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Abstract

High-resolution (functional) magnetic resonance imaging (MRI) at ultra high magnetic fields

(7 Tesla and above) enables researchers to study how anatomical and functional properties

change within the cortical ribbon, along surfaces and across cortical depths. These studies

require an accurate delineation of the gray matter ribbon, which often suffers from inclusion

of blood vessels, dura mater and other non-brain tissue. Residual segmentation errors are

commonly corrected by browsing the data slice-by-slice and manually changing labels. This

task becomes increasingly laborious and prone to error at higher resolutions since both

work and error scale with the number of voxels. Here we show that many mislabeled, non-

brain voxels can be corrected more efficiently and semi-automatically by representing three-

dimensional anatomical images using two-dimensional histograms. We propose both a uni-

modal (based on first spatial derivative) and multi-modal (based on compositional data anal-

ysis) approach to this representation and quantify the benefits in 7 Tesla MRI data of nine

volunteers. We present an openly accessible Python implementation of these approaches

and demonstrate that editing cortical segmentations using two-dimensional histogram rep-

resentations as an additional post-processing step aids existing algorithms and yields

improved gray matter borders. By making our data and corresponding expert (ground truth)

segmentations openly available, we facilitate future efforts to develop and test segmentation

algorithms on this challenging type of data.

Introduction

Magnetic resonance imaging (MRI) has become one of the most important tools to study

human brain function and structure in vivo. Moving from high (3 Tesla [T]) to ultra high (7

and 9.4 T) magnetic fields (UHF), together with improvements in acquisition methods, leads

to increases in signal and contrast to noise (SNR and CNR, respectively) [1–3]. The increase in

SNR can be leveraged to increase the voxels’ resolution of both functional and structural

images to sub-millimeter scales. Such sub-millimeter spatial resolutions allow for in vivo
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studies that probe cortical properties at the mesoscale [4–8]. These studies include (i) cortical-

depth dependent analyses of function [9–14] and structure [5, 8, 15], (ii) the mapping of corti-

cal columnar structures [16–21] as well as (iii) sub-millimeter cortical topography [18, 22–24].

Such studies crucially depend on accurate and precise delineations of the gray matter (GM)

ribbon both at the inner (white matter; WM) and outer (cerebrospinal; CSF) border. Since the

aim of these studies is to investigate how the (functional) MRI (f/MRI) signal varies as a func-

tion of small position changes in GM, systematic GM segmentation errors would invalidate

the conclusions drawn from these studies. Consider, as an example, an fMRI study conducted

with a voxel resolution of 0.8 mm isotropic. Assume an average thickness of human cortex of

2.4 mm and a true signal change at the upper cortical depth level. In this study, under optimal

conditions the functional resolution would allow a straight piece of cortical ribbon to be

divided in three relative cortical depths, each of them one voxel thick. Falsely labeling an addi-

tional fourth voxel as GM would make the difference between reporting an fMRI signal change

at most superficial (false voxel excluded) or mid-superficial (false voxel included) cortical

depth level. This example stresses the importance of accurate and precise GM segmentations.

Obtaining accurate and precise definitions of the GM ribbon, however, is currently a diffi-

cult and time-consuming task for sub-millimeter UHF data. The increases in SNR, CNR and

resolution attainable in UHF anatomical data as well as analysis [25] and reconstruction [26]

strategies specific to UHF reveal several structures outside of the brain that were barely visible

on images obtained at conventional field strengths (1.5 and 3 T) and lower resolution (> 1 mm

isotropic) [27]. Such structures include the dura mater [28], medium-sized blood vessels in the

sulci [29] as well as draining sinuses and connective tissue adjacent to GM [30]. To date, many

of the existing brain segmentation algorithms have been developed and benchmarked on

images collected at 1 mm isotropic resolution or lower and at conventional field strengths [31]

(but see [32]). If segmentation algorithms do not model these non-brain structures they might

falsely label (part of) these structures as GM. Faced with such segmentation errors, researchers

commonly correct the misclassified voxels manually. However, the increase in resolution leads

to an exponential increase in the number of voxels, which renders manual correction a labori-

ous task. Furthermore, manual correction is prone to error and may introduce an observer

bias, thereby reducing the reproducibility of subsequent analyses [33]. This currently leaves

researchers with the dilemma of accepting the likely erroneous outcome of automatic segmen-

tation algorithms or performing a time-consuming and error-prone manual correction.

CBS tools [32] directly tackle many of the challenges of UHF high-resolution anatomical

data by, for example, including pre-processing steps to estimate dura mater and CSF partial

voluming. Consequently, these tools provide an improved initial GM segmentation compared

to other solutions [32]. However, we show that in many cases the initial CBS segmentation can

be further improved with the approaches proposed here. Furthermore, CBS tools have been

optimized for whole-brain data obtained with the MP2RAGE sequence [26]. While the

MP2RAGE sequence is commonly used at UHF as a basis for brain tissue class segmentations,

we note that many high-resolution studies at UHF also use alternative sequences to define GM

[12, 25, 34, 35], some of which offering partial coverage of the brain only [12, 35]. In such

cases, alternative approaches that do not depend on particular templates, atlases or other

forms of prior information are useful and required.

Here, we show that non-brain voxels misclassified as GM can largely be corrected using a

multi-dimensional transfer function that is specified based on a two-dimensional (2D) histo-

gram representation [36–39] of three-dimensional (3D) MRI brain data. We demonstrate that

this transfer function offers an efficient way to single out non-brain tissue voxels. Removing

these voxels from GM classifications found by automatic segmentation pipelines improves

GM segmentations. This approach addresses the problems of an entirely manual correction,
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since it yields a meaningful summary representation of the data that allows to manipulate the

data efficiently. As a consequence, it is both more time efficient than manual slice-by-slice cor-

rection and it reduces observer bias.

This paper is intended as a demonstration that 2D histogram based methods are useful

for improving segmentation of MRI images. In particular, we aim to show that for images

acquired at sub-millimetre resolution and at very high field strength (7 T and above) 2D histo-

gram based methods offer an efficient way to obtain a more refined brain mask that excludes

usually undesired structures like vessels and dura mater. Several alternatives to the methods

presented here exist for data visualization, dimensionality reduction or data fusion, such as

principal component analysis [40], multidimensional scaling [41] or the t-SNE algorithm [42].

However, a detailed quantification of the merits and disadvantages of these methods is beyond

the scope of this manuscript which is intended to introduce a simple and fast solution. Like-

wise, there are alternative ways of defining clusters in an image to the normalized graph cut

algorithm that we have used here [43–46]. While all these methods have their merit, we

decided to use normalized-cut multilevel segmentation since it already has been shown to

work successfully on the 2D histogram representations of volumetric data [39].

We structured the paper as follows. In Section 1, we introduce the technique of specifying

transfer functions based on 2D histogram representations of voxel intensity and gradient mag-

nitude. We offer theoretical considerations for why this technique is suited to remove vessels

and dura mater voxels in high-resolution MRI data (< 1 mm isotropic voxel size). In Section

2, we extend the use of histogram-based transfer functions to multi-modal MRI data sets (e.g.

T1 weighted [T1w], Proton Density weighted [PDw], T2� weighted [T2�w]) by considering

MRI data in the compositional data analysis framework [47]. We show that this compositional

framework yields an intuitive and useful summary representation of multi-modal MRI data

which aids the creation of transfer functions. In Section 3 we outline required features of the

input data and recommended data pre-processing steps. In Section 4 and 5 we validate the sug-

gested methods by evaluating obtained GM segmentation results against expert GM segmenta-

tions obtained for nine subjects recorded at 7 T. We demonstrate considerable improvement

in segmentation performance metrics for the two methods suggested here. We have imple-

mented the methods described here in a free and open Python software package [48]. The

package as well as validation data, corresponding expert segmentations [49], and processing

scripts [50] used to validate the proposed methods are all openly available (see Table 1 for

links).

1 Theory I: Transfer functions and 2D histograms

1.1 Multi-dimensional transfer functions

In the context of MRI data visualization, a transfer function can be understood as a mapping

of voxel data to optical properties such as color and opacity. Effective transfer functions make

structures of interest in the data visible. This can, for example, be achieved by assigning low

opacity values to voxels that make up irrelevant structures and by highlighting desired

Table 1. Availability of validation data and code. Validation data and scripts as well as segmentation software are all

openly accessible by following the corresponding links for their repositories.

What? Where?

data https://zenodo.org/record/1206163

scripts https://zenodo.org/record/1219231

software https://zenodo.org/record/1220388

https://doi.org/10.1371/journal.pone.0198335.t001
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structures with high opacity and salient color values. Multi-dimensional transfer functions

assign renderable properties based on a combination of values [36–38, 51]. This is important

in the context of MRI data where features of interest are often difficult to extract based on a

single value alone. Considering multiple values, such as the intensity in images acquired using

different contrast weighting (e.g. T1w, PDw and T2�w), increases the chances of uniquely iso-

lating a feature and making it visible [51].

In theory, multi-dimensional transfer functions could be used to perform exhaustive tissue-

type segmentation of human brain MRI data. In this process, each voxel would be classified as

either WM, GM, or CSF by specifying appropriate transfer functions. It has been shown, how-

ever, that this approach is less successful than other, bespoke brain segmentation algorithms

[52]. Here, we propose that transfer function-based methods still have a role to play in UHF

MRI brain segmentation pipelines because they are well-suited for efficient removal of misla-

beled non-brain tissue. We motivate this proposition by considering that brain and non-brain

voxels become separable in 2D histogram representations.

1.2 2D histogram representation

2D histogram representations have been shown to greatly facilitate the process of specifying

effective, 2D transfer functions [36, 38]. 2D histograms are obtained by taking an n-dimen-

sional data set and binning its data points along two dimensions. In principle, a 2D histogram

can be obtained from any two sets of values. A 2D histogram, plotting gradient magnitude

against image intensity, however, has been shown to be particularly useful to identify tissue

boundaries [36, 38]. The term gradient magnitude here refers to the magnitude of the vector

that represents the spatial intensity gradient at every MRI voxel, where the spatial intensity gra-

dient is equal to the first spatial derivative of the image intensity values.

Fig 1 shows how 3D MRI data of a human brain are represented in a 2D histogram (a

T1w image was divided by a PDw image [25] and brain extracted; images were acquired

with 0.7 mm isotropic resolution; for more details see Section 4). The histogram is obtained

by plotting gradient magnitude against image intensity. In this representation, different tis-

sue types occupy different regions. CSF voxels are characterized by very low intensity and

low gradient magnitude values and therefore occupy the lower-left space of the histogram.

GM and WM voxels have medium to high intensities and very low gradient magnitudes.

Therefore, these tissue classes form circular regions at the bottom-center of the histogram.

Voxels at the GM-WM interface fall within an arc reaching from medium to high intensities,

following a low to medium to low gradient magnitude trajectory. Similarly, voxels at the

CSF-GM interface span an arc from low to medium intensities. Finally, blood vessels and

dura mater are thin structures characterized by very high gradient magnitudes and medium

to high intensities. Therefore, these structures occupy up-center and the up-right parts of

the 2D histogram.

Since different tissue types occupy different regions in the 2D histogram, each tissue type

and boundary can, in principle, be isolated using a 2D transfer function based on image inten-

sity and gradient magnitude. For the purposes of this paper, we focus on the distinction

between brain (WM, GM, GM-WM interface) and non-brain (CSF, CSF-GM interface, blood

vessels, dura mater) voxels. The intensity-gradient magnitude histogram is particularly suited

to distinguish non-brain tissue because voxels containing dura mater and vessels are character-

ized by high gradient magnitude values. Given the typical voxel sizes of current high resolution

studies, gradient magnitude will be high in the entirety of these structures (see Fig 1B for an

example) and the combination of high intensity and high gradient magnitude values renders

these structures separable from WM and GM voxels.
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1.3 Creating transfer functions

The simplest way to create a transfer function is to explore the data by moving widgets with a

specified shape over the 2D histogram representation [38]. For example, Fig 2 shows how a

circular sector could be moved on top of the 2D histogram to highlight particular regions. In

this case, only MRI voxels whose intensity-gradient magnitude combination falls within the

highlighted region of the 2D histogram would be selected. Position and size of the circular sec-

tor can then be refined until the desired data have been isolated.

Fig 1. 2D histogram representation for MRI image of a human brain. (A) Intensity and (B) gradient magnitude values of a brain extracted T1w-divided-by-

PDw MRI image are represented in a (C) 2D histogram. Darker regions in the histogram indicate that many voxels in the MRI image are characterized by this

particular combination of image intensity and gradient magnitude. (D) The 2D histogram displays a characteristic pattern with tissue types occupying particular

areas of the histogram. Voxels containing CSF, dura mater or blood vessels (black dashed lines and arrows) cover different regions of the histogram than voxels

containing WM and GM (red dashed lines). As a result, brain tissue becomes separable from non-brain tissue.

https://doi.org/10.1371/journal.pone.0198335.g001
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Using such a straightforward process of exploration and refinement [51], however, might

yield slightly sub-optimal results. The shape of the widget might not capture the ideal shape

given the data or the user might lack the prior knowledge that is required for this task. Alterna-

tively, hierarchical exploration of normalized graph cut decision trees [39] can be used. This

graph cut method results in a set of components (i.e. clusters) of the histogram that are mutu-

ally exclusive and collectively exhaustive. This allows the user to split and merge clusters in a

data-driven and intuitive way that can be aided by the immediate visualization of the resulting

segmentation (Fig 3, S1 Video). The method allows for semi-automatic tissue selection, i.e. the

Fig 2. Creation of 2D transfer functions with pre-defined shapes. (A) Intensity and (B) gradient magnitude values of of a brain extracted T1w-divided-

by-PDw MRI image are represented in a 2D histogram. By moving widgets of pre-defined shape, e.g. a circle, over the (C) 2D histogram and (D) concurrent

visualization of selected voxels on a 2D slice of brain, positions of different tissue types in the 2D histogram can be probed and transfer functions can be

created. In this example, the different probe positions (yellow, orange and red circles) appear to contain different aspects of GM.

https://doi.org/10.1371/journal.pone.0198335.g002
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Fig 3. Creation of 2D transfer functions with data-driven shapes. (A) The user starts with the 2D histogram representation of image intensity and gradient

magnitude (left side) and concurrent visualization of the original brain data (right side). The user can then interact with and select data in the 2D histogram to

specify transfer functions. In this example, this was done with the help of a normalized graph cut decision tree. (B) The interaction with the 2D histogram results in

data-driven shapes of selected areas, here shaded in pink, green and blue (left side). Voxels selected by those areas are highlighted in corresponding colors against the

backdrop of the original brain data (right side). The visualization reveals that the area of the 2D histogram shaded in blue selects brain voxels, while the areas shaded

in green and pink select CSF� and blood vessel voxels��/dura mater���, respectively.

https://doi.org/10.1371/journal.pone.0198335.g003
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shape of the clusters is data-driven but the decision which clusters to join and which to divide

is made by the user.

2 Theory II: Multi-modal MRI data analysis

2.1 Compositional analysis for MRI data

More than one MRI contrast is often available and a combination of different contrasts can be

useful in distinguishing different tissue types by differentially highlighting unique intrinsic

properties. Two images with different contrast weighting can be combined using, for example,

a ratio image [25, 53, 54]. This approach is beneficial for two reasons: 1) it reduces image biases

as all acquisitions are affected by the same sensitivity profile of the receive elements in the

radio frequency (RF) coil, and 2) if the images carry opposing contrast for the tissues of inter-

est, the ratio increases contrast and benefits the delineation of the structures (tissues) of

interest.

The ratio image approach, however, is limited to pairs of images. To operate on the relative

information of more than two images, we propose to use the barycentric coordinate system

which was discovered by August Ferdinand Möbius in 1827 [55]. In the barycentric coordinate

system, coordinates of a point represent a simplex whose center of mass is determined by the

weights at its vertices (the term n-simplex in geometry is the generalized form of the triangle

[56]; for example the 0-simplex is a point, the 1-simplex is a line segment, the 2-simplex is a tri-

angle, the 3-simplex is a tetrahedron and so on). In other words, points in the barycentric

coordinate system represent compositions of non-negative fractions whose sum of compo-

nents gives a constant value. The barycentric coordinates of multiple measurements acquired

in each voxel can be extracted through the following vector decomposition:

~v ¼ ½v1; v2; . . . ; vD� 2 R
D
>0
;

~v ¼
s �~b

k
; where ~b 2 SD

; and s 2 R1

>0
:

ð1Þ

The vector~v stands for a voxel with D number of measurements, RD
>0

indicates positive real

numbers, k is an arbitrary scalar, s is a scalar representing sum of the vector components and

the vector~b stands for the barycentric coordinates which belong to simplex sample space SD
.

The barycentric coordinates are acquired by applying closure operation (C) used in composi-

tional data analysis [47] to~v:

~b ¼ Cð~vÞ ¼ k
~v
s
; ð2Þ

This decomposition (Eq 1) might seem trivial, however the statement highlights the sam-

pling space of the component~b which is D dimensional simplex SD
. When a set of measure-

ments are represented as vectors with positive components summing up to a constant (e.g.

percentages), compositional data (CoDa) analysis methods [47, 57, 58] becomes relevant. The

compositional data analysis offers a set of principled operations taking the geometry of the

simplex space into account. The general framework for CoDa analysis and its fundamental

operations have already been rigorously documented in [47], however, for completeness we

provide a step-by-step illustration of how multi-modal MRI data with three image contrasts

(here T1w, PDw and T2�w magnitude images) can be processed under the compositional data

analysis framework to acquire a useful representation of different tissue types. By only analyz-

ing the barycentric components, the data are being compressed resulting in some information
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loss. However, this compression is done with the aim of revealing more useful information

through the remaining components.

Let multi-modal MRI data consisting of T1w, PDw, T2�w measurements be defined as a

matrix M with n rows and 3 columns (in relation to Eq 1 D = 3):

M ¼

v1;T1w v1;PDw v1;T2�w

v2;T1w v2;PDw v2;T2�w

..

. ..
. ..

.

vn;T1w vn;PDw vn;T2�w

2

6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
5

ð3Þ

where n stands for the total number of voxels and each row vi is the vector of measurements

for a specific voxel i. Each column represents an image.

The first step in compositional MRI data analysis is to convert the data components from

Cartesian coordinates in real space (R3) to barycentric coordinates in simplex space (S3
),

applying the closure operation (Eq 2) to every voxel (i.e. to each row of M) for obtaining a new

matrix B indicating the barycentric coordinates of every voxel:

B ¼ CðMÞ ¼ k
vi;T1w

si
;
vi;PDw

si
;
vi;T2�w

si

� �

for i 2 ½1; 2; . . . ; n�; ð4Þ

k can be ignored after selecting it as 1.

It is important to note that in the case of MRI images the scalar component s by itself does

carry information; however, this information relates to the bias field in cases where the bias

field is approximately equal across measurement types. Since we are not interested in bias field

information, we do no longer use this component.

As the next step, the barycentric coordinates of compositions (B) are centered (i.e. normal-

ized) by finding the sample center and perturbing each composition with the inverse of the

sample center:

B̂ ¼ B� cenðBÞ� 1
; ð5Þ

where the symbol� denotes the perturbation operation defined in multi-dimensional simplex

space (SD), which can be considered as an analogue of addition in real space:

~x �~y ¼ C½x1y1; x2y2; . . . ; xDyD� 2 S
D
; ð6Þ

where~x and~y indicates two different compositions consisting of D components and cen(B)

stands for:

cenðBÞ ¼ C½gT1w; gPDw; gT2�w� where gm ¼
Yn

i¼1

vi;m

 !1=n

; ð7Þ

where n is the number of voxels, C is the closure operator (Eq 2) and gm is the geometric mean

of component m (i.e. T1w, PDw, T2�w).

After centering, the data are standardized:

~B ¼ B̂ � totvar½B�� 1=2
; ð8Þ

the symbol� stands for the power operation defined in simplex space, which can be
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considered as an analogue of multiplication in real space:

~x � p ¼ C½xp
1; x

p
2; . . . ; xp

D� 2 SD
; ð9Þ

where~x is the barycentric coordinates of a composition with D components and p is a scalar.

The total variance in Eq 8 is computed by:

totvar½B� ¼
1

n

Xn

i¼1

d2

aðxi;cenðBÞÞ; ð10Þ

where d2
a indicates squared Aitchison distance. This is a metric defined in simplex space that is

analogous to Euclidean distance in real space:

dað~x;~yÞ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1

2D

XD

j¼1

XD

k¼1

ln
xj

xk
� ln

yj

yk

� �2

v
u
u
t ; ð11Þ

the barycentric coordinates~x and~y indicate two different compositions consisting of D com-

ponents. For example in the case of compositions consisting of T1w, PDw and T2�w measure-

ments D = 3.

After standardization, the barycentric coordinates are transformed from the three dimen-

sional simplex space (S3
) to two dimensional real space (R2) with the purpose of conveniently

visualizing the compositional distribution in a 2D histogram by using the isometric logratio

(ilr) transformation [59]:

ilrð~BÞ ¼ ln ð~BÞ �H; ð12Þ

where ilr transformation is applied to every voxel and H indicates a Helmert sub-matrix [60]

of 3 rows and 2 columns:

H ¼

1
ffiffiffi
2
p

1
ffiffiffi
6
p

�
1
ffiffiffi
2
p

1
ffiffiffi
6
p

0 �

ffiffiffi
2

3

r

2

6
6
6
6
6
6
6
6
6
4

3

7
7
7
7
7
7
7
7
7
5

: ð13Þ

We have selected the matrix H because it is the suggested standard choice [61].

Note that the closure operation described in Eq 2 implies scale invariance. If the receive

(and in some cases transmit) field (B1) inhomogeneities for MRI data are similar across

modalities and assumed to be having a multiplicative effect on the measured signal, applying

closure will mitigate inhomogeneities by canceling out the common multiplicative term (ie.

bias field) in each image modality. For instance, assume two voxels contain the same tissue

type but have dissimilar intensities due to a multiplicative effect. If before the closure operation

voxel 1 has an intensity of 100 in all recorded modalities and voxel 2 has an intensity of 500 in

all modalities, then after the closure operation both voxels will have the same compositional

description, which would be desired. It should be noted that if B1 inhomogeneities differ sig-

nificantly across modalities, the closure operation will yield inaccurate compositional descrip-

tions. In this case, we recommend to use bias field correction algorithms before using the

compositional data analysis framework. A practical example for this case is that for magnetiza-

tion-prepared rapid acquisition gradient-echo (MPRAGE) sequences, the transmit field in
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T1w image is effected by an inversion pulse which is not present in PDw and T2�w images. In

such cases, individual image bias field correction is recommended.

2.2 2D histogram representation and creation of transfer functions

Fig 4 shows how three different 3D MRI contrast images of a human brain (T1w, PDw and

T2�w brain extracted images; 0.7 mm isotropic resolution; for more details see Section 4) can

be represented in a 2D histogram. The 2D histogram is obtained by taking the three MRI con-

trast images as an input and performing the operations of the CoDa analysis framework

described above. In particular, applying the ilr transformation to the barycentric coordinates

allows the three images to be represented along two dimensions. Different tissue types have

different compositional characteristics and therefore occupy different regions in the resulting

2D histogram. WM and GM voxels are separated in two distinct clusters which mainly differ

along the T1w axis. CSF voxels occupy the lower left corner of the histogram, which represents

a combination of low T1w with high PDw and T2�w values. CSF voxels still differ from WM

and GM voxels mainly along the T1w axis. In contrast, vessel and dura mater voxels differ

from WM, GM and CSF voxels also along the PDw and T2�w axes, which makes these voxels

to be spread out in the direction orthogonal to the T1w axis. To see how a combination of two

MP2RAGE images (UNI, INV2) and one T2� image estimated from a multi-echo 3D gradient

recalled echo (GRE) sequence are represented in a 2D histogram, please see S7 Fig.

The dimensionality reduction accomplished by the ilr transformation allows to specify 2D

transfer functions even though the input consists of three channels. Fig 5 shows how normal-

ized graph cuts can be used on 2D histogram representation of ilr coordinates to create transfer

functions. The resulting transfer functions highlight specific clusters that readily separate

brain tissue from non-brain tissue.

3 Input data requirements and preparation

3.1 Data preparation

In order to obtain optimal results with the gradient-magnitude method, several pre-processing

steps should be performed on the data. Ranging from absolutely necessary to desired but not

critical, these pre-processing steps include: (i) bias field correction, (ii) brain extraction, (iii)

cerebellum removal and (iv) removal of brain stem structures. Successful bias field correction

is critical to performance since otherwise intensity values for different tissue types start to mix

in 2D histogram space. Brain extraction should be performed to remove irrelevant voxels from

the 2D histogram representation. Removal of cerebellar and brain stem structures is recom-

mended since it further improves conformity to ideal 2D histogram shapes (Fig 1D). Bias

field correction and brain extraction can be performed using automatic algorithms [62, 63].

Removal of cerebellum and sub-cortical structures might require the manual creation of

masks. We note, however, that generation of these masks is only desired, not strictly necessary.

Furthermore, generation of these masks is often a desirable processing step for many auto-

matic tissue class segmentation algorithm, since it improves their performance.

3.2 Data requirements

Suitability of the intensity-gradient magnitude histogram for separating brain from non-brain

tissue will depend on the resolution and CNR of the input data. We expect a lower limit of res-

olution around 1 mm. At lower resolutions, the intensity-gradient magnitude method will

yield unsatisfactory results due to partial voluming between the thin structures we are aiming

to correct and surrounding CSF or tissues. We do not expect an upper resolution limit for the
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Fig 4. 2D histogram representation of three 3D MRI contrast images. (A) Each voxel is considered as a 3 part composition in 3D real space. The

barycentric coordinates of each composition which reside in 3D simplex space are represented in 2D real space after using a isometric log-ratio (ilr)

transformation. (B) The ilr coordinates are used to create 2D histograms representing all voxels in the images. The blue lines are the embedded 3D real

space primary axes. It should be noted that in this case the ilr coordinates are not easily interpretable by themselves but they are useful to visualize the

barycentric coordinates which are interpretable via the embedded real space primary axes. Darker regions in the histogram indicate that many voxels are

characterized by this particular scale invariant combination of the image contrasts. In this representation, brain tissue (WM and GM, red dashed lines)

becomes separable from non-brain tissue (black dashed lines and arrows).

https://doi.org/10.1371/journal.pone.0198335.g004
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Fig 5. Creation of transfer functions using ilr coordinates. (A) The user starts with the 2D histogram representation of ilr coordinates 1 and 2 (left side) and

concurrent visualization of the original brain data (right side). The user can then interact with and select data as described in Fig 3. (B) The interaction with the 2D

histogram results in data-driven shapes, here shaded in pink, green and blue (left side). Voxels selected by those areas are highlighted in corresponding colors against

the backdrop of the original brain data (right side). The visualization reveals that the area of the 2D histogram shaded in blue selects brain voxels, while the areas

shaded in green and pink select CSF� and blood vessel voxels��/dura mater���, respectively. The arrow with exclamation mark (!) indicates an area affected by T2�w

image artifacts.

https://doi.org/10.1371/journal.pone.0198335.g005
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input data. Although, initially, values in the gradient magnitude image will no longer be high

in all vessel and dura mater voxels, very high-resolution images can still be accommodated by

choosing the appropriate level of smoothness on the gradient magnitude image. In S1 Fig, we

demonstrate that by setting the appropriate smoothness level of Deriche filter [46], gradient

magnitude images for very high resolution data (0.25 mm isotropic) [64, 65] can be approxi-

mated to those observed for data at lower resolution (0.7 mm isotropic).

We furthermore expect our methods to be impacted by the CNR of the input data. S2, S3

and S4 Figs show that with added Gaussian noise (i.e. decreasing CNR) the desired circular

and arc-like shapes in the 2D histogram (Fig 1C) become less apparent. At very high noise lev-

els separating brain from non-brain tissue in the 2D histogram space becomes challenging (see

e.g. S2 Fig). While the in-depth evaluation of additional processing tools is beyond the scope of

the present article, we note that if the input data are very noisy, smoothing can be applied. In

particular, non-linear anisotropic diffusion based smoothing [66, 67] results in the data regain-

ing the desired 2D histogram shapes (see S5 Fig).

The parameter space of the input data is thus constrained by resolution and CNR. Apart

from these restrictions, our methods are suitable for any 3D image and work irrespective of

the field-of-view of the acquisition (partial coverage is possible) and membership to a particu-

lar species (bottle-nose dolphin brain is also possible; for examples see S6 Fig).

4 Validation methods

4.1 Validation data set overview

In order to validate the methods proposed above, we created two validation data sets based on

the acquisition of high-resolution 7 T data of nine subjects and corresponding manually-

guided expert segmentations of GM. In particular, we created two validation sets based of on

two of the most common acquisition sequences. For five subjects, we collected MPRAGE T1w,

PDw, and T2� data (we refer to this data set as the MPRAGE data set below). For four different

subjects, we collected MP2RAGE data, to obtain unbiased (uni) images, and multi-echo 3D

GRE data, to obtain T2� maps (we refer to this data set as the MP2RAGE data set below). Both

data sets can be downloaded from [49].

4.1.1 Ethics statement. The experimental procedures were approved by the ethics com-

mittee of the Faculty for Psychology and Neuroscience (MPRAGE data set) or the Medical

Ethical Committee at the Faculty of Health, Medicine and Life Sciences (MP2RAGE data set)

at Maastricht University, and were performed in accordance with the approved guidelines and

the Declaration of Helsinki. Written informed consent was obtained for every participant

before conducting the experiments.

4.1.2 MRI acquisition parameters. All images were acquired on a Siemens 7 T whole

body scanner (Siemens Medical Solutions, Erlangen, Germany) using a head RF coil (Nova

Medical, Wilmington, MA, USA; single transmit, 32 receive channels). In all acquisitions, we

used dielectric pads [68].

For n = 5 subjects (age range 24-30, 2 females, no medical condition), the MPRAGE data set

consisted of: a T1w image using a 3D MPRAGE sequence (repetition time [TR] = 3100 ms;

time to inversion [TI] = 1500 ms [adiabatic non-selective inversion pulse]; time echo [TE] =

2.42 ms; flip angle = 5˚; generalized auto-calibrating partially parallel acquisitions [GRAPPA] =

3 [69]; field of view [FOV] = 224 × 224 mm2; matrix size = 320 × 320; 256 slices; 0.7 mm isotro-

pic voxels; pixel bandwidth = 182 Hz/pixel; first phase encode direction anterior to posterior;

second phase encode direction left to right), a PDw image (0.7 mm isotropic) with the same

MPRAGE as for the T1w image but without the inversion pulse (TR = 1380 ms; TE = 2.42 ms;

flip angle = 5˚; GRAPPA = 3; FOV = 224 × 224 mm2; matrix size = 320 × 320; 256 slices; 0.7
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mm iso. voxels; pixel bandwidth = 182 Hz/pixel; first phase encode direction anterior to poste-

rior; second phase encode direction left to right), and a T2�w anatomical image using a modi-

fied MPRAGE sequence that allows freely setting the TE (TR = 4910 ms; TE = 16 ms; flip

angle = 5˚; GRAPPA = 3; FOV = 224 × 224 mm2; matrix size = 320 × 320; 256 slices; 0.7 mm

iso. voxels; pixel bandwidth = 473 Hz/pixel; first phase encode direction anterior to posterior;

second phase encode direction left to right).

For n = 4 subjects (age range 24-58, 2 females, no medical condition) the MP2RAGE data

set consisted of: 3D MP2RAGE data (TR = 5000 ms; TI1/TI2 = 900/2750 ms; TE = 2.46 ms;

FA1/FA2 = 5˚/3˚; FOV = 224 × 224 mm2; matrix size = 320 × 320; slices = 240; 0.7 mm iso.

voxels) [26]. For the same subjects, T2�w images were obtained with a multi-echo 3D GRE

sequence (TR = 33 ms; TE1/TE2/TE3/TE4 = 2.53/7.03/12.55/20.35 ms; FA1 = 11˚; FOV =

224 × 159 mm2; matrix = 320 × 227; slices = 208; 0.7 mm iso. voxels). More details on the

MP2RAGE data acquisition and the T2� estimation can be found in [70].

4.1.3 Manually-guided expert segmentations. For every subject, we established

‘ground truth’ GM classifications via manually-guided expert segmentations. All segmenta-

tions were created manually by the same expert (OFG), using ITK-SNAP [71] and a graphics

tablet (Intuos Art; Wacom Co. Ltd; Kazo, Saitama, Japan). Segmentations were only estab-

lished for cortical GM, since cerebellar and sub-cortical structures were later removed in a

pre-processing step. To establish the segmentation, the expert used T1w images for the

MPRAGE and uni images for the MP2RAGE data set. To avoid resulting tissue type classifi-

cation to be ragged, the expert followed a particular processing sequence. The brain was first

traversed in a single direction (e.g. sagittally) and the ground truth was established slice-by-

slice. Subsequently, the brain was traversed in the two other directions (e.g. axially, then cor-

onally). This sequence was repeated several times across several regions until the GM seg-

mentation of the whole brain was considered of good quality. To further ensure the quality

of the resulting segmentation, they were inspected for mistakes by two additional experts

(MS and FDM).

4.2 Software implementation

We implemented the creation of transfer function based on 2D histograms in an open source

Python package called Segmentator [48], which is built upon several other scientific packages

such as Numpy [72], Scipy [73], Matplotlib [74] and Nibabel [75]. Segmentator allows for

selection of data points in a 2D histogram (for example gradient magnitude over intensity)

and concurrent visualization of selected brain voxels on a 2D slice. Data points can be selected

using a circular sector widget with variable reflex angle and radius. Alternatively, data selection

can be performed using the normalized graph cut (n-cut) method (i.e. spectral clustering) as

described above. The n-cut algorithm from Scikit-image [76] was modified to export an aug-

mented output which provides step-wise access to independent branches of the decision tree

and employed in Segmentator (the modification is available at https://github.com/ofgulban/

scikit-image/tree/ncut-rag-options).

The package provides several options to calculate the gradient magnitude image. All the 2D

histogram analyses described in this paper were based on gradient magnitude images that

were computed as the Euclidean norm of the first spatial derivative estimated using a 3 × 3 × 3

Scharr kernel [77, 78]. Subsequently, transfer functions were specified using the normalized

graph cut algorithm and user intervention for the selection of the non-brain tissue transfer

functions. Processing data for a single subject took about 10 minutes on average. The Segmen-

tator package is openly and freely accessible at https://github.com/ofgulban/segmentator. All

the operations of the CoDa analysis described above have been implemented as a separate
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open source Python package [79] freely accessible at https://github.com/ofgulban/compoda.

This package uses Numpy [72] and Scipy [73].

4.3 Segmentation procedure

For both validation data sets, we followed similar procedures, with modifications where neces-

sary to accommodate for differences in the sequences’ output. Our goal was to obtain initial

GM segmentations from existing, fully-automated segmentation algorithms and to quantify

the improvement in segmentation accuracy that can be obtained when using the methods

described here as post-processing steps. To establish the initial GM segmentations we used

FSL FAST [80] and the SPM 12 ‘unified segmentation’ algorithm [63] for the MPRAGE data

set and FSL FAST and CBS tools [32] for the MP2RAGE data set. SPM and CBS tools have

been developed and benchmarked on MPRAGE and MP2RAGE images respectively. FSL

FAST is suited to process either type, so we used it for both data sets. We then quantified the

impact of the following additional post-processing steps: (i) using uni-modal input and trans-

fer functions based on 2D histogram representations of intensity and gradient magnitude (see

Section 1) or (ii) using multi-modal input and the compositional data analysis framework (see

Section 2). These two procedures will be referred to below as the gradient magnitude (Gra-

Mag) and the compositional data analysis (CoDa) method, respectively. Both methods resulted

in masks that could be used to further refine the initial GM segmentation, e.g. by removing

blood vessels and dura mater that were falsely labeled as GM initially. In total, we thus used 2

(MPRAGE and MP2RAGE data set) x 2 (GraMag and CoDa) = 4 analysis procedures. All four

procedures are summarized in flow chart diagrams (S8, S9, S10 and S11 Figs). Furthermore, in

an effort to make our analyses fully reproducible, we made the Python and bash scripts used

for pipeline processing openly available at [50].

For the MPRAGE data set, we first computed ratio images (T1w divided by PDw) [25] to

reduce inhomogeneities. Ratio images were input to either FSL FAST or SPM 12. FSL FAST

was used with default values. The FAST algorithm requires an initial brain extraction proce-

dure that we performed using FSL BET [62]. Additionally, we masked the images to exclude:

the corpus callosum, the basal ganglia, the hippocampus, the entire brain stem and the cerebel-

lum. Below we refer to this mask as ‘NoSub mask’. The NoSub mask was created manually for

every subject. In SPM 12 we used default settings with one exception. We set the number of

Gaussians to be modeled to 3 for GM and 2 for WM (default values are 1 and 1). As part of

their standard segmentation routine, both FSL FAST and SPM 12 perform initial inhomogene-

ity correction. We inspected the bias corrected images to ensure that the algorithms had con-

verged on plausible solutions. We specified for the FSL FAST algorithm to output hard

segmentation labels. Since SPM 12 outputs probabilities for six tissue classes, we transformed

this soft output to hard segmentation labels by assigning each voxel to the tissue class with

the highest posterior probability. Since the SPM segmentation algorithm works best with

unmasked images, we applied the NoSub mask only to the resulting SPM GM segmentations,

not to the input data. The resulting GM segmentations from FSL and SPM were saved for later

evaluation.

For the GraMag method (S8 Fig) we proceeded with bias-corrected ratio images from either

SPM or FSL. Since the GraMag method works best with brain extracted images, we combined

SPM’s WM and GM segmentation outcomes to form a brain mask and performed brain

extraction of the ratio images from SPM. After brain extraction, we also excluded cerebellum

and brain stem tissue using the NoSub mask. FSL’s bias-corrected ratio images images did not

require masking as the brain extraction (and cerebellum removal) was already performed

before segmentation. We then used the 2D histogram representation of intensity and gradient
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magnitude together with the hierarchical exploration of normalized graph cut decision trees

(as described in Section 1) to create transfer functions. Exploration of decision trees was lim-

ited to an 8-level hierarchy. The criterion for splitting and merging clusters was subjective: a

rater (MS) aimed to obtain shapes that resembled the ideal template shapes (Fig 1D) as closely

as possible, given the 2D histogram representation and concurrent visualization of selected

voxels. S1 Video demonstrates that selection of voxels was well constrained by clearly-outlined

shapes in the 2D histogram representation and commonly required to move down the decision

tree hierarchy by only 2 or 3 levels. Exploration of the decision tree took about 30 to 60 seconds

per subject. Generation of normalized graph cut decision trees, which was done previous to

exploration by a rater, took about 5 minutes on a workstation (RAM: 32 GB, 12 cores (6 vir-

tual); CPU: 2.146 GHz; operating system: Debian 8). The transfer function resulting from this

procedure was used to separate brain from non-brain tissue voxels. Non-brain tissue voxels

were removed from GM if they were included in the initial FSL and SPM segmentations.

For the CoDa method (S9 Fig) we followed a similar procedure, except that we started from

three separate images—the bias-corrected T1w, PDw and T2�w images. Again, these images

were brain extracted and cerebellum and brain stem tissue were removed using the NoSub

mask. These images were transformed into barycentric coordinates, using the closure operator

(as outlined in in Section 2). In this case, there were three barycentric coordinates per voxel

constrained to a 2-simplex vector space structure. The triplets of barycentric coordinates were

mapped to 2D real-space using the ilr transformation. We could therefore proceed with the 2D

histogram representation using the first and the second real-space coordinates of the composi-

tions and the hierarchical exploration of normalized graph cut decision trees in this 2D space

to separate brain from non-brain tissue voxels. Non-brain tissue voxels were again removed

from GM if included in the initial segmentations (of SPM and FSL).

For the MP2RAGE data set, the T1 map, T1w (uni) and second inversion image from the

MP2RAGE sequence were input to CBS tools [32]. Only the brain-extracted [62] uni image

was input to FSL FAST, since this resulted in higher performance than inputting all three

images. Both FSL FAST and CBS tools were run with default settings. Note that the default

settings for CBS tools include removal of non brain tissue by estimating dura mater and CSF

partial voluming. The resulting GM segmentations from FSL and CBS were saved for later

evaluation. For the GraMag method (S10 Fig), we proceeded with the FSL FAST bias-cor-

rected, brain-extracted and NoSub masked uni image and proceeded as for the MPRAGE data

set to obtain a secondary brain mask. For the CoDa method (S11 Fig), we used FSL FAST bias-

corrected, brain-extracted and NoSub masked uni, second inversion and T2� images but oth-

erwise proceeded as for the MPRAGE data set.

We observed susceptibility artifacts in some regions of the brain (mostly inferior frontal

lobe) in the T2�w images. These artifacts make the affected regions noisy and reduce the effec-

tiveness of using T2�w images in the CoDa method. To quantify the effect of these artifacts, we

created masks for the artifact-affected regions and ran all our analyses both with and without

the artifact regions included. Results shown in the paper were obtained with the affected

regions excluded. Results with the affected regions included are shown in the Supplementary

Materials.

4.4 Quantification

The segmentation procedures resulted in three different GM segmentations for each data set

and initial segmentation algorithm (SPM or CBS and FSL FAST): (i) an initial segmentation

without any further changes, (ii) after correction using the GraMag method and (iii) after

correction using the CoDa method. To compare segmentation quality among these three
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outcomes, we calculated the Dice coefficient (DICE) and the Average Hausdorff Distance

(AVHD) using the openly available EvaluateSegmentation Tool (2016; VISCERAL, http://

www.visceral.eu).

The DICE is an overlap-based metric and it is the most popular choices for validating

volume segmentations [81]. We included it here as a familiar reference for the reader. How-

ever, overlap-based metrics like the DICE are not recommended for validating segmentation

boundaries against the ground truth, as is our aim here, since they are relatively insensitive to

boundary errors. In contrast, the AVHD is a distance metric sensitive to boundary errors [81].

We therefore consider the AVHD to be a more suitable metric for our purposes and we based

our conclusions on the comparisons made with the AVHD.

Given that the AVHD quantifies the similarity of two boundaries, we first extracted

WM-GM and GM-CSF boundaries from the ground truth segmentations and the six different

GM segmentations before calculating the AVHD. Here, an AVHD of zero indicates a perfect

match between the segmentation and ground truth boundaries, while values larger than zero

indicate a mismatch. In this case, the value represents the average number of voxels by which

the two boundaries deviate from one another.

5 Validation results

Visual inspection revealed that applying the GraMag method to the MPRAGE data set

excluded most of the vessels and dura mater voxels and resulted in a more plausible GM mat-

ter definition. The CoDa method equally removed most of the vessels and dura mater voxels.

Additionally, the CoDa method excluded structures like the sagittal sinus from the GM defini-

tion (see Figs 6 and 7).

Table 2 compares segmentation performance before and after applying GraMag and

CoDa methods to the initial GM segmentations of the MPRAGE data set. The GraMag

method led to an improvement of GM segmentations in all subjects, independently of

whether the initial segmentation was done by SPM 12 or FSL FAST. On average, the AVHD

decreased from 0.733 ± 0.087 (mean ± standard deviation across subjects) to 0.571 ± 0.051

for SPM 12 and from 0.584 ± 0.109 to 0.558 ± 0.089 for FSL FAST. The GraMag method did

not affect the DICE coefficient. On average, it changed very little from 0.861 ± 0.020 to

0.862 ± 0.016 for SPM 12 and from 0.878 ± 0.027 to 0.872 ± 0.089 for FSL FAST. The CoDa

method equally yielded improved segmentation performance. Compared to the initial

segmentation, the AVHD decreased in all subjects and, on average, to 0.569 ± 0.054 for

SPM 12 and to 0.504 ± 0.033 for FSL FAST. We did not observe a clear change in the DICE

coefficient. For SPM 12 segmentations we observed 0.869 ± 0.021 and for FSL FAST

segmentations 0.872 ± 0.013. All these results were obtained after exclusion of areas affected

by artifacts in the T2s image. For results obtained without the artifact masks, please see S1

Table.

Table 3 compares segmentation performances before and after applying the GraMag and

CoDa methods to the initial GM segmentations of the MP2RAGE data set. The GraMag

method decreased AVHD for all but one subject and, on average, from 0.508 ± 0.088 to

0.444 ± 0.083 for CBS tools and from 0.990 ± 0.062 to 0.775 ± 0.088 for FSL FAST. It decreased

the DICE coefficient, on average, from 0.882 ± to 0.875 ± for CBS tools and from 0.839 ± to

0.818 ± for FSL FAST. The CoDa method decreased the AVDH in every subject and, on aver-

age, to 0.447 ± 0.082 for CBS tools and to 0.641 ± 0.069 for FSL FAST. It also increased the

DICE coefficient to 0.856 ± 0.030 for FSL FAST and decreased it to 0.880 ± 0.024 for CBS

tools. For results for the MP2RAGE data obtained without the artifact masks, please see S2

Table.

Improving gray matter segmentation at ultra high field MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0198335 June 6, 2018 18 / 31

http://www.visceral.eu
http://www.visceral.eu
https://doi.org/10.1371/journal.pone.0198335


6 Discussion

Functional and anatomical MRI studies at the mesoscale (< 1 mm isotropic) require accurate

and precise definitions of the GM ribbon. Creating such definitions is currently a challenging

task since sub-millimeter UHF data bring non-brain structures like blood vessels and dura

mater into sharper focus. As a result, segmentation algorithms that have been benchmarked at

lower resolution data might falsely label part of these structures as GM. Here we presented two

methods (GraMag and CoDa) to correct many such mislabeled non-brain voxels efficiently

and semi-automatically. The two methods are based on theoretical expectations of how 3D

brain data is to be represented in 2D histograms. These expectations imply that brain and

non-brain tissue should become separable in 2D histogram representations that are either

based on gradient magnitude and intensity or on compositional dimensions. We validated

these expectations by implementing the suggested methods in an openly available software

package and by quantifying their added benefit using a new high-resolution validation data

set. We found that, in general, our suggested methods offered an improvement compared to

Fig 6. Comparison of GM segmentation results for MPRAGE data. GM segmentation results are shown for one representative subject on a transverse

(upper row) and a sagittal slice (lower row) of the brain before and after applying the GraMag and CoDa methods. The original image that is input to the

segmentation is shown on the left. The original GM segmentation obtained from SPM 12 is shown in red (middle and right column). GM segmentations

after additional polishing with brain mask obtained with either the GraMag (middle column) or the CoDa method (right column) are overlaid in blue.

Additional masking removes blood vessels, CSF (arrow �) and most of dura mater (arrow †) voxels from the SPM GM definition. Because of its unique

compositional properties, connective tissue from the sagittal sinus can be captured and excluded using the CoDa method (arrow ��). An area badly

affected by the CoDa mask is also indicated with arrow ���.

https://doi.org/10.1371/journal.pone.0198335.g006
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initial GM segmentations. However, we found some differences in the degree of improvement

with respect to (i) the two presented methods, the (ii) type of data and (iii) the algorithm used

for initial segmentation.

We will discuss these three influences in turn. First, the two methods differ in their prereq-

uisites and their segmentation improvement. The GraMag method only requires uni-modal

input such as T1w/PDw or MP2RAGE uni images, while the CoDa method requires multi-

modal input of images with different contrast weightings. This makes the GraMag method the

method of choice when only a single input image is available. In accordance with our theoreti-

cal expectation, the GraMag method identified and removed blood vessels and dura mater tis-

sue. If multi-dimensional input is available, even bigger improvements might be obtained with

the CoDa method. Notably, in contrast to the GraMag method, the CoDa method can addi-

tionally capture and remove connected tissue of the sagittal sinus. This tissue is usually falsely

labeled as GM because of similar intensity values and spatial proximity. It then requires tedious

manual removal. How well the CoDa method performs, however, critically depends on the

quality of all the input images and the specific combination of contrasts. Performance can be

affected by low quality on a single input image, as was the case here with T2� images due to

susceptibility artifacts. Furthermore, performance will depend on the specific choice of

Fig 7. Comparison of GM segmentation results for MP2RAGE data. Same conventions as in Fig 6) but with initial segmentation results obtained with

CBS tools instead of SPM 12.

https://doi.org/10.1371/journal.pone.0198335.g007
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contrasts and whether these contrasts maximize the compositional difference between brain

and non-brain tissue.

Second, we found that the improvements were slightly larger and more consistent across

subjects for the MPRAGE than for the MP2RAGE data set. This might be explained by the fact

that the MPRAGE data conformed more to our theoretical expectations than the MP2RAGE

data set. Especially, we found GM values in the MP2RAGE uni image to be less focused on one

particular area of the 2D histogram (S12 Fig) than the MPRAGE division image. This might

result from differences in myelination level across cortical areas and depth [54, 82, 83], which

the MP2RAGE uni image might pick up more than MPRAGE division image [84].

Third, we observed that the performance of the initial segmentation algorithm had an influ-

ence on how much we could further improve the GM segmentation. If performance of the ini-

tial segmentation algorithm was already relatively high, the improvement obtained with our

methods tended to be smaller. Differences in initial segmentation performance might be

explained by whether the algorithm has been benchmarked on this particular type of data. We

assume FSL FAST and CBS tools to have been benchmarked on MPRAGE and MP2RAGE

data respectively, which would explain their relative high performance for these data types.

Importantly, our goal here was to aid already existing segmentation pipelines to deal with

UHF sub-millimeter resolution data, not to replace those pipelines. Instead, the methods pre-

sented here should be considered as an alternative to a large amount of manual slice-by-slice

polishing of segmentations and thus as a time-saver. Manually correcting segmentation labels

is very time-consuming and can quickly become unreliable. In contrast, our methods greatly

Table 2. Segmentation performance scores MPRAGE data set. The table shows the DICE (larger is better) and AVHD (less is better) for the initial SPM 12 and FSL

FAST GM segmentations as well as after additional polishing, using either the gradient magnitude or the compositional data method.

SPM FAST

DICEa AVHDa DICEa AVHDa

S02

Init 0.8606 0.7325 0.8869 0.5661

Init + GraMag 0.8613 0.5811 0.8876 0.5162

Init + CoDa 0.8689 0.5693 0.8719 0.5017

S03

Init 0.8398 0.8585 0.8782 0.5835

Init + GraMag 0.8679 0.6031 0.8722 0.5575

Init + CoDa 0.8625 0.5986 0.8723 0.5039

S05

Init 0.8681 0.6350 0.8858 0.5545

Init + GraMag 0.8595 0.5618 0.8770 0.5359

Init + CoDa 0.8796 0.4950 0.8960 0.4601

S06

Init 0.8428 0.7778 0.8633 0.6462

Init + GraMag 0.8624 0.5711 0.8665 0.5848

Init + CoDa 0.8592 0.5880 0.8775 0.5074

S07

Init 0.8945 0.6205 0.8583 0.6925

Init + GraMag 0.8983 0.5281 0.8623 0.6487

Init + CoDa 0.8692 0.5541 0.8248 0.6689

DICE, DICE Coefficient; AVHD, Average Hausdorff Distance; Init, initial segmentation; GraMag, gradient magnitude method; CoDa, compositional data method.
a After masking of areas affected by artifact in the T2s image.

https://doi.org/10.1371/journal.pone.0198335.t002
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reduce the time required for manual polishing because they offer an efficient 2D summary and

are more reliable because they are semi-automatic. Although the methods presented here do

not entirely eliminate the need for manual corrections, we estimated that for a whole brain

cortical ribbon segmentation they do save on average 7.5 hours of manual work (for more

details on this estimation see S1 Appendix).

Moreover, we introduced the compositional data analysis framework to the neuroimaging

community. Here, we used this framework to combine MRI acquisitions with three different

image contrasts in order to derive improved tissue type segmentations. While the composi-

tional analysis framework scales to any dimension and thus any number of MRI images, the

current implementation relies on representation of data in a 2D histogram obtained through

the ilr transformation of 3D barycentric coordinate data. With more than three images a

reduction of dimensions in the barycentric space or in the real space after ilr transformation

would be necessary to apply the current tools (e.g. [40]).

MRI can provide a multitude of informative images that weight tissue properties to generate

the image contrast. The compositional data framework is ideally suited for the analysis and

visualization of multiple images as it provides a principled way to combine any number of

images. In addition, analyzing multiple MRI contrast images in the compositional data frame-

work avoids spatial scale dependence, i.e. dependence on the image resolution and smoothness

of the image. As a result, the compositional properties of vessel voxels even at very high resolu-

tions will remain the same or very similar, no matter whether the voxel is at the center or at the

border of the vessel. This is similar to analyzing chemical compositions of materials, which are

independent of spatial metrics.

An envisioned future application of the compositional framework to MRI data is to use it to

single out targeted cortical or subcortical structures based on their compositional properties.

For an example of identifying subcortical structures see S7 Fig. For discussion of the broader

Table 3. Segmentation performance scores MP2RAGE data set. The table shows the DICE (larger is better) and AVHD (less is better) for the initial CBS tools and FSL

FAST GM segmentations as well as after additional masking, using either the gradient magnitude or the compositional data method.

CBS FAST

DICEa AVHDa DICEa AVHDa

S001

Init 0.8943 0.3711 0.8403 1.0523

Init + GraMag 0.9141 0.4013 0.8248 0.8241

Init + CoDa 0.9185 0.3249 0.8795 0.5757

S013

Init 0.8672 0.5641 0.7859 1.0272

Init + GraMag 0.8629 0.4921 0.7653 0.8835

Init + CoDa 0.8648 0.4835 0.8137 0.7225

S014

Init 0.8695 0.5897 0.8376 0.9203

Init + GraMag 0.8606 0.4859 0.8136 0.7260

Init + CoDa 0.8710 0.4921 0.8486 0.6789

S019

Init 0.9077 0.4517 0.8529 0.9529

Init + GraMag 0.8865 0.3301 0.8218 0.7005

Init + CoDa 0.8888 0.4096 0.8642 0.6024

DICE, DICE Coefficient; AVHD, Average Hausdorff Distance; Init, initial segmentation; GraMag, gradient magnitude method; CoDa, compositional data method.
a After masking of areas affected by artifact in the T2s image.

https://doi.org/10.1371/journal.pone.0198335.t003

Improving gray matter segmentation at ultra high field MRI

PLOS ONE | https://doi.org/10.1371/journal.pone.0198335 June 6, 2018 22 / 31

https://doi.org/10.1371/journal.pone.0198335.t003
https://doi.org/10.1371/journal.pone.0198335


implications of the application of compositional data analysis to images in general please see

[85].

Our theoretical expectations implied that the methods presented here require high-resolu-

tion data (< 1 mm). This requirement was unfortunately not met by most available segmenta-

tion validation data sets. Simulated phantom (‘BrainWeb’) data [86] are available at 1 mm

and thus fell short of the resolution required for our purposes. Although an updated data set

(‘updated BrainWeb’, [87, 88]) is available at higher resolution, the simulations in this data set

were based on initial 3T MRI acquisitions. As a consequence, the updated BrainWeb data

revealed considerably less bright vessel and dura mater voxels than 7 T data usually does and

was not suitable to validate our methods.

These considerations led us to create our own high-resolution segmentation validation data

sets for which we established the ‘ground truth’ via manually-guided expert segmentation.

While expert segmentations have well-known drawbacks [33, 89], they also have important

advantages to alternative methods of establishing the ground truth, such as simulated phantom

data. In particular, creating a validation data set based on empirical data and expert segmenta-

tions allowed us to benchmark our methods under conditions where image intensities fell into

the expected range. Being aware of the problems with expert segmentations, we alleviate con-

cerns about the quality of our expert judgment and consequently the validity of the results pre-

sented here by taking the following measures. First, the final ground truth segmentations were

inspected by two additional experts. Second, we make the data sets and corresponding ground

truth segmentations as well as our processing scripts available. This will allow other researchers

to come up with their own judgment of the quality of the ground truth segmentation and vali-

dation data. In case changes to the ground truth are suggested and implemented, quantifica-

tion could be re-run using our openly-accessible work flow.

The 2D histogram method presented here is, in principle, capable of generating its own

exhaustive tissue-type classifications, i.e. it does not necessarily depend on existing segmenta-

tion pipelines to derive GM and WM labels. While we expect the 2D histogram method to give

no advantage over existing, fully-automated segmentation algorithms under standard condi-

tions, the histogram method will compare well in cases where standard algorithms fail. Impor-

tantly, the 2D histogram method used here does not assume the data to conform to any atlas

or template shape. Therefore, it is suitable also for acquisitions with only partial coverage (sur-

face coils) or for specific populations like infant or even dolphin brains (see S6 Fig).

Using histogram-based methods would be more attractive if the process of specifying trans-

fer functions was fully automatic. We note that there is no principled obstacle to doing this.

Indeed, information-theoretic measures have been suggested [39] that would make the nor-

malized graph-cut application fully automatic, given the specification of an appropriate stop-

ping criterion. The transfer functions (i.e. the circles and arcs applied to our 2D histograms)

that we observed for the different brain tissue types were stable across subjects and conformed

to expected, ideal shapes. This would allow to define probabilistic templates in the histogram

space and transform the methods proposed here to a fully automatic exhaustive tissue-type

classifications.

We understand our methods as a secondary, more fine-grained brain extraction. When

performing the initial brain extraction or tissue class segmentation, the user can often set

parameters of the masking to be either more restrictive (at the risk of excluding brain tissue)

or more liberal (at the risk of including a lot of non-brain tissue). We assume that, faced with

this trade-off, users will usually lean to the liberal choice of parameters to avoid that relevant

brain tissue is excluded. In such cases, we suggest our methods will prove useful. Our methods

go beyond simply choosing more restrictive parameters because they focus on information

that is relevant to excluding vessels, dura mater and connective tissue (Fig 1D).
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Our comparisons were limited to segmentations obtained from FSL, SPM and CBS tools.

While several MRI studies at the mesoscale have used alternative ways of establishing tissue

class segmentations [90, 91], we decided to limit our comparison to openly available algo-

rithms. Furthermore, the resolution of our validation data exceeded the recommended input

range for FreeSurfer (1 mm to 0.75 mm isotropic).

As is to be expected, we found our methods to be impacted by the CNR of the input data

(S2–S4 Figs). In particular, additional noise caused the 2D histogram representation for both

methods to conform less to expected template shapes. However, we note that for images that

were acquired with currently very common imaging parameters at ultra high fields, we found

our methods to offer clear benefits in GM segmentations. Furthermore, in case acquisitions

are noisier than the ones tested here, additional processing steps like non-linear anisotropic

smoothing [66, 67] might be applied to mitigate noise issues (see S5 Fig).

By making our validation data sets publicly available, we hope to inspire further algorithmic

testing and development. There is currently a lack of validation data for the performance of tis-

sue-type classification of MRI data acquired at ultra-high fields with sub-millimeter resolution.

By publishing our data, our code and our work flow, we invite fellow scientists to benefit from

our work but also to further contribute to it. The neuro-imaging community can use our data

to test the performance of entirely new methods or modifications to existing segmentation

algorithms. Contributions could be made in the form of additional high-resolution data, more

ground truth segmentations and algorithmic improvement. Anticipating such algorithmic

improvements, we envision a future where segmentation of volumetric images will become

gradually less laborious despite increasing resolution and volume of the data.

Supporting information

S1 Fig. Appropriate kernel width approximates lower resolution. Intensity (left) and gradi-

ent magnitude (right) images are shown for T1w MRI data of a human brain that was either

acquired at 0.7 mm isotropic (top, sub-02) or at the 0.25 mm isotropic [64, 65] (bottom). By

choosing an appropriate kernel width for the very high resolution image (here alpha = 1), the

gradient magnitude image can be approximated to the lower resolution image, thus making it

possible to use the gradient magnitude method also for very high resolutions.

(TIFF)

S2 Fig. Impact of additional noise on GraMag method. Shown are intensity images (top

row), gradient magnitude images (middle row) and 2D histograms for the GraMag method

(bottom row) for a T1w-divided-PDw MRI ratio image without any additional noise (left) and

after applying a moderate (middle) and high (right column) amount of additive Gaussian

noise with two levels of constant standard deviation of the distribution. The moderate noise

(σ = 25) is 16% and high noise (σ = 50) is 32% calculated relative to the mean cortical gray mat-

ter intensity. Noise causes structures in the 2D histogram that are initially well-defined to

spread outward and, at very high noise levels, to lose shape. Images show a transverse slice for

an exemplary subject (sub-02).

(TIFF)

S3 Fig. Impact of additional noise on CoDa method I. Shown are T1w (left), PDw (middle)

and T2�w (right column) without any additional noise (top) and after applying a moderate

(middle) and high (bottom row) amount of additive Gaussian noise with two levels of constant

standard deviation of the distribution. Moderate noise (σ = 25) is 13% for T1w, 4% for PDw,

5% for T2�w calculated relative to the mean cortical gray matter intensity. High noise (σ = 50)

is 27% for T1w, 9% for PDw, 10% for T2�w calculated relative to the mean cortical gray matter
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intensity. Images show a transverse slice for an exemplary subject (sub-02).

(TIFF)

S4 Fig. Impact of additional noise on CoDa method II. Shown are 2D histograms resulting

from the CoDa method without any additional noise (left) and after applying a moderate (mid-

dle) and high (right column) amount of noise (see S3 Fig for additional details). Noise was

either applied to all three channels equally (top row) or only to the T2�w image (bottom row).

Noise causes structures in the 2D histogram that are initially well-defined to spread outward

and, at very high noise levels, to lose shape. The histograms are based on data for one exem-

plary subject (sub-02).

(TIFF)

S5 Fig. Noisy images can be denoised using non-linear anisotropic smoothing. Shown are

intensity images (top row), gradient magnitude images (middle row) and 2D histograms for

the GraMag method (bottom row) for a T1w-divided-PDw MRI ratio image without any addi-

tional noise (left), after applying a high amount of noise (see S2 Fig for additional details)

(middle), and after smoothing the noise-affected image (right column). As previously seen,

noise causes structures in the 2D histogram to spread outward and to lose shape. This process

can be reversed and noise-affected images can thus be recovered if a non-linear anisotropic

smoothing filter (see [66]) is applied. With smoothing, structures become more confined to

the expected regions and well-defined shapes are regained. Images show a transverse slice for

an exemplary subject (sub-02).

(TIFF)

S6 Fig. Application of GraMag to extra-ordinary MR images. Shown are several examples of

the variety of existing volumetric datasets for which our methods appear to be useful. Every

column represents different images: the brain of a bottle-nose dolphin [92] (left), the occipital

lobe of a human brain with 100 micron resolution [93] (middle) and a human motor cortex

acquired with small partial coverage (T1w EPI) with anisotropic resolution [94] (right). For

every image we show a slice (top row), selected voxels in the 2D histogram (middle row) and

selected voxels overlaid on the slice (bottom row). These images do not contain large intensity

inhomogeneities. Therefore, no bias-field correction was performed. Mild non-linear aniso-

tropic diffusion-based smoothing was applied to enhance CNR.

(TIFF)

S7 Fig. 2D histogram representation of three 3D MRI contrast images. (A) Each voxel is

considered as a three part composition. The barycentric coordinates of each composition

which reside in 3D simplex space are represented in 2D real space after using a isometric log-

ratio (ilr) transformation. (B) The ilr coordinates are used to create 2D histograms represent-

ing all voxels in the images. The blue lines are the embedded 3D real space primary axes (note

that the input image units were initially normalized to have similar dynamic ranges to account

for the large scale difference between T2� and MP2RAGE images). In this case, the ilr coordi-

nates are not easily interpretable by themselves but they are useful to visualize the barycentric

coordinates which are interpretable via the embedded real space axes. Darker regions in the

histogram indicate that many voxels are characterized by this particular scale invariant combi-

nation of the image contrasts. In this representation, brain tissue (WM and GM, red dashed

lines) becomes separable from non-brain tissue (black dashed lines and arrows). If desired,

subcortical structures like the red nucleus, the globus pallidus and the subthalamic nucleus can

additionally be identified (white circle).

(TIFF)
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S8 Fig. Flowchart diagram MPRAGE GraMag pipeline. This diagram provides a detailed

overview of all the inputs, processing steps and outputs for MPRAGE GraMag pipeline. Rect-

angular shapes represent processing steps, rhombic shapes represent input or outputs and

cylindrical shapes represent input or output locations.

(TIFF)

S9 Fig. Flowchart diagram MPRAGE CoDa pipeline. This diagram provides a detailed over-

view of all the inputs, processing steps and outputs for MPRAGE CoDa pipeline. Rectangular

shapes represent processing steps, rhombic shapes represent input or outputs and cylindrical

shapes represent input or output locations.

(TIFF)

S10 Fig. Flowchart diagram MP2RAGE GraMag pipeline. This diagram provides a detailed

overview of all the inputs, processing steps and outputs for MP2RAGE GraMag pipeline. Rect-

angular shapes represent processing steps, rhombic shapes represent input or outputs and

cylindrical shapes represent input or output locations.

(TIFF)

S11 Fig. Flowchart diagram MP2RAGE CoDa pipeline. This diagram provides a detailed

overview of all the inputs, processing steps and outputs for MP2RAGE CoDa pipeline. Rectan-

gular shapes represent processing steps, rhombic shapes represent input or outputs and cylin-

drical shapes represent input or output locations.

(TIFF)

S12 Fig. 2D histogram representation for MRI image of a human brain. The intensity (A)

and gradient magnitude (B) values of a T1w-divided-by-PDw MRI image (MP2RAGE, 0.7

mm isotropic resolution) are represented in a 2D histogram (C). Darker regions in the histo-

gram indicate that many voxels are characterized by this particular combination of image

intensity and gradient magnitude. The 2D histogram displays a characteristic pattern with tis-

sue types occupying particular areas of the histogram (D). Voxels containing CSF, dura mater

or blood vessels (black dashed lines and arrows) cover different regions of the histogram than

voxels containing WM and GM (red dashed lines). As a result, brain tissue becomes separable

from non-brain tissue.

(TIFF)

S1 Appendix. Time benefit estimation.

(PDF)

S1 Video. Using normalized graph cut decision trees for MRI data. The exploration of nor-

malized graph cut decision trees allows for finding a more restrictive brain mask that excludes

dura mater and brain vessels in a quick and intuitive manner.

(WEBM)

S1 Table. Segmentation performance MPRAGE data without artifact masking.

(PDF)

S2 Table. Segmentation performance MP2RAGE data without artifact masking.

(PDF)
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tions for Compositional Data Analysis. Mathematical Geology. 2003; 35(3):279–300. https://doi.org/10.

1023/A:1023818214614

60. Lancaster HO. The Helmert Matrices. The American Mathematical Monthly. 1965; 72(1):4. https://doi.

org/10.1080/00029890.1965.11970483

61. Tsagris MT, Preston S, Wood ATA. A data-based power transformation for compositional data. arXiv

preprint. 2011;(1):1–9.

62. Smith SM. Fast robust automated brain extraction. Human Brain Mapping. 2002; 17(3):143–155.

https://doi.org/10.1002/hbm.10062 PMID: 12391568

63. Ashburner J, Friston KJ. Unified segmentation. NeuroImage. 2005; 26(3):839–851. https://doi.org/10.

1016/j.neuroimage.2005.02.018 PMID: 15955494
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