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Abstract. Both copy number variation (CNV) and circadian 
clock genes play a critical role in the etiology and pathogenesis 
of colorectal cancer (CRC); however, a comprehensive analysis 
of CNV‑driven circadian clock genes is urgently required. 
The present study aimed to investigate the systematic asso-
ciations between somatic cell CNVs and circadian clock 
gene expression in patients with CRC. Using somatic CNV, 
legacy clinical information and gene expression data from 
The Cancer Genome Atlas, 295 genes that were significantly 
differentially expressed and with significantly different CNV 
were obtained, and the expression of the genes, among which 
15 were circadian clock genes, was significantly associated 
with CNV. Further analysis revealed that aryl hydrocarbon 
receptor nuclear translocator‑like 2 (ARNTL2) expression 
and CNV in these circadian clock genes were significantly 
associated with survival time in patients with CRC, and the 
expression of ARNTL2 was also significantly associated with 
the pathological stage of CRC. Gene set enrichment analysis 
found that ARNTL2 is enriched for gene sets associated with 
CRC pathogenesis such as the p53 signaling pathway. These 
results suggest that ARNTL2 may be a promising prognostic 

biomarker for patients with CRC, and that circadian clock 
genes play an important role in CRC through CNV.

Introduction

Colorectal cancer (CRC) has high morbidity and mortality 
rates worldwide, at 10.2 and 9.2%, respectively (1). Despite 
the therapeutic advances and earlier detection, the 5‑year 
survival rate of patients with CRC remains unsatisfactory (2). 
One of the main reasons for this is that the occurrence of 
CRC is a complex multi‑stage process, and involves further 
investigation into the proliferation, differentiation, apoptosis 
and survival mechanism of intestinal epithelial cells  (3). 
Therefore, biomarkers for early detection and targeted therapy 
are urgently required.

Biological rhythms are produced by conserved tran-
scription and translation feedback loops of circadian clock 
genes within the cells (4). A circadian disruption has been 
recognized as a potential independent risk factor for cancer 
development  (5). Circadian clock genes appear to have 
multifaceted functions during cancer development and can 
act to both suppress tumors and promote carcinogenesis (6). 
Research by the International Agency for Research on Cancer 
has also demonstrated that this disruption increases the risk 
of CRC (7). Several previous studies have also demonstrated 
that large variations in expression levels, both up‑ and down-
regulated, and the circadian clock genes are associated with 
tumor progression and mammalian tumorigenesis for several 
malignancies, such as breast cancer (8), liver cancer (9) and 
colorectal carcinoma (10). In addition, the association between 
single nucleotide polymorphisms (SNPs) in circadian clock 
genes and disease has also been analyzed (11,12). These studies 
indicate that mutations or deregulated expression of circadian 
clock genes are frequently detected in different tumors. Copy 
number variation (CNV) is a kind of structural variation at 
the submicroscopic level, which refers to the complex chro-
mosomal structural variation forms derived from the deletion 
and/or duplication of DNA fragments longer than 1 kb (13). 
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Increasing research has shown that CNV is closely associated 
with the risk of tumor occurrence (14,15). The mechanism of 
action of CNV and circadian clock genes in many cancer types 
has been intensively investigated, such as liver cancer (16) and 
lung cancer (14); however, the study of the mechanism of action 
of CNV‑driven circadian clock genes in cancer (including 
CRC) has not yet been reported.

The aryl hydrocarbon receptor nuclear translocator‑like 2 
(ARNTL2) gene is also known as brain and muscle 
ARNT‑like 2 (BMAL2), which is mapped to human chromo-
some 12p11.22‑11.23 and shares 52% amino acid identity with 
zebrafish Bmal2 and 49% identity with human BMAL1 (17). 
Schoenhard et al (18) hypothesized that the different ARNTL2 
spatiotemporal distributions allow intrinsic circadian clocks to 
modulate the amplitudes of their oscillators while maintaining 
circadian periodicity. Research on ARNTL2 in various 
complex diseases (19,20), particularly cancer, has gradually 
become accepted. Studies have shown that ARNTL2 is a poten-
tial biomarker for tumor invasion in colorectal cancer (21), 
and it is significantly associated with lung cancer risk (22). In 
addition, a previous study has analyzed SNPs associated with 
ARNTL2 expression in patients with breast cancer (23).

The aim of the present study, using somatic CNV, legacy 
clinical information and gene expression data from the Cancer 
Genome Atlas (TCGA; https://tcga‑data.nci.nih.gov/tcga/), 
was to investigate the systematic association between somatic 
cell CNV and circadian clock gene expression in patients 
with CRC, and to identify ARNTL2 as a contributing gene in 
CRC development that may serve as a promising therapeutic 
strategy.

Materials and methods

Data source and preprocessing. The CNV data were down-
loaded from TCGA data portal on October 23, 2018. The data 
contained 979 files and 460 cases for CNV analysis by setting 
specific parameters: Data Type was Masked Copy Number 
Segment. In addition, mRNA expression profile data and the 
corresponding legacy clinical information of patients with 
CRC from TCGA were also downloaded and contained 480 
CRC tumor specimens and 41 tumor‑adjacent tissue specimens. 
Firstly, 18 samples without adequate clinical information were 
removed, which left 462 patients with CRC with complete 
survival information. Subsequently, low‑abundance mRNA 
expression data were removed; mRNAs with expression value 
>1 in 90% samples were retained. For the duplication data 
in one sample, the average values of the mRNA expression 
were adopted. The 2,083 differentially expressed mRNAs 
were analyzed using R/Bioconductor package edgeR (version 
3.26) (24), with the criteria of |log2fold‑change (FC)| >1.5 and 
q‑value <0.01. No patients were involved in clinical trials in 
this study.

Identification and functional analysis of CNV‑driven 
circadian clock genes. Gene Ontology (GO) analysis was 
performed to explore the functional roles of the target genes 
using DAVID (http://www.david.abcc.ncifcrf.gov/)  (25). 
Finally, the enriched GO terms with gene count >5 and P<0.05 
were selected for further analyses. Cytoscape software (version 
3.7.1) (26) (with ClueGO and CluePedia plugins) was used 

for the Kyoto Encyclopedia of Genes and Genomes (KEGG) 
analyses, showing only pathways with P<0.05.

Circadian clocks exist endogenously in almost every 
organism  (6). The Circadian Gene Database (CGDB; 
version 1.0; http://cgdb.biocuckoo.org/index.php)  (27) was 
used to identify the circadian clock genes. Circadian genes 
were selected that had been identified experimentally. A litera-
ture search using PubMed database was performed to identify 
the latest candidate circadian clock genes.

To verify the expression profile of ARNTL2 in CRC tissues 
and their non‑tumoral counterparts, a meta‑analysis was 
performed using the Oncomine database (version 4.5; www.
oncomine.org) by setting specific parameters: ‘ARNTL2’, 
‘Cancer vs. Normal Analysis’, ‘Colorectal Cancer’ and 
‘mRNA’.

The java software Gene Set Enrichment Analysis (GSEA; 
version 3.0) was employed to perform the statistical significance 
test between two phenotypes (http://software.broadinstitute.
org/gsea/index.jsp), with gene expression data and phenotype 
data (high/low group of expression values of ARNTL2) to be 
prepared according to the GSEA guidelines (28). The param-
eters were set as follows: Using KEGG pathway as a reference, 
permutation type to be the phenotype, and at least 15 genes 
in a single pathway. The mean expression levels (905.75) of 
ARNTL2 in all cancer samples were obtained. In the GSEA 
analysis, the expression level higher than this value is consid-
ered to be high expression, and below this value is considered 
to be low expression.

Statistical analysis. The segment mean at (‑0.2, 0.2) was gener-
ated by the error of the instrument measurement, so the copy 
number of such genes was confirmed as unchanged. A χ2 test 
was used to compare the number of CNVs in cancer tissue and 
paracancer tissue, with a criterion of false discovery rate (FDR) 
<0.01. A Kolmogorov‑Smirnov test was used to identify genes 
with CNV and expression consistency, with the criterion of 
P<0.005. A Kolmogorov‑Smirnov test is based on cumulative 
distribution functions to test whether a distribution conforms to a 
theoretical distribution or whether there is a significant difference 
between two empirical distributions. To assess the result set of 
genes, a hypergeometric test was used to verify whether known 
CRC‑related genes were enriched on the set. To identify the asso-
ciations between clinicopathological parameters and the presence 
of copy number loss or gain in the regions containing selected 
genes, a Pearson's χ2 test was performed. A Kaplan‑Meier curve 
analysis was performed to analyze the association between the 
gene and survival time, and statistical significance was assessed 
using the R package ‘survival’  (29). P<0.05 (two‑sided) was 
considered to indicate a statistically significant difference.

Results

Patient characteristics. The detailed clinical and pathological 
characteristics of the study population, including age, sex, 
pathological stage, pathological tumor (pathological T), 
pathological node (pathological N) and pathological metas-
tasis (pathologic M), were summarized in Table I. All the 462 
patients were pathologically diagnosed with colorectal cancer. 
The median age for all patients was 60 years (interquartile 
range, 31‑90 years).
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Screening of potential CRC‑related gene CNVs. To identify 
potential candidate genes within the regions exhibiting CNVs 
in the TCGA dataset, the frequency of copy number loss and 
gain in the regions was obtained. First, the instrument measure-
ment error was filtered, and the area where the CNV number 
was significantly different located, and finally the genes in these 
areas were identified. Finally, the χ2 test was conducted on CNV, 
and a total of 10,256 genes with significant differences in CNV 
expression were obtained. KEGG and GO enrichment analyses 
was then performed with a smaller set of genes (n=295). A 
detailed workflow chart of the methodology is illustrated in 
Fig. 1A. CNV occurred differently on each chromosome in 
patients with CRC. Large‑scale losses of copy numbers occurred 
only on certain chromosomal regions, such as chromosomes 4, 
11, 14, 15, 18, 21 and 22. However, on other chromosomes, such 
as chromosomes 7, 12 and 13, only gains occurred (Fig. 1B).

Screening of differentially expressed mRNAs. Based on the 
threshold criteria of |log2FC| >1.5 and q‑value <0.01, 2,083 
mRNAs were identified as aberrantly expressed mRNAs 
in the CRC tissues compared with that in the adjacent 
non‑tumorous tissues. It was found that a number of mRNAs 
were upregulated or downregulated >100‑fold (Fig. 2A). To 
further investigate the mechanism of CNV in the development 
and progression of CRC, the intersection of genes involved in 
significant abnormal CNV and differentially expressed genes 
was obtained. Subsequently the association analysis of the 

expression profiles and copy number profiles for the aforemen-
tioned small gene set was performed, with a result that 295 
mRNAs had statistically significant differential expression 
and a difference in CNV. Finally, GO enrichment analysis and 
a KEGG pathway analysis of these mRNAs were performed, 
suggesting that the mRNAs were primarily enriched in only 
one KEGG pathway (P<0.05; Fig. 2B) and eight GO terms 
(Benjamin P<0.01; Fig. 2C). Recent evidence suggests that the 
circadian system can influence the Wnt/β‑catenin signaling 
pathway (30), which is a critical pathway for the development 
and progression of CRC (31). Known CRC‑related genes were 
mapped to the set of 295 mRNAs, and the 73 CRC‑related 
genes were significantly enriched in this gene set (hypergeo-
metric test, P=4.725561x10‑9).

PubMed and CGDB databases were searched, and 15 of the 
295 mRNAs were found to be circadian clock genes (Table II). 
Among the 15 circadian clock genes, NR3C2 and P2RX1 were 
downregulated, and the remaining 13 genes were upregulated 
in patients with CRC. Gain was the predominant type of 
alteration for BIRC7, GNGT1, NFE2L3, PDX1 and UBE2C, 
while loss of APCDD1 and P2RX1 was found in >30% of 
cases. No significant changes in the expression levels of other 
important genes, such as PER and ARNTL1, in the circadian 
clock signaling pathway, were found.

Subsequently, a meta‑analysis on the expression of the 
15 clock genes in CRC using public microarray datasets 
from the Oncomine database was performed. As presented in 
Fig. 3, the expression patterns of the clock gene ARNTL2 in 
10 independent microarray datasets and TCGA datasets were 
consistent with previous analyses  (32,33). Overexpression 
was found in all CRC tissues compared with that in the 
tumor‑adjacent tissue (gene median rank, 86.0; P=9.39x10‑7).

Function analysis of the clock gene ARNTL2 driven by CNV 
in CRC. The expression of the gene ARNTL2 was found in 
the 452 patients with CRC, among which a total of 48 CNVs 
occurred, with the presence of copy number gain in 44 patients 
and copy number loss in 4 patients. ARNTL2 was null in 10 
samples, which were consequently removed from the study. 
The association of ARNTL2 mRNA expression levels with 
CNV type was identified. As shown in Fig. 4A, single gain 
and amplification of ARNTL2 were associated with increased 
mRNA expression, and deletion of ARNTL2 was associated 
with decreased mRNA expression. Therefore, ARNTL2 gene 
expression and CNV in CRC tissues show the same trend.

A Kaplan‑Meier curve analysis was performed to inves-
tigate the overall survival time for ARNTL2 in patients with 
CRC. Compared with that of the patients with normal copy 
number, the survival rate of the patients with abnormal copy 
number (gain or loss) of ARNTL2 was significantly decreased 
(Fig. 4B), whereas the overall survival of patients with CRC 
with ARNTL2 CNV was significantly decreased. The expres-
sion levels of ARNTL2 were also associated with the overall 
patient survival; higher expression levels indicated greater 
survival time (Fig. 4C).

To further investigate whether ARNTL2 is involved in the 
development and progression of CRC, the tumor tissue samples 
were divided into several subgroups based on pathological 
TNM (T3+T4 vs. T1+T2, N2+N3 vs. N0+N1, M1 vs. M0) 
and pathological stages (I‑II vs. III‑IV) (34). A comparative 

Table I. Clinicopathological features of the 462 patients with 
colorectal cancer.

	 Primary,	 Metastatic,
Feature	 n (%)	 n (%)	 NA, n (%) 

Age, years			 
  <60	 81 (24.0)	 42 (36.5)	 4 (40.0)
  >60	 256 (76.0)	 73 (63.5)	 6 (60.0)
Sex			 
  Male	 177 (52.5)	 53 (46.1)	 6 (60.0)
  Female	 160 (47.5)	 62 (53.9)	 4 (40.0)
Pathological T			 
  T1‑T2	 77 (22.8)	 10 (8.7)	 3 (30.0)
  T3‑T4	 260 (77.2)	 105 (91.3)	 7 (70.0)
Pathological n stage			 
  N0	 231 (68.5)	 35 (30.4)	 5 (50.0)
  N1‑N2	 106 (31.5)	 80 (69.6)	 5 (50.0)
Pathological stage			 
  I‑II	 228 (67.7)	 23 (20.0)	 2 (20.0)
  III‑IV	 106 (31.5)	 87 (75.7)	 5 (50.0)
  NA	 3 (0.9)	 5 (4.3)	 3 (30.0)
Vital status			 
  Alive	 288 (85.5)	 73 (63.5)	 7 (70.0)
  Death	 49 (14.5)	 42 (36.5)	 3 (30.0)

T, tumor; N, node.
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Figure 1. Analyzed workflow and CNV identification results. (A) Workflow for identification and analysis of CNV‑driven circadian clock genes. (B) Circos 
plot of the human genome showing chromosome structure and CNV in CRC. The outer most layer is the chromosome model, and the inner layer illustrates the 
CNV. A gene with CNV is annotated in the inner layer, in which a blue dot near the center of the circle denotes the presence of copy number loss, and a black 
dot near the outer layer denotes the presence of copy number gain. CNV, copy number variation; CRC, colorectal cancer; CGBD, Circadian Genome Database; 
GSEA, Gene Set Enrichment Analysis; ARNTL2, aryl hydrocarbon receptor nuclear translocator‑like 2.

Figure 2. Functional analysis of copy number variation‑driven genes. (A) Volcano plots show the expression profiles of mRNAs. The vertical line represents 
2.0‑fold up‑ and downregulation between the colorectal cancer tissues and the adjacent non‑tumorous tissues, while the horizontal line represents the q‑value. 
The red dots in the figure represent the differentially expressed mRNAs, with the left side indicating downregulation of mRNA expression and the right 
side indicating upregulation of mRNA expression. (B) The Kyoto Encyclopedia of Genes and Genomes pathway analysis of the 295 mRNAs. (C) The Gene 
Ontology enrichment analysis of the 295 mRNAs.
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analysis of ARNTL2 expression profiles was performed. As 
a result, ARNTL2 expression demonstrated a statistically 
significant association with pathological stages (P<0.001) and 
pathological N (P<0.001) (Fig. 4D).

To gain a clearer understanding of the expression of ARNTL2 
in patients with cancer and adjacent tissues, a paired difference 
analysis of ARNTL2 from 41 patients with cancer and adjacent 
tissues was performed. The expression of ARNTL2 in cancer 
tissues was significantly higher compared with that in adjacent 

tissues (P=1.058x108; Fig. 4E). This is consistent with the results 
of our previous analysis of the difference.

To investigate the biological characteristics shared by 
the different ARNTL2 expression levels, a GSEA was 
performed. The most significant pathways for the upregu-
lated gene sets in the significance order (nominal P<0.05) 
are shown in Fig. 5. The six pathways, including ‘natural 
killer cell‑mediated cytotoxicity’, ‘oocyte meiosis’, the 
‘p53 signaling pathway’, ‘pancreatic cancer’, ‘prostate 

Table II. Information of the 15 circadian clock genes. 

Gene	 Location	 Log2FC	 FDR	 Loss	 Gain	 Normal	 FDR	 P‑valuea

APCDD1	 Chr18: 10,454,628‑10,489,948	 2.483785	 2.96x10‑12	 154	 9	 289	 1.14x10‑87	 1.93x10‑5

AQP9	 Chr15: 58,138,169‑58,185,911	 2.470799	 6.41x10‑10	 59	 2	 391	 6.65x10‑12	 2.16x10‑3

ARNTL2	 Chr12: 27,332,854‑27,425,289	 2.484382	 1.58x10‑41	 4	 44	 404	 2.46x10‑8	 1.28x10‑7

BIRC7	 Chr20: 63,235,883‑63,240,507	 2.466525	 1.09x10‑11	 0	 272	 180	 3.08x10‑87	 1.37x10‑6

GNGT1	 Chr7: 93,591,573‑93,911,265	 3.164943	 4.55x10‑10	 1	 109	 342	 2.94x10‑25	 5.17x10‑6

HSD11B2	 Chr16: 67,430,652‑67,437,553	‑ 2.35877	 5.09x10‑65	 2	 27	 423	 1.08x10‑4	 1.44x10‑3

IL23A	 Chr12: 56,334,174‑56,340,410	 3.021143	 4.60x10‑23	 0	 35	 417	 6.42x10‑5	 4.20x10‑3

KRT23	 Chr17: 40,922,696‑40,937,634	 7.179667	 2.02x10‑34	 9	 38	 405	 8.50x10‑9	 7.79x10‑7

NFE2L3	 Chr7: 26,152,240‑26,187,125	 2.676112	 1.01x10‑85	 0	 161	 291	 1.53x10‑41	 3.89x10‑17

NR3C2	 Chr4: 148,078,762‑148,444,698	‑ 2.63761	 4.00x10‑84	 29	 2	 421	 1.74x10‑3	 4.86x10‑5

ORM2	 Chr9: 114,329,869‑114,333,252	 2.989211	 1.39x10‑11	 9	 19	 424	 1.42x10‑3	 3.11x10‑3

P2RX1	 Chr17: 3,896,592‑3,916,500	‑ 2.29178	 2.75x10‑55	 138	 3	 311	 1.42x10‑36	 5.26x10‑7

PDX1	 Chr13: 27,920,020‑27,926,231	 4.797965	 1.54x10‑55	 0	 200	 252	 1.37x10‑58	 8.04x10‑18

RNFT2	 Chr12: 116,738,178‑116,853,631	 2.006432	 4.31x10‑30	 3	 31	 418	 1.08x10‑4	 4.09x10‑3

UBE2C	 Chr20: 45,812,576‑45,816,957	 2.15803	 5.49x10‑43	 1	 276	 175	 5.72x10‑89	 6.51x10‑36

aKolmogorov‑Smirnov test. FC, fold‑change; FDR, false discovery rate. 

Figure 3. Oncomine analysis of ARNTL2 mRNA expression levels in the 10 independent microarray datasets and The Cancer Genome Atlas datasets. Data 
are shown as the median rank of ARNTL2 through each dataset analysis. P‑value for ARNTL2 is obtained using the median ranked analysis. ARNTL2, aryl 
hydrocarbon receptor nuclear translocator‑like 2.
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cancer’ and the ‘toll like receptor signaling pathway’ were 
significant in the ARNTL2 high expression phenotype. 
Among these pathways, some were directly linked to cancer 
pathogenesis, such as ‘pancreatic cancer’, the ‘p53 signaling 
pathway’ (35) and ‘prostate cancer’. There were no signifi-
cant pathways for downregulated gene sets with nominal 
P<0.05.

Discussion

CRC is the third most commonly occurring cancer world-
wide and the fourth most frequent cause of death having 
an oncological origin (1); it is considered to be a complex 
disease resulting from a combination of environmental 
factors, genetic/epigenetic predisposing variants and specific 
molecular mechanisms. Chromosomal instability (CIN) has 
been defined as a major factor contributing to CRC carcino-
genesis (36). CNV exists as a genetic polymorphism in the 
human genome that is a type of CIN (37). The form of CNV 
directly affecting the expression of a gene is mainly the dele-
tion or amplification of a copy number of a gene, causing an 
increase or decrease in the amount of gene expression and 
increasing the occurrence of the disease (38). A previous 
study found that tumor necrosis factor receptor superfamily 
member 10C CNV is associated with metastatic colorectal 
cancer (39). In the present study, an integrated analysis of 

CNV data and gene expression profile for CRC with a large 
sample size (n=503, including 462 patient samples and 41 
tumor‑adjacent tissue samples) was performed. A total of 
10,256 genes with significantly different CNV and 2,083 
aberrantly expressed mRNAs were obtained, of which 295 
genes showed a statistically significant association between 
the gene expression and CNV; therefore, these 295 genes 
were regarded as CRC‑related CNV‑driven genes. The 
present findings may provide a new theoretical basis for the 
pathogenesis of CRC and also contribute to the development 
of new therapeutic strategies.

In the present study, CNV‑driven genes were only enriched 
in the Wnt signaling pathway. The Wnt pathway is involved 
in the regulation of important physiological processes such as 
normal embryo development, and cell proliferation and differ-
entiation, and its abnormal activation plays an important role 
in the process of tumor development, metastasis and thera-
peutic resistance (40). A previous study showed that >90% of 
colorectal cancer cases have abnormal activation of the Wnt 
classical signaling pathway (41). Meanwhile, some studies 
suggested that the regulation of circadian clock genes, such as 
CRY1 (42) and Rev‑erbα (43), was mediated by the classical 
Wnt/β‑catenin signaling pathway. Further study of the Wnt 
signaling pathway will help to develop new strategies for CRC 
treatment. The present findings provide a new clue to study 
this signaling pathway.

Figure 4. Functional analysis of copy number variation‑driven clock gene ARNTL2 in CRC. (A) Box plot of ARNTL2 mRNA expression levels associated 
with the corresponding gene status. (B) Kaplan‑Meier survival analysis of ARNTL2 gene status. (C) Kaplan‑Meier survival analysis of ARNTL2 expres-
sion levels. (D) ARNTL2 expression associated with the development and progression of CRC. Y‑axis represents the expression value following ARNTL2 
correction. (E) Paired difference analysis of 41 pairs of paracancerous and cancer samples of ARNTL2. Y‑axis indicates the uncorrected expression value of 
ARNTL2. CRC, colorectal cancer; ARNTL2, aryl hydrocarbon receptor nuclear translocator‑like 2; CI, confidence interval; N, node.
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Studies in circadian clock genes may expand the 
knowledge regarding the mechanism of occurrence and 
development of tumors, and may provide a new approach 
for tumor therapy  (44). Indeed, multiple epidemiological 
studies have shown that impaired function of the circadian 
clock promotes development of cancer (45). For circadian 
clock genes, including Per1, Per2, and Per3, the expression 
levels of which are often found to be decreased in pancreatic 
cancer (46) and gastric cancer (47), as well as the disrup-
tion of autonomic rhythm. Additionally, in a previous study, 
CRC showed lower expression of NPAS2 compared with that 
in healthy tissues, and this was negatively associated with 
tumor size, stage and metastasis (48). A previous study has 
also shown that varying degrees of biorhythm destruction are 
found in 50% of metastatic cancer cases (49). In the present 
study, 15 CNV‑driven circadian clock genes in CRC tissues 
were identified, indicating that these circadian clock genes 
may play a role in cancer. However, this requires further 
validation at the protein level. ARNTL2 has been described 
as a candidate biomarker in different cancer types, including 
kidney cancer  (50), colorectal cancer  (21) and hepatocel-
lular carcinoma (51), and similar results for ARNTL2 were 
obtained in the present study. As research continues to 
deepen, numerous studies have found that genomic altera-
tions involving circadian clock genes, such as point mutations 
or CNV, are frequently found in different human cancer 
types. The rs1801260 SNP, in the 3' untranslated region of 
the clock circadian regulator gene, was found to be associ-
ated with the development of CRC (52). The CNV form of 

the BMAL1 gene has also been found in multiple cancers, 
such as breast and colorectal cancer (35 gains and 7 losses in 
CNV numbers) (53). Previous studies have observed a close 
association between ARNTL2 expression and various types 
of cancer  (21,22); however, no studies have characterized 
the association between CNV in ARNTL2 and cancer. In 
the present study, upregulation of ARNTL2 in patients with 
CRC was found, and ARNTL2 CNV has three forms: Single 
loss, single gain, and amplification. Further analysis found 
that the expression of ARNTL2 has the same trend as CNV. 
Our study showed that the expression level of ARNTL2 was 
abnormal due to the presence of CNV, which promoted the 
occurrence and development of CRC.

Genetic drifts in ARNTL2 polymorphisms have been 
described in the human population leading to variation in 
the circadian rhythm regulation  (54). The expression of 
ARNTL2 was significantly associated with survival time 
in patients with CRC. A previous study found that high 
ARNTL2 expression predicted poor survival in patients with 
lung adenocarcinoma (55). However, in the present study, low 
ARNTL2 expression predicted poor survival in patients with 
CRC. This may be due to the heterogeneity between different 
types of cancer. Moreover, a previous report indicated that 
ARNTL2 high levels significantly influence mammary tumor 
metastasis (23). ARNTL2 levels were also significantly associ-
ated with pathological stage and N stage in patients with CRC 
in the present study. ARNTL2 CNV was also significantly 
associated with survival time in patients with CRC. These 
data suggest that ARNTL2 can be used as a prognostic factor 

Figure 5. Gene Set Enrichment Analysis results showing the association of aryl hydrocarbon receptor nuclear translocator‑like 2 expression levels and 
colorectal cancer‑related gene sets.
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for CRC, which may bring more personalized treatment to 
patients with CRC. GSEA analysis showed that ARNTL2 is 
enriched for gene sets associated with CRC pathogenesis, such 
as the ‘p53 signaling pathway’. These findings suggest that the 
CNV‑driven clock gene ARNTL2 plays a crucial role in the 
development and progression of CRC. However, this study has 
some limitations as it was an in silico study. Further in vivo 
investigations would be beneficial to fully understand the roles 
of ARNTL1 in CRC initiation and development.

In summary, to the best of our knowledge, the present 
study demonstrates for the first time that circadian clock genes 
play an important role in CRC in the form of CNV, and that 
15 CNV‑driven clock genes are associated with the etiology 
and pathogenesis of CRC. Finally, it was concluded that CNV 
in the circadian clock gene ARNTL2 may be a useful genetic 
biomarker for the treatment of individualized CRC patients 
and may identify patients who may benefit from more aggres-
sive systemic treatment strategies.
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