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CircRNA E3 ubiquitin protein ligase (ITCH) (circRNA ITCH, circ-ITCH), a stable closed-loop
RNA derived from the 20q11.22 region of chromosome 20, is a new circRNA discovered in
the cytoplasm in recent decades. Studies have shown that it does not encode proteins, but
regulates proteins expression at different levels. It is down-regulated in tumor diseases and
is involved in a number of biological activities, including inhibiting cell proliferation,
migration, invasion, and promoting apoptosis. It can also alter disease progression in
non-tumor disease by affecting the cell cycle, inflammatory response, and critical proteins.
Circ-ITCH also holds a lot of promise in terms of tumor and non-tumor clinical diagnosis,
prognosis, and targeted therapy. As a result, in order to aid clinical research in the hunt for a
new strategy for diagnosing and treating human diseases, this study describes the
mechanism of circ-ITCH as well as its clinical implications.
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1 INTRODUCTION

In brief, diseases were categorized into two groups: tumors and non-tumor disorders. Malignant
tumors, for example, are a type of incurable polygenic disease that has claimed the lives of millions of
individuals worldwide. According to GLOBOCAN 2020, there were 19.3 million new malignant
tumor cases and 9.9 million deaths globally in 2020 (Sung et al., 2021). Although surgical resection
and advanced therapeutic interventions have improved the 5-year survival rate in patients with early-
stage GC, the prognosis for late-stage GC patients remains poor due to uncontrolled tumor cell
growth and migration (Lasithiotakis et al., 2014). Non-tumor disorders, such as degenerative,
metabolic, congenital, and inflammatory pathologies, make up the great bulk of all pathologies, aside
from tumors. As a result, finding effective diagnostic biomarkers and treatment targets is crucial for
disease fundamental research.

Benefiting from high-throughput sequencing, researchers can take a nuanced and complete
picture of the transcriptome and genome of a species. RNA sequencing (RNA-seq) technology has
become one of the important means of transcriptomic studies of high-throughput sequencing, which
can discover all RNAs that a particular cell can transcribe in a certain functional state, mainly
including mRNAs and non-coding RNAs, while avoiding detection using standard molecular
techniques. CircRNAs, which were previously thought to be misspliced products, have lately
been shown to have a range of biological regulatory activities owing to the development of
RNA-seq (Memczak et al., 2013). Most circular RNAs (circRNAs) are mainly composed of one
or more exons encoding known proteins. The 3’ and 5’ terminals of circRNAs are covalently bonded
to form a closed-loop structure, unlike typical linear RNAs. It has no free terminal and is unaffected
by RNA exonuclease, resulting in a more stable and difficult-to-degrade copy. CircRNAs is primarily
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involved in the following four processes: 1) sponging microRNAs
(miRNAs) or long noncoding RNAs (lncRNAs) as a competing
endogenous RNA (ceRNA); 2) binding RNA binding proteins
(RBPs); 3) interfering with gene transcription and splicing
regulation; and 4) translating protein/polypeptide (Kristensen
et al., 2019). Maass et al. (2017) identified 71 differentially
expressed circRNAs in 20 human clinical samples including
tissues, blood, proving that circRNAs can express stably
in vitro and are associated with multiple diseases, which has
good potential for biomarker development.

As a member of the E3 ubiquitin protein ligase (ITCH) HECT
family, ITCH can ubiquitinate phosphorylated disheveled-2
(Dvl2), promoting its degradation (Bernassola et al., 2008).
Phosphorylated Dvl2 is the upstream target of activating β-
catenin in the canonical Wnt pathway, therefore ITCH can
block the canonical Wnt pathway, regulating cell cycle (Li
et al., 2015). In addition, ITCH can regulate immune
responses, epidermal keratinocyte differentiation and receptor
trafficking/signaling (Melino et al., 2008). Previous studies have
shown that in ITCH−/− mice, some signal proteins (such as Jun
family members and Notch) are abnormally accumulated,
seriously affecting the autoimmune phenotype (Parravicini
et al., 2008). Jun and Notch are also transcription factors that
control the maintenance of epidermal stem cells and the
regulation of keratinocytes. The degradation of these proteins
mediated by ITCH may play a regulatory role in skin biology
(Candi et al., 2005), indicating that it has certain potential in
radiotherapy protection. Moreover, Sundvall et al. (2008)
emphasized the role of pruritus in regulating the endocytosis
and protein stability of erbb-4, a receptor belonging to the
epidermal growth factor receptor (EGFR)/ErbB family.
Therefore, ITCH involves a variety of physiological and
pathological regulation through different mechanisms,

including regulating Wnt, Jun, Notch, MAPK signaling,
immune cells differentiation and EGFR family. CircRNA E3
ubiquitin protein ligase (circRNA ITCH, hereinafter referred
to as circ-ITCH), a stable closed-loop RNA with no protein
coding ability and derived from the 20q11.22 region of
chromosome 20, is a new circRNA discovered in recent
decades (Bernassola et al., 2008; Memczak et al., 2013). The
initial study reported that circ-ITCH came from exon 6–13 of E3
ubiquitin protein ligase (ITCH) encoding gene (Li et al., 2015),
but then it became exon 7–14 in related studies without any
explanation (Han et al., 2020), which is a point that needs to be
clarified in subsequent experiments. Combining the database
(Circular RNA Interactome and circBase) and related
literature search, we considered it derived from exons 6–13
(Figure 1), while 7–14 was a writing error in correlative
papers. Recently, studies have revealed that circ-ITCH is
down-regulated in multiple tumor tissues, and regulates cell
proliferation, migration, invasion and apoptosis of malignant
tumor, indicating it might be an important tumor suppressor
(Li Y. et al., 2020; Ghafouri-Fard et al., 2021; Su et al., 2022).
Additionally, the down-regulation can also be seen in the
peripheral blood and exosomes of patients. Its low expression
has some diagnostic relevance and is linked to negative clinical
outcomes (such as tumor sizes, lymph node metastasis and
distant metastasis). Furthermore, circ-ITCH plays an essential
function in non-tumor illnesses. Understanding its function and
mechanism could help clinical researchers discover novel
strategies to diagnose and treat a variety of diseases earlier.

2 REGULATION MECHANISM AND ROLE
OF CIRC-ITCH IN TUMOR DISEASES

MiRNA, as a part of the ceRNA network, causes polyadenylation
by binding with target sites in the 3’-UTR of mRNA, lowering
mRNA stability and interfering with translation to adversely
control gene expression (Nawaz et al., 2016). CircRNAs may
have biological impacts on tumors by sponging target miRNAs
and limiting their function, according to previous studies (Li Y.
et al., 2020; Ghafouri-Fard et al., 2021; Su et al., 2022). There is no
exception for circ-ITCH. MiRNAs sponge locations of circ-ITCH
downstream in malignant tumors now being researched,
including miR-7, miR-10, miR-17, miR-20, miR-22, miR-93,
miR-106, miR-145, miR-199, miR-214, miR-216, miR-224,
miR-421, miR-524, and miR-615 (Huang et al., 2015; Li et al.,
2015; Luo et al., 2018b; Hu et al., 2018; Wang et al., 2018; Yang
et al., 2018; Lin et al., 2020; Liu et al., 2020;Wang et al., 2021). The
specific regulation mechanism of circ-ITCH in a range of
malignant tumors is also variable due to sponging distinct
miRNAs (Table 1).

2.1 Regulating Canonical Wnt Signaling
Pathway
The Wnt/β-catenin signaling pathway is highly conserved and
important for cell motility, invasion, polarity formation,
organogenesis, and cell stemness maintenance (Wei et al.,

FIGURE 1 | Biogenesis diagram of circ-ITCH. The ID number of circ-
ITCH is hsa_circ_0001141, whose gene is located in chr 20q11.22, derived
from exon 6–13 of ITCH coding gene, formed by back-splicing, and its mature
sequence is 873bp.
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2012). The Wnt/β-catenin signaling pathway has two pathways:
the canonical pathway and the non-canonical pathway, with the
conventional pathway being the more common (Wei et al., 2012;
Muralidhar et al., 2019). Canonical signal pathways consist of the
Wnt protein, Wnt receptor [frizzled family protein (FZD) and
low density lipoprotein receptor associated protein-5/6 (LRP-5/
6)], Dvl2, β-catenin protein and et al. (Muralidhar et al., 2019)
Wnt protein interacts with the FZD receptor on the cell
membrane surface in an autocrine or paracrine manner, then
recruits LRP-5/6 to create a complex that activates intracellular
Dvl2 protein via a phosphorylation cascade. Through its PDZ
domain (one of Dvl2’s domains), phosphorylated Dvl2 favorably
regulates β-catenin protein, facilitating its entry into the nucleus
as a transcriptional regulator and activating the expression of
downstream target genes including cyclinD1 and c-Myc
(Muralidhar et al., 2019).

Through targeting certain miRNAs, Circ-ITCH inhibits the
function of matching miRNAs, particularly miRNAs that inhibit
linear ITCH. Specifically, researchers showed that reporter gene
assays in the presence of circ-ITCH demonstrated that the
inhibitory effects of different miRNAs (including miR-7, miR-
17, miR-20a, miR-22-3p, and miR-214) were dampened by the
co-expression of circ-ITCH, consistent with the “sponge”
hypothesis (Huang et al., 2015; Li et al., 2015; Wang et al.,
2018). Among these miRNAs, the miR-7 and miR-214 are
most important because they can share the binding sites with
the 3′-UTR of circ-ITCH and its parental gene ITCH (Verduci
et al., 2021). It is worth mentioning that, as one of the most
conservative and oldest miRNAs, miR-7 plays different roles in
different cancers and participates in many signal pathways
involving differentiation, proliferation regulation, apoptosis
and migration. In most tumors, its expression is down-
regulated because its main activity is to inhibit tumor by

inhibiting cell proliferation and survival. However, in lung
cancer and oral cancer, its expression is up-regulated as a
carcinogen, which is consistent with the research on circ-
ITCH (Kora´c et al., 2021). Since circ-ITCH and ITCH share
the 3’-UTR of miR-7, they will produce competitive inhibition.
When circ-ITCH is up-regulated, the remaining ITCH content in
vivowill be up-regulated (Verduci et al., 2021). ITCH can identify
and ubiquitinate a range of proteins, the most important of which
is phosphorylated Dvl2 (Wei et al., 2012). It is well known that
Dvl family proteins are mostly made up of Dvl1-3, with Dvl2
serving as a key scaffold in the canonical Wnt pathway,
connecting upstream Wnt protein with downstream β-catenin
protein (Wei et al., 2012). As a result, below is the whole regulator
mechanism: via sponging miR-7, miR-17, miR-20a, miR-22-3p,
and miR-214, circ-ITCH increases ITCH levels. While
phosphorylated Dvl2 labeled by ITCH ubiquitin promoted its
degradation and inhibited the canonical Wnt pathway. A
summary of recent studies has found that in esophageal
squamous cell carcinoma (ESCC), colorectal cancer (CRC),
lung cancer (LC), three negative breast cancer (TNBC),
prostate cancer (PCa), hepatocellular carcinoma (HCC) and
gastric cancer (GC), circ-ITCH could up-regulate the
expression of linear ITCH via sponging miR-7, miR-17 and
miR-20a, thereby inhibiting the canonical Wnt pathway and
further suppressing the activation of c-Myc and cyclinD1
(Wan et al., 2016; Wang S. et al., 2019; Li S. et al., 2020; Peng
and Wang, 2020; Yang et al., 2020). As widely reported, c-Myc is
an oncogene. Its aberrant activation frequently results in
unrestricted cell proliferation and immortalization, promoting
cell malignancy and tumorigenesis (Glöckner et al., 2002).
CyclinD1 (also known as G1/S-specific cyclin D1), on the
other hand, regulates the cell cycle and promotes cell
proliferation, and is up-regulated in a number of malignancies

TABLE 1 | Anti-tumor mechanism of circ-ITCH in a variety of malignant tumors.

Tumor
types

ceRNA Effect Ref

OC miR-106a, miR-145 and lncRNA HULC proliferation↓; migration↓; invasion↓; apoptosis↑;
glycolysis↓

Lin et al., 2020; Hu et al., 2018; Yan et al., 2020

ESCC miR-7, miR-17 and miR-214 proliferation↓ Li et al. (2015)
CRC miR-7, miR-20a and miR-214 proliferation↓ Huang et al. (2015)
BCa miR-17, miR-224 apoptosis↑; proliferation↓; invasion↓; migration↓ Yang et al. (2018)
PTC miR-22-3p apoptosis↑; proliferation↓; invasion↓ Wang et al. (2018)
EOC miR-10a-α apoptosis↑; proliferation↓ Luo et al. (2018b)
GC miR-199a-5p, miR-17 proliferation↓; migration↓; invasion↓; EMT↓ Peng et al., 2020; Wang et al., 2021
MM miR-615-3p apoptosis↑; proliferation↓; BTZ chemosensitivity↑ Liu et al. (2020)
TNBC miR-17, miR-214 proliferation↓; migration↓; invasion↓ Wang et al. (2019a)
HCC miR-7, miR-214, miR-421 and miR-224-

5p, miR-184
apoptosis↑; proliferation↓; migration↓; invasion↓ Yang et al., 2020; Wu et al., 2020; Zhao et al., 2021; Guo

et al., 2022
LC miR-7, miR-214 proliferation↓ Wan et al. (2016)
Glioma miR-106a-5p proliferation↓; migration↓; invasion↓; apoptosis↑ Chen et al. (2021)
PCa miR-17-5p, miR-197 proliferation↓; migration↓; invasion↓; apoptosis↑ Wang et al., 2019b; Yuan et al., 2019
Melanoma miR-660 proliferation↓; migration↓ Zhang et al. (2022)
OS miR-22, miR-524 proliferation↓; migration↓; invasion↓; apoptosis↑ Ren et al., 2019; Li et al. (2020a)
ccRCC miR-106b-5p proliferation↓; migration↓; invasion↓ Gao et al. (2021)
OSCC miR-421 apoptosis↑; proliferation↓ Hao et al. (2020)
CC miR-93-5p proliferation↓; migration↓; invasion↓ Li et al. (2020b)
NPC miR-214 proliferation↓; migration↓; invasion↓ Wang et al. (2022)
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(Glöckner et al., 2002). In addition, Wang et al. (2018) also
confirmed that circ-ITCH can sponge miR-22-3p and increase
the expression of CBL in papillary thyroid cancer (PTC),
inhibiting cell proliferation and invasion, increasing apoptosis,
and repressing PTC progression. CBL is also a member of the E3
ubiquitin ligase family, which can ubiquitinate as well as label β-
catenin to promote its destruction and so block the Wnt pathway
(Shashar et al., 2016). In most tumors, the glucose transporter 1
(GLUT1) gene is overexpressed. By mediating glucose via the
plasma membrane and increasing glucose absorption, it plays a
vital function in the early stages of intracellular glucose
metabolism and promotes tumor growth (Koch et al., 2015).
ITCH can down-regulate the expression of GLUT1 in melanoma,
reducing glucose uptake and tumor cell growth, according to Lin
et al. (2021), but whether this regulation also involves the Wnt
pathway needs to be confirmed in further experiments.

2.2 Regulating PI3K/Akt Signaling Pathways
and MEK/Erk Cascade
In the progression of many malignancies, activation of the PI3K/
Akt pathway and MEK/Erk cascade have been confirmed.
Following activation, PI3K activates the Akt protein, which
subsequently enters the nucleus and regulates cell
proliferation, invasion, migration, metabolic reprogramming,
autophagy, and aging, potentially causing malignant tumors
(Hermida et al., 2017). The MEK/Erk cascade interacts closely
with the PI3K/Akt cascade and is involved in tumor development.
After activating signaling pathways, many phosphorylated Erk
substrates have been shown to contribute to cell proliferation and
invasion (Burotto et al., 2014). Phosphatase and tensin homolog
deleted on chromosome ten (PTEN) is a miR-7, miR-22, and
miR-224 target that inhibits the PI3K/Akt cascade (Sadri Nahand
et al., 2021). P21 is the downstream target of the PI3K/Akt
cascade. To promote cell proliferation, activated Akt can
phosphorylate p21, blocking its cell cycle arrest function
(Cheng et al., 2019). Circ-ITCH sponges these miRNAs to up-
regulate PTEN expression in bladder cancer (BCa) and OS,
blocking the PI3K/Akt cascade, and up-regulating p21 protein
to prevent tumor cell proliferation, migration, invasion and
promote apoptosis (Yang et al., 2018; Ren et al., 2019). A
recent vitro experimental investigation found that circ-ITCH
might further up-regulate PTEN in nasopharyngeal cancer
(NPC) via sponging miR-214 (Wang et al., 2022), indicating
that it can prevent NPC progression by blocking the PI3K/Akt
pathway. Ras p21 protein activator 1 (RASA1) is a regulator of
Ras-GDP and GTP, which promotes apoptosis and inhibits
angiogenesis, cell proliferation by inhibiting Ras/Raf/MEK/Erk
signals cascade (Zhang et al., 2020). RASA1 has been shown to be
low expressed in a number of tumors, and miR-14 has been
identified to mute it (Zhang et al., 2020). Additionally, Hu et al.
(2018) found that in ovarian cancer (OC), circ-ITCH up-
regulated RASA1 by sponging miR-145, blocking the PI3K/
Akt pathway and MEK/Erk cascade, therefore decreasing
tumor cell malignancy. Yan et al. (2020) found a negative
connection between circ-ITCH expression and lncRNA HULC
expression in OC. Previous research has demonstrated that

through down-regulating the miR-125a-3p level, lncRNA
HULC can activate the PI3K/Akt/mTOR pathway, promoting
the proliferation, migration, and invasion of OC cells (Chu et al.,
2019). Therefore, circ-ITCHmight compete with lncRNA HULC
for miR-125a-3p binding, blocking the PI3K/Akt/mTOR
pathway and so acting as an anti-tumor agent. However, the
hypothesis needs to be confirmed by further experiments.
Published reports by two independent groups of researchers in
2019 and 2021 suggested that circ-ITCH expression decreased in
patients’ OS sample tissue, and that circ-ITCH hindered the
proliferation, migration, and invasion of OS cells via sponging
miR-22 and miR-524 (Ren et al., 2019; Zhou W. et al., 2021). But
interestingly, in 2020, Li et al. (Li H. et al., 2020) discovered that
the expression of circ-ITCHwas up-regulated in U2OS and SJSA-
1 cell lines, and enhanced the expression of epidermal growth
factor receptor (EGFR) by reducing the level of tumor suppressor
miR-7 in OS. Then, when EGFR is overexpressed, it activates the
PI3K/Akt and MEK/Erk pathways, promoting OS development.
This finding contradicts the findings of two previous
investigations. However, there is a flaw in the experiment: it
did not verify the degree of circ-ITCH expression in the OS tissue
sample. It’s possible that this is due to the heterogeneity of OS cell
lines or the complexity of studying the regulatory network.
Consequently, in the research of circ-ITCH in OS, more
parameters should be explored.

2.3 Regulating Cell Cycle-Related Proteins
Programed cell death receptor 4 (PDCD4) is described as a tumor
suppressor, which is often down-regulated in tumors, promoting
tumor cell apoptosis and inhibiting its proliferation, invasion and
metastasis (Yang et al., 2021). MiR-106b-5p and miR-421 are
common upstream targeting miRNAs of PDCD4 and can inhibit
its expression (Wang Y. et al., 2019; Yang et al., 2021). Circ-ITCH
specifically targets miR-106b-5p and miR-421 in clear cell renal
cell carcinoma (ccRCC) and oral squamous cell carcinoma
(OSCC) to up-regulate PDCD4 expression and prevent tumor
progression, respectively (Hao et al., 2020; Gao et al., 2021). RAS
association domain family member 6 (RASSF6) inhibits cell
growth and promotes apoptosis in a variety of tumors by
interrupting the cell cycle (van der Weyden and Adams,
2007). In OS, circ-ITCH sponges miR-524 to up-regulate
RASSF6, inducing OS cell death and limiting its proliferation,
according to Zhou et al. (Zhou W. et al., 2021). SAM and SH3
domain containing protein 1 (SASH1) is a tumor-suppressive
protein that can regulate cell apoptosis and proliferation (Burgess
et al., 2020). Circ-ITCH can suppress glioma growth and invasion
by up-regulating SASH1 by targeting miR-106a-5p (Chen et al.,
2021). Cytoplasmic polyadenylation element binding protein 3
(CPEB3), a RNA binding protein, plays a tumor-suppressive role
though regulating the expression of malignant transformation-
related genes through post-transcriptional control (Pichon et al.,
2012). In HCC, circ-ITCH binds to miR-421 to prevent
CPEB3 down-regulation and tumor growth (Zhao et al., 2021).
MafF belonging to the Maf family, a basic leucine zipper (bZIP)
transcription factor, has been found to have anti-tumor
properties in HCC (Tsuchiya and Oura, 2018). By modulating
the miR-224-5p/MAFF axis, Circ-ITCH can also decrease cell
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growth and increase apoptosis (Wu et al., 2020). Li et al. (2020b)
found that circ-ITCH sponges miR-93-5p to up-regulate
forkhead box K2 (FoxK2) and block tumor growth in cervical
cancer (CC). Simultaneously, FoxK2 expression was dramatically
reduced in CC tissues, and miR-93-5p mimic transfection further
decreased FoxK2 expression in CC cell lines. FoxK2 deletion
improved the capacity of cells transfected with miR-93-5p mimic
to invade. Homeobox B13 (HOXB13), according to earlier
research, inhibits the cell cycle by promoting the
ubiquitination and degradation of cyclinD1 in a variety of
malignancies (Hamid et al., 2014). Circ-ITCH restrains PCa
cell proliferation, invasion, and migration via sponging miR-
17-5p and boosting HOXB13 up-regulation, as well as promoting
apoptosis (Wang X. et al., 2019). Furthermore, via targeting miR-
197, circ-ITCH can attenuate PCa cell proliferation and increase
apoptosis, however the underlying mechanism is uncertain (Yuan
et al., 2019). In melanoma, circ-ITCH suppresses cell
proliferation and metastasis through sponging miR-660, a
previously reported tumor-promoting miRNA, further up-
regulating transcription factor cellular promoter 2 (TFCP2)
(Zhang et al., 2022). TFCP2, as a cell cycle regulating
molecule, mainly plays a tumor suppressor role in melanoma.
Its role is mainly to positively regulate the DAPK transcription by
binding to the promoter of the death associated protein kinase
(DAPK) gene, a tumor suppressor that is silenced in many
cancers (Kotarba et al., 2018). Besides, TFCP2 can positively
regulate the transcription of p21CIP1, a well-known cell cycle
inhibitor protein (Goto et al., 2016; Kotarba et al., 2018). In
addition, previous studies have shown that Klotho can inhibit the
IGF-1/insulin pathway and regulate the expression of Bax/Bcl-2,
thereby inhibiting cell proliferation and promoting apoptosis in
A549 cells (Chen et al., 2010). While recently Wang et al. (Wang
et al., 2021) found that circ-ITCH boosted Klotho expression
though acting as a miR-199a-5p sponge, thus, suggesting that the
function of circ-ITCH in GC may involve cell cycle-related
regulatory proteins. In short, recent studies have discovered
that circ-ITCH regulates the expression level of a number of
cell cycle-related proteins, as a ceRNA, to induce tumor cell
apoptosis and limit tumor cell growth, thereby acting as an anti-
tumor agent.

2.4 Regulating Epithelial Mesenchymal
Transition Process
Epithelial mesenchymal transition (EMT) is a process that occurs
in almost all forms of tumors and is linked to tumor incidence,
invasion, metastasis, recurrence, and medication resistance
(Iwatsuki et al., 2010). E-cadherin and vimentin are two
crucial proteins that are frequently used as EMT indicators
(Iwatsuki et al., 2010). E-cadherin, which is encoded by
CDH1, is involved in EMT and is linked to tumor invasion
and diffusion (Ye et al., 2012). Vimentin, in particular, promotes
EMT, whereas E-cadherin opposes it. Lin et al. (2020) discovered
that circ-ITCH inhibits EMT in OC by increasing CDH1
expression via sponging miR-106a. Guo et al. (2022) revealed
that the tumor suppressor role of circ-ITCH in HCC is associated
with regulating EMT progression through KEGG enrichment

analysis, and its regulation function is associated with sponging
miR-184. It is well known that Klotho-mediated regulation of
cellular EMT is a way to regulate tumor progression (Chen et al.,
2019). Therefore, by modulating the miR-199a-5p/Klotho axis,
circ-ITCH can block EMT and delay tumor growth in GC (Wang
et al., 2021). In addition, earlier research has demonstrated that
the Wnt pathway is important for regulating EMT (Kumari et al.,
2021). As a result, circ-ITCH’s modulation of the Wnt pathway
might have an impact on the downstream EMT process, but more
research is needed to confirm this.

In summary, circ-ITCH modulates downstream targets
including the Wnt pathway, the PI3K/Akt cascade, the MEK/
Erk cascade, cell cycle-related proteins, and EMT process via
sponging different miRNAs, performing an anti-tumor effect in a
range of malignant tumors (Figure 2).

3 REGULATION MECHANISM AND ROLE
OF CIRC-ITCH IN NON-TUMOR DISEASES

3.1 Bone Diseases
Osteoporosis is a systemic bone disease that causes decreased
bone density and quality, disturbed bone microarchitecture, and
increased bone fragility, all of which increase the risk of fracture
(Compston et al., 2019). Zhong et al. (2021) demonstrated that
compared to normal tissues circ-ITCH expression was down-
regulated in osteoporosis samples, implying that it may play a
protective role in bone degenerative diseases. Specifically, circ-
ITCH up-regulated the expression of YAP1 by sponging miR-
214. YAP1 is a prominent downstream effector of the Hippo
pathway, and its up-regulation can stimulate the differentiation of
mesenchymal stem cells into osteoblasts, according to previous
research (Lorthongpanich et al., 2019). Moreover, YAP1
stimulates osteogenesis though interacting with β-catenin in
osteoblasts (Pan et al., 2018). Taken together, the study found
that circ-ITCH might enhance osteogenic differentiation in
osteoporosis and ameliorate osteoporosis symptoms in mice
(Zhong et al., 2021). Similarly, circ-ITCH expression is up-
regulated during periodontal ligament stem cell (PDLSC)
osteogenic differentiation and may trigger osteogenic
differentiation though regulating MAPK pathway (Gu et al.,
2017).

Intervertebral disc degeneration (IDD) is a type of
degeneration that can cause a variety of minor or self-limiting
symptoms. Spinal discomfort is currently thought to be mostly
caused by IDD. Degradation of the extracellular matrix (ECM)
and apoptosis of the nucleus pulposus (NP) cells are other key
markers of IDD development (Wang et al., 2020). Recently,
Zhang et al. (2021) discovered that circ-ITCH might sponge
miR-17-5p/SOX4 signaling to positively regulate the activation of
Wnt/β-catenin pathway in IDD, causing ECM degradation and
NP cell apoptosis. However, this finding contradicts prior
findings, particularly in tumor research, in that it activates
Wnt/β-catenin pathway. After Wnt/β-catenin activation,
Zhang et al. were unable to further illustrate the regulatory
mechanism. Combined with earlier research (Zimmerman
et al., 2013), we speculate that activating Wnt/β-catenin
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promotes apoptosis by up-regulating the expression level of pro-
apoptotic proteins BIM and Bax while down-regulating the
expression level of anti-apoptotic proteins Mcl-1 and Bcl-xl.

3.2 Cardiac Diseases
CircRNAs have been linked to the development of a number of
cardiac diseases, including atherosclerosis, myocardial damage,
heart failure, and drug-induced cardiotoxicity, according to
research (Min et al., 2021). The current emphasis of circ-
ITCH research in cardiac diseases is ischaemia-reperfusion (I/
R) injury and doxorubicin-induced cardiotoxicity (DOXIC). In
I/R damage, a substantial amount of H2O2 can be created,
aggravating oxidative stress injury (Wu et al., 2018). H2O2
caused apoptosis in H9c2 rat cardiac cells and reduced
viability, ATP levels, and circ-ITCH expression in a recent
study (Zhang and Wang, 2020). Furthermore, H2O2 treatment
boosted the expression of Wnt3a, Wnt5a, and β-catenin (Zhang
and Wang, 2020). Conversely, in H2O2 pretreatment H9c2 cells,
overexpression of circ-ITCH reduced apoptosis and Wnt/β-
catenin expression, suggesting that its cardioprotective effect is
linked to the inactivation of Wnt/β-catenin signaling pathway in
I/R injury (Zhang and Wang, 2020). Specifically, circ-ITCH
reduced cardiomyocyte apoptosis in I/R injury by sponging
miR-17-5p and then inactivating the Wnt/β-catenin signaling
pathway (Zhang and Wang, 2020). Doxorubicin is an effective
chemotherapeutic agent, but doxorubicin-treated patients are
prone to cardiac toxicity and subsequently develop congestive
heart failure (Yeh and Bickford, 2009). The two primary

pathogenic processes leading to the pathogenesis of
doxycycline have been identified in DOXIC as oxidative stress
and DNA damage (Zhang et al., 2012). Recently, Han et al. (2020)
discovered that overexpressed circ-ITCH reduces doxorubicin-
induced oxidative stress and DNA damage in cells and
mitochondria. They also discovered that via sponging miR-
330-5p in DOXIC, circ-ITCH upregulated sirtuin 6 (SIRT6),
Survivin, and sarcoplasmic/endoplasmic reticulum Ca2+-
ATPase 2a (SERCA2a) (Han et al., 2020). SIRT6 has been
found to reduce oxidative stress by activating Nrf2 and SOD2
proteins, two important endogenous anti-oxidant defense
molecules (Rezazadeh et al., 2019; Tian et al., 2019). In
addition, SIRT6 could also ameliorate DNA damage via
activating PARP1, a key DNA repair enzyme (Tian et al.,
2019). Reportedly, Survivin could inhibit doxorubicin-induced
myocardial apoptosis and fibrosis (Lee et al., 2014). Additionally,
SERCA2a could catalyze the hydrolysis of ATP and enhance
cardiac contractility by binding to calcium translocating from the
cytosol to the lumen of the sarcoplasmic reticulum (Reilly et al.,
2001). Thus, circ-ITCH can alleviate DOXIC and has good
potential as a therapeutic target in DOXIC.

3.3 Diabetic Microangiopathy
Diabetic patients’ long-term glucose management is suboptimal,
which can lead to diabetic microvascular problems such as
diabetic neuropathy, diabetic retinopathy (DR) and diabetic
nephropathy (DN). One of the most prevalent microvascular
consequences of diabetes, diabetic retinopathy (DR), is a chronic,

FIGURE 2 | Schematic diagram of anti-tumor mechanism of circ-ITCH. (A) via sponging miR-7, miR-17, miR-20a, miR-22-3p, and miR-214, circ-ITCH increases
ITCH levels to inhibit Wnt signaling pathway in ESCC, CRC, LC, TNBC, PCa, HCC and GC; (B) via sponging miR-7, miR-14, miR-22, miR-145 and miR-224, circ-ITCH
activate the inhibitory proteins (RASA1 and PTEN) of Erk and PI3K cascade to suppress the activation of these signaling pathway in BCa, OS, NPC and OC; (C) via
sponging miR-17-5p, miR-421, miR-524, miR-660, miR-106a-5p, miR-224-5p, miR-93-5p and miR-199a-5p, circ-ITCH regulates cell cycle-related proteins to
inhibit cell proliferation and promote cell apoptosis in PCa, OS, OSCC, HCC, ccRCC, CC, glioma, melanoma and GC; (D) Via sponging miR-184 and miR-199a-5p, circ-
ITCH suppresses EMT process in HCC and GC; (E) In addition, circ-ITCH can directly regulate some proteins without specific target miRNAs. In a word, circ-ITCH plays
an anti-tumor role by negatively regulating cell proliferation, invasion, migration, and positively regulating cell apoptosis.
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progressive diabetes mellitus-induced leakage and occlusion of
retinal micro-vessels, resulting in a series of fundus lesions. DR is
a persistent microvascular inflammation and proliferative
neovascularization of the retina (Semeraro et al., 2015). And
there is an interaction between the two pathological process
(Capitão and Soares, 2016). TNF-α has been shown to be an
inflammatory factor that plays a major role in high-glucose
environments, where it is linked to vascular inflammation,
endothelial dysfunction, oxidative stress, and disruption of the
blood-retinal barrier, and contributes to the progression of DR
synergistically (Capitão and Soares, 2016). The major enzymes
responsible for degrading the ECM, matrix metalloproteinase
(MMPs), have been linked to inflammatory disorders and
diabetes (Kowluru and Mishra, 2017). Among these MMPs,
MMP-2 and MMP-9 were both significantly up-regulated in
retinal cells under high glucose conditions (Giebel et al.,
2005). By suppressing TNF-α, MMP-2 and MMP-9, Zhou
et al. (Zhou L. et al., 2021) revealed that overexpression of
circ-ITCH might prevent neovascularization and
inflammation, hence delaying DR progression. DN refers to
the microvascular consequences of diabetes mellitus, with
microalbuminuria at its core, and renal impairment in a
subgroup of patients. Long-term chronic inflammation has
been linked to the advancement of DN in studies (Wada and
Makino, 2013). Previous research has shown that overexpression
of SIRT6 could stimulate M2macrophage transformation, inhibit
high glucose-induced mitochondrial dysfunction and cell
apoptosis by activating AMPK, all of which help to reduce
inflammation in DN (Fan et al., 2019; Ji et al., 2019). A recent
study in diabetic mice produced with streptozotocin found that
circ-ITCH reduced kidney inflammation and fibrosis through
modulating the mir-33a-5p/SIRT6 axis (Liu et al., 2021). The role
and mechanism of circ-ITCH in uncomplicated diabetes is also
worth exploring, according to current research development.

3.4 Hirschsprung Disease
Hirschsprung’s disease (HSCR) is caused by a lack of proliferation
andmigration of intestinal nerve cells (ENCC), which leads to the
absence of peristalsis and colon defecation (Heanue and Pachnis,
2007). It then causes the proximal colon to expand and
hypertrophy, eventually resulting in the formation of a
megacolon. Rearranged during transfection (RET) has recently
been identified as a major regulator of ENCC formation, and
inactivating mutations in this gene could result in HSCR
(Ohgami et al., 2021). Accumulating evidence indicates that
circRNAs are dysregulated and play critical roles in the
development of HSCR. Xia et al. (2022) revealed that circ-
ITCH expression was dramatically reduced in HSCR tissues,
and its overexpression greatly promoted the ability of
proliferation and migration of 293T, SH-SY5Y cell lines.
Mechanistically, circ-ITCH overexpression activated RET by
sponging miR-146b-5p, thereby relieving HSCR progression
(Xia et al., 2022).

All in all, in non-tumor diseases such as IDD, osteoporosis, I/R
injury, DOXIC, DR, DN, HSCR, and others, circ-ITCH plays a
more complex regulatory role. It can, for example, regulate
distinct target proteins to cause different states of the same

signal pathway. These findings imply that the expression level
of circ-ITCH and its regulatory mechanism are disease-specific.
The role and mechanism of circ-ITCH in non-tumor illnesses
and PDLSC osteogenic development are shown in Table 2.

4 CLINICAL APPLICATION AND
PERSPECTIVE

With the increasing popularity of RT-PCR, diagnosing a growing
range of diseases has gotten easier. RT-PCR can also be used to
determine the degree of circ-ITCH expression. It also shows that
it is practical and convenient because it expresses consistently in
sample tissues, peripheral blood, and exosomes from patients. As
a result, RT-PCR can be employed in practice to detect the level of
circ-ITCH expression in patients’ sample tissues, peripheral
blood, or exocrine, allowing for early diagnosis. The clinical
significance of circ-ITCH in human diseases is shown in Table 3.

4.1 In Tumor Diseases
4.1.1 Diagnostic Biomarkers
Although surgery, chemoradiotherapy, targeted therapy, and the
therapeutic outcome of tumor patients have all improved over
time, overall survival and quality of life remain a serious problem
for patients. Hence, it is critical to diagnose and treat patients as
soon as possible. In recent years, scientists have experimented
with many approaches to improve the detection and surveillance
of early malignant tumors, including radiation, immunology, and
biomarkers. Diagnostic biomarkers have received a lot of
attention among them. Many circRNAs, notably circ-ITCH,
have shown tremendous promise as diagnostic biomarkers in
various investigations (Tang et al., 2019).

Many studies have anticipated and proven the clinical
application potential of circ-ITCH as a diagnostic biomarker
due to its down-regulation in a variety of malignancies (Huang
et al., 2019). In GC, circ-ITCH in tissue and serum-derived
exosomes were explored separately for their diagnostic value.
Among them, the AUC for detecting circ-ITCH in tissues was
0.7055 (sensitivity: 52.71%, specificity: 74.55%); the AUC in
serum-derived exosomes was 0.6538 (sensitivity: 42.42%,
specificity: 90.91%) (Wang et al., 2021). In multiple myeloma
(MM), the AUC was 0.809 (sensitivity: 59.8%, specificity: 80.0%)
(Zhou et al., 2020). In PCa, circ-ITCH showed higher diagnostic
value (AUC = 0.812 (95% CI: 0.780–0.845)), and its low
expression was linked to a higher probability of lymph node
metastases (p = 0.047) and an advanced T stage (p = 0.002)
(Huang et al., 2019). Furthermore, the expression of circ-ITCH
has been linked to tumor size, tumor grade, TNM stage and
clinical stage. Specifically, in OC, the expression of circ-ITCHwas
linked to tumor size (p = 0.0009) and clinical stage (p = 0.0021)
(Lin et al., 2020); in TNBC, it was linked to tumor size (p = 0.016),
lymphatic metastasis (p = 0.008) and clinical stage (p = 0.002)
(Wang S. et al., 2019); in OSCC, it was correlated with clinical
stage (p = 0.027) and lymphatic metastasis (p = 0.035) (Hao et al.,
2020); in EOC, it was associated with tumor size (p = 0.005) and
International Federation of Gynecology and Obstetrics (FIGO)
stage (p < 0.001) (Luo et al., 2018a); in GC, it was correlated with
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tumor grade (p = 0.02), T stage (p = 0.0216) and lymphatic
metastasis (p = 0.034) (Ghasemi et al., 2019; Peng and Wang,
2020;Wang et al., 2021); in NPC, it was correlated with lymphatic
metastasis (p = 0.0021), clinical stage (p = 0.0028) and bone
metastasis (p = 0.0285) (Wang et al., 2022); in non-small cell lung
cancer (NSCL), it was linked to tumor size (p < 0.001), lymphatic
metastasis (p < 0.001) and clinical stage (p = 0.003) (Li et al.,
2019); in MM, it was correlated with international staging system
(ISS) stage (p = 0.036) (Zhou et al., 2020). Guo et al. (2017), on the
other hand, discovered that the single nucleotide polymorphisms
rs10485505 and rs4911154 of circ-ITCH were strongly related
with an elevated risk of HCC, suggesting that it might be
employed as a biomarker for HCC susceptibility. Similarly,
single nucleotide polymorphisms of rs4911154 of circ-ITCH

could aggravate the malignant transformation from thyroid
nodule (TN) to thyroid cancer (Guo et al., 2021).
Furthermore, circ-ITCH’s collaboration with established
diagnostic indicators like carcinoembryonic antigen (CEA) and
carbohydrate antigen 19–9 (CA19-9) may also boost diagnostic
power. All in all, these findings indicate that it has a wide range of
diagnostic utility in a variety of tumors, even in cancer
susceptibility prediction, since it’s convenient and non-invasive.

4.1.2 Prognostic Biomarkers
With the rapid growth of incidence rate and mortality rate of
malignant tumors, its overall prognosis will be the main
determinant of global public health and life expectancy.
Surgery is the most effective treatment for malignant tumors,

TABLE 2 | Role and mechanism of circ-ITCH in non-tumor diseases and physiology.

Disease/
Physiology

miRNA Target
Proteins/Signaling

Pathway

Effect Ref

Osteoporosis miR-214 YAP1 Promoting osteogenic differentiation Zhong et al.
(2021)

IDD miR-17-5p SOX4; Wnt/β-catenin
(activating)

Promoting ECM degradation and NP cell apoptosis Zhang et al.
(2021)

Myocardial I/R injury miR-17-5p Wnt/β-catenin (inactivating) Enhancing cardiomyocyte viability and ATP concentration; Inhibiting
cardiomyocyte apoptosis

Zhang et al.
(2020)

DOXIC miR-330-5p SIRT6, Survivin, SERCA2a Alleviating cell/mitochondrial oxidative stress and DNA damage Han et al. (2020)
DR -- MMP-2, MMP-9, TNF-α Preventing neovascularization and inflammation to delay DR progression Zhou et al.

(2021a)
DN miR-33a-5p SIRT6 Ameliorating renal inflammation and fibrosis Liu et al. (2021)
HSCR miR-

146b-5p
RET; MAPK Promoting cell proliferation and migration to delay HSCR progression Xia et al. (2022)

PDLSC -- MAPK Promoting osteogenic differentiation Gu et al. (2017)

TABLE 3 | Clinicopathological features related to circ-ITCH in human diseases.

Tumor Types TNM Stage Clinical
Stage (p
value)

Tumor
Grade (p
value)

Overall
survival (p

value)

Disease-free
Survival (p

value)

AUC (p value) Ref

T (p
value)

N (p
value)

M (p
value)

OC p =
0.0009

p = 0.0021 p = 0.0257 Lin et al. (2020)

BCa p = 0.034 Yang et al. (2018)
TNBC p =

0.016
p =
0.008

p = 0.002 p = 0.01 Wang et al. (2019a)

NSLC p <
0.001

p <
0.001

p = 0.003 p = 0.006 p = 0.001 Li et al. (2019)

OSCC p =
0.035

p = 0.027 Hao et al. (2020)

PCa p =
0.002

p =
0.047

p < 0.001 p < 0.001 0.812 Huang et al. (2019)

EOC p =
0.005

p < 0.001 p = 0.003 Luo et al. (2018a)

GC p =
0.0216

p =
0.034

p = 0.02 0.7055 (tissues);
0.6538 (serum)

Ghasemi et al., 2019; Peng and
Wang 2020; Wang et al. (2021)

HCC p < 0.001 Guo et al. (2017)
MM p = 0.018 p = 0.017 0.809 Zhou et al. (2020)

Hepatitis C
virus infection

positively correlated with ALT, AST level (p < 0.001) 0.661 Sharkawi et al. (2022)
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but recurrence and metastasis have a significant impact on the
prognosis (Lasithiotakis et al., 2014). Recent studies have found
that circ-ITCH is closely linked to clinicopathological
characteristics and can be employed as a tumor prognostic
biomarker, which will aid in tumor treatment. The expression
of circ-ITCH is linked to the prognosis of a range of tumors,
including HCC, EOC, PCa, BCa, OC, and so on, according to
Kaplan-Meier survival analysis (Guo et al., 2017; Luo et al., 2018a;
Yang et al., 2018;Wang S. et al., 2019;Wang X. et al., 2019; Huang
et al., 2019; Lin et al., 2020). These findings imply that reduced
circ-ITCH expression was associated with lower overall survival
(OS) and disease-free survival (DFS). Specifically, decrease in
circ-ITCHwas associated with worse OS (p = 0.018) and DFS (p =
0.017) in MM patients (Zhou et al., 2020); in NSLC, its down-
regulation was correlated with worse OS (p = 0.006) and DFS (p =
0.001) (Li et al., 2019); in PCa, its down-regulation was correlated
with worse OS and DFS (both p < 0.001) (Huang et al., 2019); in
EOC, its down-regulation was correlated with worse OS (p =
0.003) (Luo et al., 2018a). Furthermore, 1604 patients with
various malignancies were included in a meta-analysis, which
yielded the same results. Patients with reduced circ-ITCH
expression had a lower OS (HR = 2.45, 95% CI: 2.07–2.90, p ≤
0.01, univariate analysis; HR = 2.69, 95% CI: 1.82–3.96, p ≤ 0.01,
multivariate analysis) (Sun et al., 2021). Taken together, these
results suggest its promising value as a prognostic biomarker.

4.1.3 Therapeutic Target
Many molecules and signal pathways may be appropriate for
targeted therapy as our understanding of tumor development
improves. Circ-ITCH is a promising therapeutic target since it
has an anti-tumor impact that is connected to a range of
substances and pathways, as evidenced by recent studies. Up-
regulation of circ-ITCH to inhibit proliferation, invasion and
migration of HCC cells, for instance, is one of the mechanisms by
which lidocaine treats HCC (Zhao et al., 2021). Besides that, it
also has great potential in improving chemoresistance and side
effects of chemotherapy. Circ-ITCH can decrease MM cell
growth and improve MM cell chemosensitivity to bortezomib
(BTZ) (Liu et al., 2020). Furthermore, circ-ITCH can also
alleviate the symptom of DOXIC, suggesting that it can be
used simultaneously with chemotherapeutic drugs to alleviate
chemotherapeutic side effects (Han et al., 2020). At present,
noncoding RNA (ncRNA) therapy focuses primarily on
alternative and inhibitory therapies (Ning et al., 2019). Circ-
ITCH’s alternative therapy is projected to play a significant role in
tumor therapy since it suppresses tumor cell proliferation,
increases apoptosis, and slows tumor growth by targeting a
range of pathway molecules.

4.2 In Non-Tumor Diseases
According to recent research, circ-ITCH also has an important
role in non-tumor tissue. These findings, together with circ-
ITCH’s stable expression in patient tissues and peripheral
blood, as well as well-defined regulatory mechanisms, point to
its potential as a biomarker. In Hepatitis C virus infection, for
instance, circ-ITCH expression was positively correlated with
liver enzymes AST, ALT (p < 0.001) and child grade.With AUC =

0.661 (sensitivity: 65 percent, specificity: 70 percent), circ-ITCH
has diagnostic significance in plasma of Hepatitis C virus
infection (Sharkawi et al., 2022). However, no studies have
looked at the possibility of circ-ITCH as predictive biomarkers
in non-tumor diseases, and this is currently a blank area of
research. Circ-ITCH has been reported to play well-defined
regulatory roles in bone illnesses, cardiac diseases, diabetic
microangiopathy, and Hirschsprung disease, indicating that
they could be therapeutically targeted. Specifically, circ-ITCH
replacement therapy appears to have promise as a treatment for
DOXIC. Moreover, further experiments with circ-ITCH
replacement drugs are also worth studying.

5 CONCLUSION

The focus of this review is on how circ-ITCH, a circular RNA,
regulates gene expression in the post-transcriptional stage by
acting as a sponge for miRNAs, blocking them from binding to
their target mRNAs. The role of circ-ITCH in cell proliferation,
apoptosis, invasion, migration, and EMT regulation, as well as
related signaling pathways, is then explored. Circ-ITCH’s
potential as a diagnostic and predictive biomarker in tumor
and non-tumor diseases is then confirmed. Furthermore, circ-
ITCH has a lot of potential in disease treatment because of its
well-defined regulatory mechanism, notably in terms of
enhancing chemosensitivity and reducing chemotherapy
adverse effects in malignant tumor. These discoveries not only
illuminate the molecular basis of circ-ITCH, but also pave the
path for future clinical applications.

Based on the current research, we put forward some promising
future research directions. To begin, the up-regulated biomarker is
more ideal for clinical detection, but the down-regulated index can
still be employed as long as the critical value is evident. As a result, it
is crucial to explore the critical value of circ-ITCH in both patients
and healthy people. Then, researchers should increase the sample
size and AUC detection as much as possible in order to achieve a
more accurate association between circ-ITCH and other classic
diagnostic markers (CEA, CA19-9) or prognostic indicators (OS,
DFS) (Li et al., 2020c). Furthermore, given its critical role in
regulating human diseases, more simulations of activators or
carrier administration are needed to validate their in vitro and in
vivo effects. While circ-ITCH is low expressed in a number of
malignancies, it is unclear which tumor has greater specificity and
accuracy about circ-ITCH, meriting additional investigation. At the
same time, it is also worthwhile to explore the translational
applications of circ-ITCH in chemotherapy because of its
demonstrated potential in tumor chemotherapy, including
chemo-sensitization and alleviation of side effects. Besides, due to
the increase of ITCH concentration and regulating epidermal
keratinocyte differentiation, the potential of circ-ITCH in
decreasing radiotherapy injury also needs to be developed.
Finally, it was recently shown that circRNAs are plentiful and
stable in exosomes, that they can be produced under a variety of
physiological and pathological conditions, and that they can be
detected in circulation and urine (He et al., 2021), all of which require
further exploration.
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