et al., 2014]. These have included evaluation
of the initial strategies developed, including hybridization capture-
based Agilent’s SureSelect, Roche/Nimbelgen’s SeqCap, and Illu-
mina’s TruSeq and Nextera approaches, all sequenced on an Il-
lumina NGS platform [Clark et al., 2011; Chilamakuri et al.,
2014]. To facilitate rapid production of whole-exome sequenc-
ing data, new amplicon-based methods have been designed that
simplify DNA preparation and utilize smaller inputs of DNA.
Thus, for researchers seeking to utilize whole-exome sequencing
approaches, there are many choices for capture and sequencing
approach.

Given the significant differences in these novel approaches,
we evaluated the newer amplicon-based and the sonica-
tion/hybridization capture-based approaches for whole-exome se-
quencing on two NGS sequencing platforms (Illumina and Ion
Torrent) (Fig. 1A). The two capture-based technologies, Sure-
Select and SeqCap, shear genomic DNA using high-frequency
sounds waves (sonication) creating randomly sized DNA frag-
ments. Then, synthetic oligonucleotides are hybridized to re-
gions of interest in solution and captured through magnetic
beads. One of the amplicon methods, HaloPlex, however, frag-
ments genomic DNA with restriction enzymes, then uses probes
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Figure 1. Whole exome capture methods and probe strategy. A: Schematic of experimental procedures of all four methods. SureSelect and
SeqCap are classified as capture based due to their sonication-based fragmentation method and the use of oligonucleotides to hybridize and
capture target regions, whereas HaloPlex and AmpliSeq are classified as amplicon based due to their use of use of oligonucleotides as PCR
primers for amplicons. B: Probe or amplicon lay out targeting a particular target exon (TACC3, exon 3, chr4:1729435–1730514). The probe layout of
SeqCap, in this diagram, is an approximation, since these probe coordinates are not publicly available. SeqCap and SureSelect utilize staggered
probes, and Ampliseq uses adjacent amplicons, whereas HaloPlex’s probes are complimentary only to sequences near ends of the amplicons, and
the middle of the probe is a DNA motif used for HaloPlex-specific purposes.

complimentary to the 5′- and 3′-ends of each fragment for the
creation of a targeted amplicon; this is followed by PCR primer
annealing and PCR amplification. The final method we evalu-
ated, Ion Torrent’s Ion AmpliSeq, amplifies target regions with
PCR primers, followed by sequencing on the Ion ProtonTM Sys-
tem. We evaluated all technologies for normalized metrics in-
cluding on-target alignment, coverage uniformity, and GC bias.
Furthermore, unlike previous comparison studies, we provide
an in-depth concordance assessment for detection of single-
nucleotide variants (SNVs) using three variant callers. Lastly, we
assessed each technology’s ability to call copy-number variants
(CNVs).

Materials and Methods

Cell Lines

We obtained BT-20 breast cancer cell line (with PIK3CA
NM 006218.2:c.1616C>G p.P539R and NM 006218.2:c.3140A>G
p.H1047R mutations), MCF-7 breast cancer cell line (with a PIK3CA
NM 006218.2:c.1633G>A p.E545K mutation), breast cancer cell line
HCC-2218 (with ERBB2 amplification), and HCC-2218’s matching
B-lymphoblastoid cell line, HCC-2218BL, from the American Type
Culture Collection (ATCC, Manassas, VA) (Supp. Table S1). DNA
was extracted from log phase growing cell lines using the DNeasy
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Blood and Tissue Kit (Qiagen, Valencia, CA). DNA was quantitated
using the Qubit dsDNA HS Assay Kit with the Qubit 2.0 Fluorome-
ter (Invitrogen, Carlsbad, CA) and the NanoDrop 2000C (Thermo
Scientific, Waltham, MA) (optical density ratios were 260:280 = 1.8–
2.0, 260:230 = 2.0–2.2). Genomic DNA ScreenTapes were used on the
TapeStation 2200 System (Agilent Technologies, Santa Clara, CA)
to evaluate DNA size and quality. All four cell lines tested negative
for mycoplasma and were authenticated (DNA Diagnostics Center,
Cincinnati, OH).

SureSelectXT Human All Exon V4+UTR’s

We used 3 μg of each cell line’s genomic DNA diluted in 1× TE
Buffer (pH 8.0) and sheared to a target peak size of 150–200 bp us-
ing the Covaris S220 focused-ultrasonicator (Covaris, Woburn, MA)
according to the manufacturer’s recommendations. Library prepa-
ration and exome capture were performed using the SureSelectXT

Human All Exon V4+UTR’s capture baits as described in Agilent’s
SureSelectXT Target Enrichment System for Illumina Paired-End Se-
quencing Library Protocol (version 1.5) without modification. We
performed 11 cycles of PCR for amplification of the postcapture
exome libraries and validated the quality of each library using Ag-
ilent’s High Sensitivity D1K ScreenTapes on the TapeStation 2200
system.

SeqCap EZ Human Exome V3.0

We used 1.1 μg of each cell line’s genomic DNA diluted in
nuclease-free water and sheared to a target peak size of 250–300
bp using the Covaris S220 focused-ultrasonicator according to the
manufacturer’s specifications. Whole-genome libraries were pre-
pared using the Illumina TruSeq DNA Kit and Sample Preparation
Guide without modification. Exome capture was executed by fol-
lowing Roche’s SeqCap EZ Library Guide (version 4.1) with the
SeqCap EZ Human Exome Library V3.0 Kit. We performed 14 cy-
cles of PCR to amplify the postcapture exome libraries and assessed
library quality using Agilent’s D1K Screentapes (regular sensitivity)
on the TapeStation 2200 system.

HaloPlex Exome

We diluted 225 ng of genomic DNA from each cell line in nuclease-
free water and fragmented the DNA in eight separate restriction en-
zyme digestion reactions. The Haloplex Exome Target Enrichment
System Protocol (Version A) was followed without modification to
perform the library preparation and exome capture using the Halo-
Plex Exome capture baits. We assessed library quality using Agilent’s
High Sensitivity D1K ScreenTapes on the TapeStation 2200 system.

Ion Ampliseq Exome

We submitted 250 ng of each cell line’s genomic DNA to the
Roswell Park Cancer Institute’s Genomics Shared Resource (GSR).
As an Ion Ampliseq Exome Certified Service Provider, the GSR
prepared and sequenced each AmpliSeq Exome library according to
the manufacturer’s specifications on the Ion ProtonTM System on a
P1.1.17 chip. Each library was sequenced on a separate chip.

Sequencing of Libraries

We prepared indexed SureSelect, SeqCap, and HaloPlex whole-
exome libraries and sent them for 100-bp paired-end sequencing (2
× 100 bp) on an Illumina HiSeq 2000 at Beijing Genomics Institute
(BGI, Beijing, China). For SureSelect and SeqCap, all four libraries
were pooled and sequenced in one lane and two lanes, respectively.
For HaloPlex, BT-20 and MCF-7 were pooled and sequenced on
one lane, with HCC-2218BL and HCC-2218 in a separate lane. The
AmpliSeq libraries were single-end sequenced on an Ion ProtonTM

System at Roswell Park Cancer Institute.

Single-Nucleotide Polymorphism Array

We submitted DNA isolated from HCC-2218BL and HCC-
2218 to Case Western Reserve University’s Genomic Sequencing
Core to use the Affymetrix Genome-Wide Human SNP Array 6.0
(Affymetrix, Santa Clara, CA) to determine copy number variation.
The Core utilized the Affymetrix Genome-Wide Human SNP Array
6.0 method for sample preparation. Briefly, 500 ng of genomic DNA
was digested employing the Nsp1 and Sty1 restriction enzymes and
then ligated to adapters. These adapter-bound fragments were then
amplified, fragmented, labeled, and hybridized to the SNP Array
6.0.

Alignment

For SureSelect and SeqCap paired-end data, BGI removed reads
with adapters, reads with 5% or more unknown bases, and reads
with 50% or more bases with quality score less than or equal to
10, using their own custom algorithm called SOAPnuke. Manual
inspection in Integrative Genomics Viewer [Robinson et al., 2011]
confirmed this. Because HaloPlex utilizes different adapters from
the standard Illumina TruSeq adapters, we used Agilent’s propri-
etary software SureCall-2.1.1.13 under the default parameters to
trim adapters from paired-end HaloPlex libraries. Raw sequenc-
ing reads were aligned to the human genome (hg19) utilizing the
Burrows-Wheeler Aligner (BWA-0.6.2) [Li and Durbin, 2010] em-
ploying the default parameters. Resultant SAI-files were consoli-
dated and converted to Sequence Alignment/MAP (SAM) using the
SAMtools-0.1.18 [Li et al., 2009aa] “sampe” command, the output
SAM files were changed to Binary Alignment/MAP (BAM) using the
SAMtools “view” command, and the latter were sorted by chromo-
some and position using the SAMtools “sort” command. After reads
were aligned, duplicate reads were removed from SureSelect and Se-
qCap libraries using Picard-1.84’s (http://picard.sourceforge.net/)
“MarkDuplicates” command. In accordance with manufacturer’s
instructions, duplicates were not removed from HaloPlex data. Af-
terward, regardless of whether the technology required duplicate re-
moval, we realigned reads around known indels in dbSNP file hg19
snp137 [Sherry et al., 2001] using the Genome Analysis Toolkit-
2.4.7 (GATK) [McKenna et al., 2010] employing the “RealignerTar-
getCreator” and “IndelRealigner” commands. Due to high-quality
scores (in our experience, these commands failed when they found
an alignment score greater than or equal to 61), realignment com-
mands included the additional “fixMisencodedQuals” flag. Follow-
ing realignment, Picard’s “FixMateInformation” command under
the default parameters was used. Next, quality scores were recal-
ibrated using GATK’s “BaseRecalibrator” and “PrintReads” com-
mands under the default parameters. Additionally, the resulting
BAM files were sorted by name using the SAMtools “sort” function
to generate name-sorted BAM files.
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Note that AmpliSeq data were processed differently from Sure-
Select, SeqCap, and HaloPlex libraries. Roswell Park Cancer Insti-
tute’s Genomics Shared Resource used the Torrent Mapping Align-
ment Program (TMAP)-4.0.6 to trim adapters from single-end
AmpliSeq data, align reads to human genome (hg19), and realign
reads around SNV candidates; however, when we performed our
downsampling analysis (which will be described later), we used
TMAP-3.0.1, which was the latest version available for download
(https://github.com/iontorrent/TS/tree/master/Analysis/TMAP).

Since each exome capture has a different target region, we assessed
on-target performance for each method’s respective target region.
For all four technologies, following mapping and postprocessing,
we calculated alignment statistics using BEDTools-2.17.0 [Quin-
lan and Hall, 2010]. Using this software, three different alignment
percentages were calculated: percent of sequenced fragments that
aligned to the human genome (hg19), percent of total sequenced
fragments that mapped to target regions of the respective technol-
ogy, and percent of hg19-aligned fragments that mapped to target
regions of the respective technology. The aforementioned alignment
statistics were calculated for SureSelect, SeqCap, and HaloPlex data
using the final BAM file (i.e., after duplicate removal, realignment
around indels, quality score recalibration, and name sorting). How-
ever, for AmpliSeq, these statistics were calculated using the resulting
BAM file from mapping raw FASTQ reads to hg19 and realigning
around SNV candidates (the Ion Torrent Suite’s standard analysis,
for AmpliSeq data, does not include duplicate removal, realign-
ment around known indels, or quality score recalibration, which is
included in our pipeline for analysis of Illumina data). For all four
technologies, we used BEDTools’s “bamtobed” command to convert
the respective BAM files to BEDPE format for SureSelect, SeqCap,
and HaloPlex, and BED format for AmpliSeq. These BEDPE/BED
files were used to calculate the percentage of FASTQ fragments that
aligned to hg19. Next, to calculate alignment rate to targeted re-
gions, for SureSelect, SeqCap, and HaloPlex, we used the BEDTools
“pairtobed” command to record the intersection between each of
the previously mentioned BEDPE files and their respective technol-
ogy’s target regions. For single-end AmpliSeq data, the BEDTools
“intersect” command was used instead. These commands consider a
fragment “on-target” if at least one base from the fragment intersects
a targeted region. To calculate the portion of targeted bases covered
at various sequencing depths, we utilized mpileup files generated by
SAMtools on the final BAM files.

SNV Calling

For SureSelect, SeqCap, and HaloPlex, final BAM files were used
to generate mpileup files using the SAMtools “mpileup” command,
accepting reads with a minimum mapping quality of 10. Using these
mpileup files, SNVs were called using VarScan2’s (v.2.3.3) [Koboldt
et al., 2012] “mpileup2snp” function under the default parameters.
We also called SNVs on SureSelect, SeqCap, HaloPlex data using
GATK’s HaplotypeCaller [McKenna et al., 2010] and MuTect-1.1.4
[Cibulskis et al., 2013], both under the default parameters, inputting
each sample’s final BAM files and the respective technology’s target
regions BED file. In addition, for HaloPlex data, we used Agilent’s
SureCall-2.1.1.13 software (Agilent Technologies, Santa Clara, CA),
a tool for HaloPlex analysis, under the default parameters. We an-
notated mutations using ANNOVAR (version 525) [Wang et al.,
2010] to remove intronic and synonymous SNVs and to match each
SNV with known genes and their associated amino acid changes,
stopgain, or stoploss. Lastly, we filtered for SNVs that fell inside each
technology’s target regions. Note that for SNVs called by GATK, we

omitted SNVs that were reported with another SNV or indel at the
same position for simplicity.

Due to unique requirements for variant calling for Ion Torrent
data related to homopolymer sequencing errors [Bragg et al., 2013],
we utilized the company’s Ion Torrent Suite 4.0.2 to calculate variants
from AmpliSeq data (see Supp. Table S2 for parameters). Note that
for SNVs called by the Ion Torrent Suite, we disregarded SNVs that
were reported with a deletion at the same position. This indicates
that Ion Torrent could miss a true SNV due to deletion calls.

Venn diagrams were prepared using Venny (http://bioinfo
gp.cnb.csic.es/tools/venny/).

Indel Calling

For SureSelect, SeqCap, and HaloPlex, mpileup files were used
to call indels using VarScan2’s “mpileup2indel” command under
the default parameters. We also called indels on SureSelect, SeqCap,
and HaloPlex using GATK’s HaploTypeCaller (same parameters as
SNV calling above; also, as with SNVs, we omitted indels that were
reported with another indel at the same position). Lastly, we used
Pindel v0.2.5a8 [Ye et al., 2009] on SureSelect, SeqCap, and Haloplex
libraries under the default parameters, inputting each sample’s final
BAM file; we disregarded indels reported with another mutation at
the same position). As with SNV calling above, Ion Torrent Suite was
used to call indels on AmpliSeq libraries. For all technologies, we
annotated indels using ANNOVAR (version 525) to remove intronic
indels and to filter for frameshift insertions, frameshift deletions,
nonframeshift insertions, and nonframeshift deletions. To compare
concordance, we looked only at indels whose 5′-end fell within
commonly targeted bases.

CNV Calling

For all four technologies, we called CNVs on the HCC-2218 cell
line using the HCC-2218BL cell line as a matched normal control.
Using the final BAMs from both samples, we generated two-sample
mpileup files using the SAMtools “mpileup” function. We used
VarScan2’s “copynumber” command to call CNVs for SureSelect,
SeqCap, and HaloPlex under the default parameters, except for
the data ratio flag. We defined the data ratio flag by dividing the
number of reads in the “reference” column of the mpileup file by
the number of reads in the “tumor” column of the mpileup file
(the data ratio flag is used by VarScan2 to account for differences in
global genomic sequencing depth between the tumors and matched
normal samples when calling CNVs). For AmpliSeq data, when
“copynumber” was run, we used the data ratio flag, a minimum
base quality of 1, and a minimum mapping quality of 1, because
base qualities were generally lower on the Ion ProtonTM than the
Illumina HiSeq [Loman et al., 2012]. The CNV output included
chromosomal segments and their respective log2-CNV ratios. Then,
using the BEDTools “intersect” command, we filtered the CNV calls
to regions inside each technology’s respective target region.

We compared CNV calls from sequencing data with SNP 6.0
array data utilizing Affymetrix’s Genotyping ConsoleTM Software-
4.1.4.840, according to manufacturer’s instructions (Affymetrix).
Using SNP array data, we generated log2-CNV ratios at individual
base positions for HCC-2218 and HCC-2218BL, each. To directly
compare CNVs between HCC-2218 and HCC-2218BL, we used the
following formula:

log2

(
HCC – 2218

HCC – 2218BL

)
= log2 (HCC – 2218) – log2 (HCC – 2218BL)
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We assessed correlation between sequencing and SNP array-
derived log2–CNV ratios. For each SNP array base position and its
corresponding CNV ratio, if any technology’s target-filtered CNV
file had a CNV ratio at the corresponding position, we paired the
SNP array and the sequencing CNV ratios. Before calculating cor-
relation between the SNP array and sequencing CNV ratios, we
filtered out regions whose sequencing CNV ratio fell between –0.5
and 0.5 to exclude possibly copy-neutral regions or false positives.
Then, we calculated the correlation of log2–CNV ratios between the
SNP array and each sequencing technology.

Statistical Tests

For all data where statistical significance was computed, we
used the two-sided Mann–Whitney U-test. P values for all Mann–
Whitney U-tests are in Supp. Table S3.

Results

Library Construction Varies Between Technologies

We examined the abilities of four available technologies (Fig.
1A), Agilent’s SureSelect, Roche/Nimblegen’s SeqCap EZ Exome,
Agilent’s HaloPlex Exome, and Ion Torrent’s Ion AmpliSeq Ex-
ome to capture whole exomes for NGS (Table 1) using four well-
annotated cell lines (Supp. Table S1 for sequencing statistics). The
established SureSelect and SeqCap methods utilize sonication to
fragment genomic DNA to generate unique fragments. In contrast,
the newer HaloPlex and AmpliSeq use novel means to create inserts
and condense some steps for library construction to shorten sample
preparation time. HaloPlex generates fragments through restric-
tion enzyme digests and uses nontiled DNA probes complementary
to known restriction enzyme digestion sites. These probes are de-
signed to circularize the digested fragment of interest to enable PCR
amplification (Fig. 1A). Subsequently, HaloPlex combines adapter
ligation with PCR amplification (in Fig. 1B, the PCR primers in
HaloPlex are partially composed of adapters). Finally, AmpliSeq
uses multiple sets of PCR primers, rather than probes, to amplify
regions of interest, but similar to SureSelect and SeqCap, target re-
gions are tiled. These methods have several underlying differences
in probe strategy, including different probe sizes (Table 1), com-
position (DNA or RNA), density, and layouts (Fig. 1B). SureSelect
utilizes RNA probes, whereas the remaining approaches use DNA
probes or primers. SureSelect and SeqCap (and AmpliSeq, for longer
exons) each employ a tiled probe layout (Fig. 1B).

Examination of Library and Sequencing Measurements

We first assessed basic library metrics. We applied Preseq [Daley
and Smith, 2013] to calculate the complexity of each library (Fig.
2A). Using input BAM or BED files, Preseq computes the expected
number of distinct sequencing reads as a function of total reads. The
hybridization-based methods showed significantly higher complex-
ity than the amplicon-based methods (P = 0.03). Next, we sought
to assess each method’s ability to capture the whole exome. While
each technology attempts to target all coding exons, they also rely on
different combinations of databases (i.e., Vega, Gencode, Ensembl,
CCDS, etc.) for target region compilation; consequently, target re-
gion size varies between technologies (Fig. 2B). For example, SureS-
elect targets UTRs and SeqCap targets miRNA exons. We compared
the alignment rates with targeted regions between the technologies
by examining alignment from raw sequencing files to the reference

Figure 2. Assessment of raw library sequencing metrics. A: Percent
molecular complexity is defined as the number of unique reads divided
by the number of total reads in a sample, multiplied by 100% [Daley and
Smith, 2013] as a function of millions of reads sampled. B: Whole-exome
regions targeted by each technology and the region in common between
all technologies. C: Mapping statistics from raw sequencing files to hg19
and alignment from hg19 to target regions after postprocessing.

genome (hg19) and from aligned fragments to each technology’s re-
spective target regions (Supp. Table S4; Fig. 2C) (median ± median
absolute deviation, unless otherwise stated). We defined on-target if
at least one base of either the 5′-end of 3′-end of a fragment aligned
to the target region. All technologies aligned greater than 90% of
their raw fragments to the genome, whereas the amplicon-based
methods, HaloPlex and AmpliSeq, aligned the highest percentage
of their mapped fragments to target regions (P = 0.03) (94.67% and
93.68%, respectively).

Uniformity of Sequencing over Target Areas

In addition to on-target sequencing rate, another important el-
ement is the distribution of sequencing or sequencing uniformity
across the target region. We computed average normalized sequenc-
ing depth (defined as read count per million sequencing reads) in
bases common to all technologies (Fig. 3A). While both amplicon-
based methods showed higher average coverage than hybridiza-
tion capture-based technologies (P < 10–323), both amplicon-based
methods also exhibited a higher standard deviation of coverage
than did the hybridization capture-based methods over commonly
targeted regions (Supp. Table S5). This analysis was repeated for tar-
geted regions of each respective technology and the results were
similar (Supp. Table S5 and Supp. Fig. S1). This suggests that
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Table 1. Technical Specifications of Whole-Exome Capture Methods

SureSelecta (Agilent) SeqCapa (Nimblegen) HaloPlexa (Agilent)
AmpliSeqa

(Life Technologies)

Capture method Hybridization Hybridization Amplicon Amplicon
Platform(s) available Illumina or Ion Torrent Illumina or Ion Torrent Illumina or Ion Torrent Ion Torrent
Targeting method RNA linear probes DNA linear probes DNA molecular inversion probes PCR primers
Length of probes/amplicons (bp)b 120 55–105 161 ± 75 256 ± 14
Number of probes/amplicons 7.89 × 105 2.10 × 106 2.49 × 106 3.17 × 106

Target size (Mb) 70.4 63.6 38.5 57.7
Overall cost of sequencing per reaction (USD) 1,528.98 1,424.79 1,545.67 1,200.00

aVersions of technologies: SureSelectXT Human All Exon V4+UTR’s, SeqCap EZ Human Exome V3.0, HaloPlex Exome, Ion AmpliSeq Exome.
bNote that the length of amplicons for HaloPlex and AmpliSeq are denoted as median ± median absolute deviation.

Figure 3. Assessment of sequencing depth in commonly targeted regions. A: Normalized coverage (reads per million sequencing fragments)
(y-axis) for all bases in commonly targeted regions. The average (blue) and standard deviation (red) for all genomic positions in commonly targeted
regions are shown. B: Percentage of commonly targeted bases that had various minimum average coverage (solid lines). An “ideal” curve is
plotted for each technology that assumes that all sequencing covers targeted bases uniformly. Because different technologies have different
average normalized coverage (partially due to differences in capture size), ideal curves will differ between technologies. C: Normalized coverage
was plotted against percent GC in 100-bp windows for all mutually targeted bases for each technology. Darker colors and brighter colors indicate
denser and lighter clusters of points, respectively.

hybridization capture-based methods have better sequencing uni-
formity than amplicon-based methods.

To further characterize sequencing uniformity, we plotted the
quantity of mutually targeted bases with various minimum aver-
age normalized coverage (solid curves in Fig. 3B; note that UTRs
and miRNAs were included in SureSelect’s and SeqCap’s target re-

gions, respectively, possibly lowering their overall coverage). Next,
we defined a scenario, where all technologies sequenced all bases
uniformly and to exemplify this, we plotted an “ideal curve” (dot-
ted curves in Fig. 3B). In these ideal curves, each technology se-
quences every base position at a depth equal to its average normal-
ized coverage in the commonly targeted region. The capture-based
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Figure 4. Number of sequencing fragments required for desired depth
of coverage. Average coverage in target regions as a function of number
of sequenced fragments. Note that SureSelect, SeqCap, and HaloPlex
libraries were all paired-end sequenced as 2 × 100 bp, whereas Am-
pliSeq was single-end sequenced with variable read lengths.

methods deviated less from their respective ideal curves than did
the amplicon-based methods (P < 10–323) (Supp. Table S6), and
this was true when we assessed each technology’s own target region
(Supp. Fig. S2 and Supp. Table S6). This gives further evidence that
sequencing uniformity is greater for capture-based than amplicon-
based methods.

Effect of GC Content on Capture Performance

While no method for exome capture exhibits perfect uniformity,
we sought to understand the degree to which GC bias influenced
uniformity for each technology. Previous reports have demonstrated
that regions with high or low GC content may affect probe hybridiza-
tion and PCR bias [Asan et al., 2011; Clark et al., 2011]. We plotted
normalized coverage in commonly targeted regions as a function
of GC content in regions commonly targeted by all technologies
(Fig. 3C). All capture methods were relatively evenly distributed
with respect to GC content. We observed a similar trend when we
plotted normalized coverage against GC content in regions targeted
specifically by each technology (Supp. Fig. S3).

Desired Sequencing Depth Calculator as a Function of
Reads

For investigators planning whole-exome sequencing projects, a
common consideration is the average depth of sequencing desired.
Considering how each technology has variable performance, we
constructed a simple graph that allows comparison of how many
sequencing reads or sequenced bases are necessary to obtain a spec-
ified average depth. Therefore, we randomly downsampled FASTQ
files to 1 million, 10 million, 25 million, and 50 million paired-end
fragments (or single-end for AmpliSeq fragments) and determined
the average coverage in each technology’s targeted area requiring
a minimum mapping quality of 10 for each read (Fig. 4). The
amplicon-based sequencing methods and hybridization capture-
based methods showed no significant difference in sequencing depth
as a function of fragments sampled (P = 0.70). Even though the se-
quencing depth is not statistically significant between methods, this
analysis enables investigators to anticipate the approximate quantity
of reads that should be sequenced in order to achieve the desired

depth for a given capture method. However, this graph does not con-
sider differences in sequencing uniformity across the target region
or differences in target size (Fig. 3).

Concordance of Technologies in SNV Calling

For all four samples sequenced with SureSelect, SeqCap, and
HaloPlex, we assessed single-sample SNVs using three variant
callers, VarScan2 [Koboldt et al., 2012] (Supp. Tables S7–S9), GATK
[McKenna et al., 2010] (Supp. Tables S10–S12), and MuTect [Cibul-
skis et al., 2013] (Supp. Tables S13–S15), whereas we used only the
vendor designed Torrent Variant Caller for AmpliSeq data (Supp.
Table S16) (see published comparisons of variant callers [Liu et al.,
2013; Roberts et al., 2013; Wang et al., 2013]). To reduce the possi-
bility of false-positive SNVs, we limited our analysis to SNVs with
variant frequency of at least 20%. We compared nonsynonymous
SNVs identified in regions targeted by all four technologies and
found that 70%–82% of all SNVs were called by all four technolo-
gies, depending on the variant caller (Fig. 5; we observed similar
concordance pattern when we evaluated both nonsynonymous and
synonymous SNVs in Supp. Fig. S4). Of all discordant variants re-
gardless of caller (i.e., variants missed by at least one technology),
most were either called or missed solely by one amplicon-based
technology (Supp. Table S17).

Because amplicon-based technologies missed the most SNVs, we
investigated possible reasons for SNV discordance in the amplicon-
based data when VarScan2 and MuTect were used to call variants
(we did not investigate discordance when GATK was used, because
HaloPlex did not have many outliers using this variant caller). First,
we investigated SNVs missed by HaloPlex that all other technologies
called with VarScan2. The majority of such SNVs in the HaloPlex
data (Fig. 5A) (840 of 1,320, 63.64%) fell below VarScan2’s mini-
mum coverage of eight total reads for consideration (regardless of
base quality). For the 480 SNVs that did meet minimum coverage
in HaloPlex, we found other reasons for discordance: 106 did not
have at least eight reads whose base quality at the respective posi-
tion was at least 15, as required by VarScan2; 252 showed variant
frequency less than the minimum cutoff of 20%; and 120 SNVs had
variant frequency greater than 20%, but were rejected by VarScan2
due to insufficient P value (default value = 0.01) (see Supp. Table
S18 for variant frequency of these 480 SNVs in SureSelect and Se-
qCap). Lastly, HaloPlex called a different alternate base from the
other technologies on two SNVs.

In addition to false negatives called in HaloPlex data, we assessed
potential false positives (3,614 SNVs). Of these SNVs, we inves-
tigated the 50 that were covered the highest in HaloPlex (Supp.
Table S19). We found that 17 were likely false positives caused by
DNA motifs associated with Illumina sequencing errors [Meacham
et al., 2011; Nakamura et al., 2011] (Supp. Fig. S5). For the remain-
ing 33 SNVs, we found the variant frequency in HaloPlex to be
broadly distributed between 20% and 50% and five variants with
at least 50% variant frequency. In SureSelect and SeqCap, however,
24 of these SNVs had variant frequency less than 1%, indicating
likely false positives in HaloPlex. Three had SureSelect and Seq-
Cap variant frequency between 11% and 20%, indicating possible
low-variant frequency true positives. For the rest of the variants,
frequency spanned between 1% and 11% for SureSelect and Seq-
Cap. Lastly, we Sanger sequenced four SNVs that were nominated
by all three variant callers in HaloPlex, but never in SureSelect, Seq-
Cap, or Ampliseq. Three of these SNVs were determined to be false
positives by HaloPlex, but one was indeed a true variant. The latter
was missed by SureSelect and SeqCap, because the SNV frequency
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Figure 5. Concordance of SNV calling among technologies. Utilizing three variant callers, A: Varscan2; B: GATK; and C: MuTect, Venn diagrams
compare absolute numbers of nonsynonymous SNVs (left) and percentage of the total number of nonsynonymous SNVs (right) in commonly targeted
regions. Tables in the center count the number and percentage of concordant SNVs called by strictly one, two, three, or all four technologies.

was less than our cutoff of 20% and missed by AmpliSeq due to lack
of any variant-supporting reads.

Next, we considered potential false negatives in HaloPlex when
using MuTect (Fig. 5C). We found that, unlike VarScan2, raw cov-
erage was not a major factor for discordance in this case. Instead,
3,097 of 3,598 such SNVs were rejected, because MuTect considered
these variants “clustered position” [Cibulskis et al., 2013] (Supp.
Figs. S6 and S7). If variant-supporting bases are grouped near the
start or end of a read, MuTect considers such clustering as possible
low-quality misalignments [Li et al., 2009b] and will, thus, reject
this variant. This quality filtering was problematic for HaloPlex, be-
cause fragments are reproducibly generated by restriction enzymes,
which cut only recognized sequences, as opposed to other tech-
nologies where fragments are generated randomly. This suggests
that HaloPlex sequencing may be incompatible with variant calling
using MuTect, because of this “clustered position” filter.

We next investigated potential false negatives and positives in Am-
pliSeq data (Fig. 5). AmpliSeq data have been optimized to run only
on the Ion ProtonTM System, thus requiring its own separate analysis
pipeline and variant caller (see Material and Methods). To address
reasons for AmpliSeq’s discordance, we first investigated the 1,367
SNVs missed only by AmpliSeq when compared with VarScan2
variant calls in the other technologies (Fig. 5A). Using SAMtools’s
mpileup function to approximate the AmpliSeq coverage of these
SNVs, we found that 458 (33.50% of 1,367) failed to gather enough
coverage of five reads needed for the Ion Torrent Suite parame-
ters. Next, we investigated 50 of the 1,367 SNVs with highest Am-
pliSeq coverage (Supp. Table S19). Twenty-two SNVs had variant fre-
quency less than our minimum cutoff 20%. Another 19 were missed
due to Ion sequencing errors caused by nearby homopolymers
(Supp. Fig. S8) [Bragg et al., 2013]. The rest were missed due to
strand bias (Supp. Fig. S9) and some low-quality variant-supporting
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bases, possibly causing the Ion Torrent Suite to reject the SNVs.
Lastly, one SNV was rejected because of C-insertion supporting
reads, without an adjacent C-nucleotide, which has been reported
previously [Bragg et al., 2013].

Next, we examined potential false positives in AmpliSeq’s nom-
ination of 1,607 SNVs that were unsupported by any other tech-
nology, when VarScan2 was used as the variant caller (Fig. 5A).
We looked closely at the 50 SNVs that were covered the highest
by AmpliSeq (Supp. Table S19). We found that 19 SNVs were false
positives as a result of Ion Torrent platform sequencing errors due
to homopolymer regions [Bragg et al., 2013] (Supp. Fig. S10). Four
others had AmpliSeq variant frequency slightly above our 20% cut-
off (20%–25%), but 0%–2% variant frequency in the other tech-
nologies. One variant’s frequency was 22.07% in AmpliSeq, but its
frequency was 15%–17% for the other technologies. An additional
five others may represent false positives due to their low (2%–17%)
variant frequency in SureSelect and SeqCap (HaloPlex had no cov-
erage on four of these variants), but high frequency in AmpliSeq,
possibly indicating AmpliSeq over-representing these variants. Fur-
thermore, five other variants may represent AmpliSeq false positives
given that they had 0% variant frequency from all other technolo-
gies. Lastly, 16 others may represent AmpliSeq true positives, but
had no quality coverage from the other three technologies. Finally,
we Sanger sequenced four SNVs that were nominated solely by Am-
pliSeq. Three SNVs showed the reference allele, whereas one showed
a true variant. The latter SNV was missed by the other technologies
due to poor or no coverage.

Overall, we found that the amplicon-based technologies were
most discordant largely due to coverage issues. To assess the im-
pact of sequencing depth, we randomly downsampled FASTQ files
(1 million, 10 million, 25 million, and 50 million paired-end frag-
ments) for each sample, called variants with VarScan2, GATK, and
MuTect, and compared concordance between technologies (Supp.
Fig. S11). As before, when VarScan2 was used to call SNVs, the
amplicon-based technology, HaloPlex, nominated many SNVs not
called by either SureSelect or SeqCap. Also, when VarScan2 and
MuTect were used to call SNVs, HaloPlex missed many SNVs called
by SureSelect and SeqCap. In a second approach, we identified the
set of SNVs detected by all technologies at 50 million reads and
then randomly downsampled to 25 million, 10 million, and 1 mil-
lion reads to assess the percentage of SNVs that were still called at
lower sequencing depths (Supp. Fig. S12). It is interesting to note
that HaloPlex generally detected the highest percentage of common
SNVs over these downsampling depths.

Concordance of SNV Callers with Agilent’s SureCall
Software

We used Agilent’s recommended variant calling software,
SureCall-2.1.1.13, to call SNVs on our HaloPlex libraries (Supp.
Table S20). Using these SNVs, we observed concordance with our
HaloPlex SNV calls on VarScan2, GATK, and MuTect (Supp. Fig.
S13). We noted that SureCall’s concordance with GATK, 83.64%,
was far higher than its concordance with VarScan2 and MuTect,
74.13% and 74.25%. Despite this difference, we found all three vari-
ant callers to have high concordance with SureCall.

Detection of Previously Validated SNVs

We assessed each technology’s detection of previously confirmed
variants from the public domain. Therefore, for BT-20, MCF-7,
and HCC-2218 cancer cell lines, we took all SNVs in the Cancer
Cell Line Encyclopedia (CCLE) [Barretina et al., 2012] that fell in

commonly targeted regions (39 SNVs for BT-20, 14 for MCF-7,
and 38 for HCC-2218) and calculated the percentage of such SNVs
that were called by each technology by each variant caller (Supp.
Table S21) (HCC-2218BL is not in the CCLE). While hybridization
capture-based technologies captured more variants in the CCLE
than did amplicon-based methods on average (ranged between,
depending on variant caller, 78.02%–83.52% and 73.63%–82.42%
for hybridization capture-based and amplicon-based technologies,
respectively), due to low sample size, a two-tailed Mann–Whitney
U-test failed to reveal a significant difference (P = 0.27). Note that
SureCall detected the same percentage as VarScan2 in HaloPlex of
SNVs in the CCLE. Also, GATK, on average, picked up more CCLE
variants than did VarScan2 or MuTect. Considering that the SNVs in
the CCLE have been previously confirmed, we investigated reasons
different technologies/variant callers missed these mutations (Supp.
Table S22). In almost all cases, we found that the variant frequency
of the missed SNVs was less than our minimum 20% cutoff.

Concordance of Technologies in Indel Calling

Having evaluated each technology’s ability to call SNVs, we
next investigated each technology’s ability to call indels. We used
VarScan2, GATK, and Pindel [Ye et al., 2009] to call indels in SureS-
elect, SeqCap, HaloPlex libraries, whereas the Ion Torrent Suite was
used to call indels in AmpliSeq libraries. We filtered for exonic and
frameshift or nonframeshift indels in commonly targeted regions
and then compared concordance between technologies (Supp. Fig.
S14 and Supp. Table S23). As with SNVs, both amplicon-based tech-
nologies showed the most discordance: they each nominated more
indels that were unsupported by at least one other technology and
missed more indels that were called by the other three technologies.

Furthermore, we evaluated discordant indels in AmpliSeq data,
because homopolymers are known to be problematic on Ion Tor-
rent platform for indel calls [Bragg et al., 2013]. For example, Am-
pliSeq called 596 unique indels not called by any other technology
and the majority (529, 88.76%) were 1 bp (Supp. Fig. S14A with
Varscan2). Manual inspection of some of these indels showed that
they were not necessarily in homopolymer regions. Similarly, with
GATK and Pindel, 546 of 576 (94.79%) and 562 of 595 (94.45%) of
unique indels, respectively, called by AmpliSeq were 1 bp. In con-
trast, AmpliSeq missed 398 indels called by all other technologies,
with VarScan2, and 206 (51.76%) were 1 bp, and manual inspection
of some showed that most of them were in homopolymer regions.
Similarly, with GATK and Pindel, 377 of 565 (66.73%) and 211 of
320 (65.94%) of unique indels, respectively, missed by AmpliSeq
were 1 bp.

Evaluation of Copy Number Variation Calling Against SNP
Array

Next, we assessed detection of copy number variation utilizing
read depth. We determined CNVs in the HCC-2218 cancer cell line
with respect to its matched normal cell line, HCC-2218BL, and
compared this with SNP array reference data for the same sam-
ple [Redon et al., 2006] (Fig. 6; Supp. Table S24). We contrasted
the log2–CNV ratios of each technology against the SNP array for
bases in each technology’s targeted region (Supp. Fig. S15). We
examined specifically high-level copy gains and losses [Frampton
et al., 2013; Pritchard et al., 2014] and therefore removed bases
whose sequencing log2–CNV ratio was between –0.5 and 0.5, be-
cause we considered such bases copy neutral or beyond the accuracy
for exome sequencing. Correlation of log2–CNV ratios between
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Figure 6. Global copy-number variation. Global copy number (log2 ra-
tio) for the HCC-2218 cell line against its matched normal; HCC-2218BL for
all technologies and a conventional SNP array. For each technology, we
plotted points with matching sequencing and SNP array copy-number
ratios, whereas for the SNP array, we plotted all log2 copy-number
ratios. Each color represents a different chromosome.

whole-exome sequencing and SNP array was between 0.80 and 0.84
for all technologies (regression analysis test P < 10–300 for all tech-
nologies).

Discussion
NGS technologies have enabled whole-genome sequencing to

identify potential phenotype-altering mutations. However, despite
the decreased cost of sequencing, whole-genome sequencing re-
mains costly [Metzker, 2010; Sulonen et al., 2011]. Further, for
cancer research applications, higher depth of coverage is typically
desired due to tumor samples having admixtures with normal tis-
sue and tumor heterogeneity. Therefore, whole-exome sequencing,
which still captures most possible phenotype-altering mutations
within exons, may be more cost-effective to achieve the necessary
depth to call such variants [Gnirke et al., 2009]. For investigators
seeking to utilize whole-exome sequencing for research or clinical
applications, there are two major choices to consider, the method
for whole-exome capture and the sequencing platform. First, whole-
exome capture methods can be divided into hybridization-based and
newer amplicon-based capture methods that differ in their ability
to uniformly capture and sequence targeted regions and identify
mutations. Second, there are two predominant choices for sequenc-
ing platforms, Illumina and Ion Torrent technologies [Loman et al.,
2012]. A unique limitation for Ion Torrent is the incidence of errors
in sequencing homopolymer regions [Bragg et al., 2013], which re-
quires the use of their free proprietary software for alignment and
mutation calling that recalibrates for these errors. Meanwhile, Il-

lumina technology has well-known base substitution errors as well
[Meacham et al., 2011; Nakamura et al., 2011]. Several previous
reports have compared the earliest versions of SureSelect, SeqCap,
Illumina’s TruSeq, and Illumina’s Nextera kits [Asan et al., 2011;
Clark et al., 2011; Parla et al., 2011; Sulonen et al., 2011; Chila-
makuri et al., 2014]. However, prior comparison studies have not
assessed the new amplicon-based strategies, compared with Ion Tor-
rent sequencing platforms, or performed in-depth analysis of SNVs
and CNVs. Because of the experimental and sequencing platform
differences, we assessed benefits and drawbacks of amplicon-based
(HaloPlex and AmpliSeq) and hybridization capture-based (SureS-
elect and SeqCap) methods and sequenced them on either the Ion
ProtonTM System (AmpliSeq) or the Illumina HiSeq2000 (SureSe-
lect, SeqCap, HaloPlex) (Table 2).

We found that the hybridization capture-based methods per-
formed better with respect to sequencing complexity and unifor-
mity (Fig. 3). Hybridization capture-based methods were less likely
than amplicon-based methods to nominate false-positive SNVs that
were unsupported by at least one other technology (Fig. 5). Also,
the hybridization capture-based methods were less likely to exclude
an SNV (false negative) that was nominated by all three other tech-
nologies (Fig. 5). While both amplicon-based methods were vul-
nerable to false-positive and false-negative SNVs, algorithms could
be modified to filter or correct these known problems by adjusting
parameters, such as minimum variant frequency or minimum read
coverage, considering that insufficient read coverage and variant fre-
quency were the most common reasons for false negatives. Sanger
sequencing of eight SNVs called solely by HaloPlex or AmpliSeq
confirmed 75% of these SNVs to be false positives. The other two
variants were true positives, in each case missed due to lack of qual-
ity coverage or low-variant fraction. Furthermore, we observed that
some variant calling algorithms might not be ideal for all types of
whole-exome capture, and may need optimization. As an example,
motifs causing Illumina sequencing errors [Meacham et al., 2011;
Nakamura et al., 2011] contributed to false-positive SNVs in Halo-
Plex (it should be noted that Illumina sequencing errors affected
HaloPlex more when VarScan2, rather than GATK, was used to call
variants and that these sequencing errors also affect SureSelect and
SeqCap, but not to the extent they do HaloPlex). Also, homopoly-
mers causing Ion sequencing errors [Bragg et al., 2013] contributed
to false-positive and false-negative SNVs in AmpliSeq.

Next, we considered pragmatic considerations related to sample
preparation and cost for laboratories applying whole-exome cap-
ture and sequencing. Laboratories with limited experience in NGS
sample preparation or access to specialized sonication equipment,
might prefer amplicon-based approaches for their simplified work-
flow. Additionally, if time is sensitive, the amplicon-based meth-
ods may be desirable, given their shortened preparation time com-
pared with other methods [Simon and Roychowdhury, 2013]. Some
projects may be utilizing clinical specimens with small quantities of
DNA for input, and amplicon-based methods permit processing
of low-input DNA samples (Table 2). Finally, cost of sequencing is
generally comparable, but may also be affected by desired depth of
coverage and target region size and on-target rate (Table 1; Fig. 4).
Nonetheless, while amplicon-based methods have some advantages
for sample preparation, there may be some drawbacks with respect
to sequencing complexity and coverage uniformity (Table 2).

In summary, we evaluated hybridization and amplicon-based ex-
ome capture methods, considering uniformity of sequencing, vari-
ant calling, and sample preparation. We have shown the various
advantages and disadvantages of each approach due to differences
in sample preparation and probe design. In light of our results, our
laboratory prefers capture-based approaches, mostly due to their
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Table 2. Performance Comparison of Four Whole-Exome Capture Methods

SureSelect (Agilent) SeqCap (Nimblegen) HaloPlex (Agilent)
AmpliSeq

(Life Technologies)

Sample preparation time 2.5 days 4.5 days 1.5 days 6 hr
Recommended DNA input (μg) 2 1 0.2 0.05
Alignment (manufacturer specified) 30%–70%a 70%–80%a 30%–70%a >90%b

Alignment (this study) 84.97%a 79.71%a 97.09%a 93.68%a

Library complexity 60.10% 67.21% 3.24% 20.92%
Base calls on positive strand 49.90% 50.11% 50.05% 45.52%
Uniformity High High Low Low
SNV � � � �
CNV � � � �

aAlignment denotes the percentage of mapped reads that aligned or should align to targeted regions.
bAlignment denotes the percentage of bases that cover the target region.

sample complexity and coverage uniformity. These data may be use-
ful to other laboratories for selecting their preferred whole-exome
strategy and for benchmarking novel approaches.
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