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Abstract: Fetal undernutrition is a risk factor for cardiovascular diseases. Male offspring from rats
exposed to undernutrition during gestation (MUN) exhibit oxidative stress during perinatal life and
develop cardiac dysfunction in ageing. Angiotensin-II is implicated in oxidative stress-mediated
cardiovascular fibrosis and remodeling, and lactation is a key developmental window. We aimed to
assess if alterations in RAS during lactation participate in cardiac dysfunction associated with fetal
undernutrition. Control dams received food ad libitum, and MUN had 50% nutrient restriction during
the second half of gestation. Both dams were fed ad libitum during lactation, and male offspring
were studied at weaning. We assessed: ventricular structure and function (echocardiography);
blood pressure (intra-arterially, anesthetized rats); collagen content and intramyocardial artery
structure (Sirius red, Masson Trichromic); myocardial and intramyocardial artery RAS receptors
(immunohistochemistry); plasma angiotensin-II (ELISA) and TGF-β1 protein expression (Western
Blot). Compared to Control, MUN offspring exhibited significantly higher plasma Angiotensin-II
and a larger left ventricular mass, as well as larger intramyocardial artery media/lumen, interstitial
collagen and perivascular collagen. In MUN hearts, TGF-β1 tended to be higher, and the end-diastolic
diameter and E/A ratio were significantly lower with no differences in ejection fraction or blood
pressure. In the myocardium, no differences between groups were detected in AT1, AT2 or Mas
receptors, with MrgD being significantly lower in the MUN group. In intramyocardial arteries from
MUN rats, AT1 and Mas receptors were significantly elevated, while AT2 and MrgD were lower
compared to Control. Conclusions. In rats exposed to fetal undernutrition, RAS disbalance and
associated cardiac remodeling during lactation may set the basis for later heart dysfunction.

Keywords: angiotensin II; fetal programming; fibrosis; lactation; left ventricular hypertrophy; cardio-
vascular remodeling; RAS receptors

1. Introduction

Epidemiological studies evidence that exposure to an adverse intrauterine environ-
ment, such as sub-optimal nutrition, leading to low birth weight (LBW), is associated with
increased risk of cardiovascular diseases (CVD), a process known as fetal programing [1].
In animal models of fetal programming induced by various adverse factors, left ventricular
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hypertrophy (LVH) is frequently found [2–4]. Cardiac hypertrophy and remodeling are the
structural basis of cardiac dysfunction, ultimately leading to coronary heart disease (CHD)
and heart failure.

The perinatal period seems to be a key developmental window where alterations
initiated in fetal life may further consolidate, establishing the grounds for disease. Indi-
viduals born small usually exhibit accelerated growth during the postnatal period, known
as catch-up growth. Studies in LBW children have demonstrated that catch-up growth
increases the risk of developing cardio-metabolic diseases later in life [5–7]. In experi-
mental animal models, there is also evidence that catch-up growth during lactation has
deleterious consequences, leading to adipose tissue accumulation [8,9]. In a rat model of
fetal programming induced by undernutrition (MUN rat), we have observed that catch-up
growth also affects cardiovascular organs; male rats exposed to undernutrition are born
with a smaller aorta, which is enlarged during lactation [10].

Angiotensin II (Ang II) is a well-known factor implicated in cardiovascular remodeling
and fibrosis, with some of its effects mediated through oxidative damage [11]. We have
evidence that in the perinatal period, undernourished males exhibit an altered oxidative
balance, with low levels of antioxidants, elevated plasma biomarkers of oxidative dam-
age [12] and upregulation of cardiac NADPH [13]. Therefore, it is possible that Ang II can
participate in the development of early cardiovascular alterations, ultimately leading to
hypertension and ventricular dysfunction. The classical RAS involves angiotensin con-
verting enzyme (ACE), Ang II and the AT1/AT2 receptors. AT1 mediates vasoconstriction
and proliferation, while AT2 mediates counter-regulatory vasodilator and antiprolifera-
tive effects. In addition to the classical axis formed by ACE, accumulating evidence has
revealed a new axis, implicating ACE type 2 (ACE2). ACE produces several peptides
such as Ang-(1–9), derived from Ang I, alamandine, derived from Ang A and Ang 1(1–7),
derived from Ang II or from Ang-(1–9), the latter through the enzymatic activity of ACE or
neutral endopeptidase (NEP). In turn, Ang-(1–7) can interact with MasR and Alamandine
with MrgD receptors, exerting vasorelaxant, antiproliferative and antifibrotic actions [14],
but also exerting a pivotal role in balancing the vasoconstrictor, proliferative and fibrotic
actions of Ang II through AT1 receptors [15,16]. These counter-regulatory RAS peptides
may have promising actions against cardiac remodeling [17]. Previous clinical and ex-
perimental studies have evidenced the implication of RAS alterations in the kidney and
vasculature in fetal programming of hypertension [18,19]. Most of the studies have focused
on the classical Ang-II axis via AT1 and AT2 receptors. However, there is evidence that
the Ang-(1–7) axis, Mas and MrgD receptors, may also contribute to the development and
progression of hypertension induced by fetal stress factors [20].

We hypothesize that RAS alterations during lactation may set the basis for later heart
disease. To assess this hypothesis, we have studied male offspring from MUN rats, which
develop hypertension in adult life and cardiac dysfunction in ageing. At the end of lactation,
we assessed: (1) plasma Ang II concentrations; (2) expression of AT1, AT2, Mas and MrgD
receptors in the myocardium and intramyocardial arteries, (3) cardiac and intramyocardial
artery remodeling and fibrosis and (4) cardiac function. We conclude that in rats exposed
to fetal undernutrition, RAS alterations and associated cardiac remodeling along lactation
may set the basis for later development of cardiac diseases.

2. Materials and Methods
2.1. Maternal Undernutrition (MUN) Model

Experiments were performed in Sprague Dawley rats from the colony maintained at
the Animal House facility of the Universidad Autónoma de Madrid (ES-28079-0000097). All
animal procedures were performed according to the guidelines from Directive 2010/63/EU
on the protection of animals for scientific purposes, from the Spanish legislation (RD
1201/2005), and they were approved by the Ethics Review Boards of Universidad Autónoma
de Madrid (CEI-UAM 96-1776-A286) and the Regional Environment Committee of the
Comunidad Autónoma de Madrid (RD 53/2013; Ref. PROEX 04/19; date 19 March 2019).
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The rats were housed in buckets 36.5/21.5/18.5 cm (length/width/height) on aspen
wood bedding and maintained under controlled conditions (temperature 22 ◦C, relative
humidity 40% and 12/12 light/dark photoperiod). They were fed with a breeding diet
(EuroRodent Diet 22; 5LF5, Labdiet, Madrid, Spain) containing 55% carbohydrates, 22%
protein, 4.4% fat, 4.1% fiber and 5.4% mineral, with a sodium content of 0.26%. Drinking
water was provided ad libitum in all cases.

The experimental model was induced as previously described [13]. Twelve-week-old
female rats were mated, and day 1 of gestation was determined by observation of sperm
in the vaginal smear. Thereafter, they were randomly allocated to the Control group (C,
n = 5 dams) or undernutrition group (MUN, n = 5 dams). C dams received the ad libitum
diet throughout pregnancy, and MUN dams received the ad libitum diet during the first
10 days of gestation, but only 50% of the usual daily intake from day 11 to the end of
pregnancy. After delivery, both C and MUN dams were offered food ad libitum during the
whole lactation period. After birth, the pups were sexed, and the litter was standardized to
12 individuals (smaller litters were not used).

2.2. Experimental Protocols

All experimental procedures were performed at weaning in male offspring from C and
MUN groups. The experiments were performed in 1–2 males from each litter, and data were
averaged, considering sample size the number of litters, following the recommendations
for studies in experimental models of fetal programming [21]. The remaining animals
from each litter were used for other studies according to the 3Rs rule for experimental
animals [22].

The experimental procedures were organized as follows. The rats were weighted at
birth and at weaning (age 21 days). At the age of 21 days, echocardiography was performed
under anesthesia (for details, see next section). Thereafter, the rats were allowed to recover
for a period of 1–2 days. Then, hemodynamic parameters were measured under anesthesia
(for details, see next sections), and, at the end of the recording period, a blood sample was
collected in EDTA tubes. Thereafter, the animals were killed by exsanguination, and the
heart and tibia were dissected.

The blood sample was centrifuged at 1000 g for 10 min at 4 ◦C to obtain plasma, which
was stored at −80 ◦C until use for quantification of Ang II.

The heart was rinsed with saline; the atria were discarded; and the ventricles were
weighted with an analytical balance (Boeco, Hamburg, Germany) fixed in 4% paraformalde-
hyde (PFA) and paraffin-embedded for histological procedures. The tibia was measured
with a digital caliper (Comecta, Nessler, Madrid, Spain) to quantify heart weight relative
to tibia length. Some hearts were snap frozen and kept at −80 ◦C for analysis of protein
expression by Western blot.

2.3. Transthoracic Echocardiography (TTE)

TTE was performed as previously described [13,23]. Briefly, the rats were anesthetized
with diazepam 4 mg/kg and ketamine 10 mg/kg i.p. TTE was performed using the
VIVID q system (GE Healthcare, Munich, Germany) equipped with a 13-MHz probe
(12S-RS, GE). The images were acquired with the animals in the left lateral decubitus.
M-mode imaging of the parasternal short-axis (papillary level) view allowed measurement
of the end-diastolic internal diameter (LVIDd) and end-systolic internal diameter (LVIDs),
posterior wall thickness at diastole (PWd) and interventricular septum thickness at diastole
(IVSd). Values were determined by averaging the measurements of 3 consecutive cardiac
cycles in accordance with the American Society of Echocardiography guidelines [24]. The
above measurements were used to calculate left ventricular mass (LVM), expressed in
grams, as previously described [25], using the following Equation (1):

LVM = 0.8 [1.04 (IVSd + LVIDd + PWd)3 − (LVIDd)3] + 0.6 g (1)
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Echocardiographic parameters were calculated as previously described [23]. LVM
was adjusted for body weight by calculating the left ventricular mass index (LVMI). Left
ventricular ejection fraction (LVEF) and fractional shortening were calculated as measures
of LV systolic function. The pulsed-wave Doppler early-to-late transmitral peak diastolic
flow velocity ratio (E/A ratio) was calculated to assess diastolic function (E, mitral peak
early-filling velocity; and A, mitral peak flow velocity at atrial contraction). The transmitral
flow velocity profile was determined by positioning a sample volume at the tip of the mitral
valve on the para-apical long-axis view. The E-wave deceleration time was measured as the
time interval between peak E-wave velocity and the point where the descending E-wave
(or its extrapolation) intercepted the zero line. Relative parietal wall thickness (PWT) was
calculated as IVSd + PWd/LVIDd.

2.4. Hemodynamic Parameters

Briefly, as previously described [13], the rats were anaesthetized with 37.5 mg/kg
ketamine hydrochloride and 0.25 mg/kg medetomidine hydrochloride i.p. and placed on
a heating blanket. The iliac artery was exposed, and a catheter was inserted (filled with
0.9% saline solution with 1% heparin). The catheter was connected to a pressure transducer
(Statham; Harvard Apparatus, Holliston, MA, USA) and to a PowerLab system/8SP
(ADInstruments; Oxford, UK). The pressure wave was displayed for approximately 45 min
and stored for later analysis of data. Heart rate (HR) and systolic and diastolic blood
pressure (SBP, DBP) were measured in the chart, averaging over approximately 1 min of
the last part of the recording period.

2.5. Histology

Serial 5 µm thick sections were cut from the paraffin-embedded ventricles below
the chordae tendineae with a microtome (Leitz, Wetzlar, Germany). Thereafter, they
were dewaxed, rehydrated, and used for several histological and immunohistochemical
procedures, as describe below. Morphometry was performed with FIJI software [26].

To assess myocardial wall area, heart sections were stained with hematoxylin-eosin.
Sections were visualized with a ×10 objective using an Olympus DMLB microscope, and
images were taken with a high-resolution Leica DC200 digital camera (Leica Microsystems,
Heerbrugg, Switzerland). From each image, left and right ventricular areas were separately
quantified. Data were expressed as mm2.

To analyze intramyocardial artery structure, 4–5 images from each left ventricle were
acquired with a ×40 objective. In every image, all intramyocardial arteries were measured,
analyzing total artery and lumen areas. From these parameters, the wall cross sectional area
was calculated as total artery area – lumen area. Since there were arteries with different
sizes, the relative media/lumen areas were calculated to normalize the data.

To quantify collagen content, sections were stained with Sirius red [27] and visualized
with an Olympus DMLB microscope, equipped with a polarizer/analyzer set, using a ×10
or a ×40 objective, for the myocardium and intramyocardial arteries, respectively.

Polarized light images were subsequently transformed to binary images with FIJI
software. The images were first thresholded, and binary images were obtained. Collagen
relative content in the myocardium was quantified as the collagen-stained area relative to
total myocardial area. From each ventricle, 5 different regions were quantified, and their
relative collagen areas averaged. Intramyocardial artery collagen was evaluated as the
collagen-stained area relative to lumen area.

2.6. Immunohistochemistry

Immunohistochemistry was performed as previously described [28] with some modi-
fications. Briefly, sections were incubated with rabbit primary polyclonal antibodies (1:50
dilution; overnight; 4 ◦C, in a humidified chamber). The following primary antibodies
were used: anti-AT1 (Santa Cruz biotechnology: sc-31,181; Heidelberg, Gernany), anti-AT2
(Abcam: ab19134; Cambridge, UK), anti-Mas (Abcam: ab197992; Cambridge, UK) and



Pathophysiology 2021, 28 277

anti-MrgD (Alomone Labs: AMR-061; Jerusalem, Israel). The specificity of the primary
antibodies has been established in previous studies; AT1 [29,30]; AT2 [31,32]; Mas [33]
and MrgD [34]. In addition, specificity for all the primary antibodies was tested in our
experimental conditions, by pre-adsorbing the individual primary antibody with a tenfold
excess of its respective blocking peptides, overnight, at 4 ◦C (data not shown). Sections
were incubated using the avidin-biotin complex (ABC) and 3,3’-diaminobenzidine tetrahy-
drochloride (DAB) as a chromogen. For negative controls (controls for non-specific binding
of the secondary antibody), primary antibodies were omitted (data not shown). Micro-
graphs of each immunostained section were acquired using a CDC camera (Leica DFC295,
Leica Microsystems, Heerbrugg, Switzerland) mounted on the microscope Nikon Eclipse
E400 (Nikon Corporation, Tokyo, Japan) with a×20 objective (0.5 NA, cover glass thickness,
0.17 mm; working distance 2.1;), using Leica Microsystems software version 3.5.0 (Leica
Microsystems, Heerbrugg, Switzerland). Illumination conditions of the bright field optics
and camera exposure were maintained constant throughout the acquisition of all tissue
sections, including negative control sections. Acquired images (24 bit, 8 bits/color), with a
resolution of 3072 × 2304 pixels, corresponded to a 655.36 × 491.52 µm area on the original
histological section (1 pixel = 0.21 µm; a calibration micrometer slide was used to convert
pixels into µm).

Histomorphometric analysis has been previously described as a valid methodol-
ogy [35–37]. Quantitative analysis/processing of digital images from DAB-immunostained
sections were assessed using the SACAIA method and the PAQI software (CEMUP, Porto,
Portugal), as previously described [38]. Briefly, from RGB (red, green, blue) digital color
images, only the blue component was selected for analysis, due to its higher contrast.
Boundaries were delineated to extract the object of interest and to set thresholds for auto-
mated DAB-staining segmentation using image analysis. As immunohistochemistry can
provide detailed information concerning the location/presence/area of immunostaining,
to make the analysis more comprehensive, we evaluated the expression on two different
cardiac structures: intramyocardial arteries and the myocardium. To determine differ-
ences between stained and non-stained tissue, negative control sections were imaged with
the same microscope-illumination and camera-operating conditions, and the average of
stained level was determined: a value of 171 for a maximum of 255. This average value
was used for threshold segmentation of the stained areas of each structure. The level of
immunostaining was obtained by quantifying the fraction of the tissue that was stained
with DAB (stained fractional area) using digital images of DAB-labeled immunostains from
heart sections.

2.7. Quantification of Plasma Ang II Levels

Ang II was extracted from plasma samples by solid phase extraction (Discovery®

DSC-Ph SPE tube (Sigma-Aldrich, Lisbon, Portugal), and Ang II levels were quantified by
ELISA using a commercial kit (Peninsula Laboratories International).

2.8. Western Blot

Snap frozen hearts were used to quantify protein expression of TGF-β1 as previously
described [13]. Fifty µg protein samples were separated by 10% SDS-PAGE gels, and the
primary antibody against TGF-β1 (rabbit polyclonal Santa Cruz Biotechnology; 1:1000
dilution; Heidelberg, Germany) was applied overnight at 4 ◦C. Thereafter, the primary
antibody was washed, and the secondary antibody (anti-rabbit IgG-peroxidase conjugated,
dilution 1:10000) was applied for 1 h at 37 ◦C. The blots were then washed and incubated
in commercial enhanced chemiluminescence reagents (ECL Prime, Amersham Biosciences,
Buckinghamshire, UK), and the bands were detected by the ChemiDoc XRS + Imaging
System (Bio-Rad, Hércules, CA, USA). To prove equal loadings of samples, blots were
re-incubated with the GADPH antibody (1:3000 dilution; Sigma-Aldrich, Hércules, CA,
USA). Blots were quantified using Image Lab 6.1 software (Bio-Rad, Hércules, CA, USA),
and expression values were normalized with GADPH.
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2.9. Statistical Analysis

Statistical analysis was performed with GraphPad Prism (version 5, San Diego, CA,
USA). The Kolmogorov–Smirnov test was used to analyze the normality of the data. When
more than one animal per litter was used, the data were averaged, and sample size was
considered the number of different litters. Data followed a normal distribution; therefore,
they were expressed as mean ± standard error of mean (SEM). Student’s t test was used to
assess statistical differences between C and MUN offspring. A statistically significant level
was established at p < 0.05.

3. Results
3.1. Anthropometric Variables

At birth, body weight was significantly smaller in MUN male rats compared to Control
(MUN = 4.62± 0.24 g, n = 30 rats, 5 litters; C = 6.71± 0.25 g, n = 30 rats, 5 litters; p < 0.05). At
weaning there was no significant difference between MUN and control rats either in body
weight (MUN = 50.01 ± 2.6 g; n = 7 rats, 5 litters; C = 52.4 ± 1.7 g; p-value = 0.31) or tibial
length (MUN = 20.33 ±0.3 mm; C = 20.55 ±0.40 mm; n = 7 rats, 5 litters, p-value = 0.61).

3.2. Hemodynamic Parameters

No significant differences were detected between Control and MUN rats in SBP (Con-
trol = 85.99± 4.18 mmHg, n = 10 rats, 5 litters; MUN = 79.22± 6.53 mmHg, n = 10 rats, 5 lit-
ters), DBP (Control = 43.59± 2.05 mmHg, n = 10 rats, 5 litters; MUN = 37.61 ± 5.05 mmHg,
n = 10 rats, 5 litters) or HR (Control = 308± 26 bpm, n = 10 rats, 5 litters; MUN = 319 ± 18 bpm,
n = 10 rats, 5 litters).

3.3. Transthoracic Echocardiography

MUN males showed a significantly larger IVSd, PWd and LVMI compared to Con-
trols (Figure 1). The LVIDd and E/A ratio were significantly smaller in MUN rats when
compared to Control. No statistical differences were detected in LVEF (Figure 1).

3.4. Heart and Intramyocardial Artery Morphology

Compared to Control, MUN offspring exhibited a significantly larger heart weight/body
weight (C = 5.1 ± 0.1 mg/g; n = 10 rats, 5 litters; MUN = 5.9 ± 0.0 mg/g; n = 10 rats,
5 litters, p < 0.05), and heart weight/tibial length (C = 11.9 ± 0.2 mg/mm; n = 10 rats,
5 litters; MUN = 14.1 ± 0.9 mg/mm, n = 10 rats, 5 litters).

Histological analysis revealed that myocardial area was also significantly larger
in MUN compared to C rats (Figure 2), both the area of left ventricle (C = 23.6 ± 0.5,
MUN = 26.9 ± 1.0 mm2, p < 0.05) and right ventricle (C = 5.7 ± 0.4, MUN = 8.7 ± 0.3 mm,
p < 0.01).
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Figure 1. Echocardiographic parameters in 21-day old male offspring from rats exposed to mater-
nal undernutrition during pregnancy (MUN) and control rats fed ad libitum (C). (a) IVSd, inter-
ventricular septum thickness at diastole; (b) PWd, posterior wall thickness at diastole; (c) LVMI, 
left ventricular mass index; (d) LVIDd, left ventricular internal diameter at diastole; (e) E/A, E, 
mitral peak early-filling velocity, and A, mitral peak flow velocity at atrial contraction; (f) LVEF, 
left ventricular ejection fraction. Sample size per group: 6 rats from 5 litters. Student’s t test, * p < 
0.05 compared to C rats. 
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Figure 1. Echocardiographic parameters in 21-day old male offspring from rats exposed to maternal
undernutrition during pregnancy (MUN) and control rats fed ad libitum (C). (a) IVSd, interventricular
septum thickness at diastole; (b) PWd, posterior wall thickness at diastole; (c) LVMI, left ventricular
mass index; (d) LVIDd, left ventricular internal diameter at diastole; (e) E/A, E, mitral peak early-
filling velocity, and A, mitral peak flow velocity at atrial contraction; (f) LVEF, left ventricular ejection
fraction. Sample size per group: 6 rats from 5 litters. Student’s t test, * p < 0.05 compared to C rats.
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Figure 2. Myocardial and intramyocardial artery area in 21-day old male offspring from rats exposed to maternal undernu-
trition during pregnancy (MUN) and control rats fed ad libitum (C). (a) Myocardial area with representative images from
sections stained with hematoxylin-eosin and captured with ×10 objective; (b) intramyocardial artery media/lumen and
representative images stained with Masson Trichrome Stain and captured with a ×40 objective. Sample size per group:
7 rats from 5 litters. Student’s t test, * p < 0.05 compared to C rats.

In intramyocardial arteries, the relative media/lumen area was also significantly larger
in MUN compared to C rats (Figure 2).

Interstitial collagen content was significantly larger in the ventricles from MUN rats
compared to Controls. Perivascular collagen content was also significantly higher in
intramyocardial arteries from MUN compared to Control rats (Figure 3).

3.5. Expression Of RAS Receptors in Myocardium and Intramyocardial Arteries

Immunoreactivity against the AT1, AT2, Mas and MrgD receptors was observed in
the myocardium from MUN and C rats. No statistical differences between C and MUN
rats were detected in AT1, AT2 or Mas receptors, while there was a lower expression of
MrgD receptors in MUN rats compared to C (Figure 4).
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Figure 3. Heart collagen content in 21-day old male offspring from rats exposed to maternal undernutrition during preg-
nancy (MUN) and control rats fed ad libitum (C). (a) Interstitial collagen and representative binary images; (b) perivascular
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quantification. Left panels show quantitative analysis of the relative area occupied by collagen. Sample size per group:
7 rats from 5 litters. Student’s t test, * p < 0.05 compared to C rats.

All receptor types were expressed in intramyocardial arteries, being more abundant
in the intima than in the media and adventitial layers. In C rats, immunoreactivities
for AT1 and AT2 receptors were higher than for Mas and MrgD receptors. In MUN
rats, AT1 presented the highest expression, followed by similar immunoreactivities of
AT2 and Mas receptors, with the MrgD receptor having the lowest immunoreactivity.
Intramyocardial arteries from MUN rats exhibited a significantly higher expression of AT1
and Mas receptors than controls. By contrast, AT2 and MrgD receptor expression was
lower in MUN when compared to C rats (Figure 5).
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Figure 4. Immunohistochemistry for RAS receptors in the myocardium from 21-day old male off-
spring from rats exposed to maternal undernutrition during gestation (MUN), and control rats fed ad
libitum (C). (a) AT1 receptors; (b) AT2 receptors; (c) Mas receptors; (d) MrgD receptors. Heart sections
were stained with individual primary antibodies; the resulting immuno-complexes were detected
with a biotinylated secondary antibody and amplified by ABC complex, using 3,3′-diaminobenzidine
(DAB) as chromogen. Images were obtained with a ×20 objective. Left panels show quantitative
analysis of MUN and C myocardium-stained fractional areas (percentage of tissue total area) using
SACAIA method. Representative DAB images are shown in right panels (scale bar = 20 µm). Sample
size per group: 7 rats from 5 litters. Student’s t test, * p < 0.05 compared to C.
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receptors; (c) Mas receptors; (d) MrgD receptors. Heart sections were stained with individual primary antibodies; the
resulting immunocomplexes were detected with a biotinylated secondary antibody, and amplified by ABC complex, using
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3.6. Plasma Ang II Levels

Plasma concentration of Ang II was markedly higher in MUN rats compared to
Controls (Control = 0.87 ± 0.38 pg/mL, n = 5 rats, 5 litters; MUN = 59.42 ± 17.70 pg/mL,
n = 7 rats, 5; litters; p < 0.05). We also detected that 50% of Control rats had plasma Ang II
levels below the detection level of the ELISA kit, while in the MUN group, only 15% of the
rats were below detection level.

3.7. TGF-β1 Protein Expression

The protein expression level of TGF-β1 tended to be higher in ventricles from MUN
rats but did not reach a statistically significant difference (p = 0.070) (Figure 6).
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4. Discussion

This work aimed to assess if dysregulation of Ang II and RAS receptors in rats exposed
to insufficient nutrient supply in utero is associated with cardiac alterations during lactation,
which may set the basis for the reported ventricular dysfunction in this animal model of
fetal programming in ageing.

In the present study, we found that MUN males exhibit LVH at weaning, evidenced
by the larger relative heart weight, which was also confirmed by histology and echocar-
diography. Our findings are in accordance with data reported in other animal models of
fetal programming [2,3,39]. We have previously shown—and confirmed in the present
study—that MUN offspring are born with lower weight compared to Control rats, but
exhibit a quicker weight gain during lactation, reaching a similar body weight by weaning.
Our previous reports evidenced a disproportionate growth of cardiovascular tissues during
this rapid growth period. Thus, the aorta of MUN rats, that exhibits hypotrophy at birth,
develops hypertrophic remodeling by weaning [10]. Similarly, we have evidence that, at
birth, the heart weight/body weight ratio is significantly reduced in MUN male rats when
compared to sex-matched counterparts, and, in the present study, we evidenced enlarged
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ventricular mass at the end of lactation. Our results are in accordance with those observed
in rats exposed to protein restriction during fetal life, i.e., they are born with a thinner
left ventricular wall, and, during lactation, they have a steeper cardiac growth, resulting
in hypertrophy around 28 days of postnatal life. Taken together, these data suggest that
lactation is a critical developmental window, when a disproportionate cardiovascular
growth may set the basis for CVD later in life.

As expected, in MUN rats we also detected hypertrophic remodeling of intramyocar-
dial arteries. Coronary artery enlargement has also been described in male rats exposed to
Zn restriction during the intrauterine period. However, in this rat model, coronary artery
hypertrophy was shown to be associated with hypertension [40], which is a well-known
stimulus for cardiac and vascular remodeling. We discarded hypertension as an initiating
factor, since, at the age of 21 days, MUN males exhibited similar blood pressure levels
compared to Control rats.

Ang II is known to exert trophic actions in the cardiovascular system [11], being
associated with CVD. We detected a significant elevation of Ang II in the plasma of MUN
males at weaning, which may account for the perinatal hypertrophy found in heart in the
present study, and previously reported in blood vessels [10]. The implication of RAS in
both renal and vascular systems, and its effects on the development of hypertension, has
been widely demonstrated in several models of fetal programming, [19]. RAS alterations
in early stages of life seem to contribute to later development of CVD in other models of
hypertension. In spontaneously hypertensive rats (SHR), ACE inhibition during gestation
is able to reprogram the development of hypertension and LVH in the offspring, leading
to an attenuated form of the disease [41]. Similarly, treatment of SHR dams with the ACE
inhibitor captopril reduced heart hypertrophy, fibrosis, and vascular remodeling in the
offspring [42]. Furthermore, in a mice model of fetal programming induced by maternal
undernutrition, there is evidence of increased angiotensinogen and ACE mRNA expression
in fetal hearts, associated with later development of LVH [43]. The markedly higher plasma
levels of Ang-II in MUN compared to Control rats suggests that the ACE/Ang II axis
predominates over the ACE-2/Ang-(1–7) and Ang-(1–9) axis. This is in accordance with
data reported in sheep exposed to glucocorticoids during gestation, which evidenced a
lower ACE2 activity in this model of fetal programming [20]. These data suggest that an
excess in Ang II circulating levels may be a common alteration induced by exposure to
different fetal stress factors.

Fibrosis, together with inflammation and cell growth, are one of the characteristic
pathological features of an elevated Ang II. In the present study, we found an increased
collagen content in both the myocardium and in the adventitia of intramyocardial arteries
from MUN rats. TGF-β1 is one of the factors implicated in cardiac hypertrophy and fibrosis,
which is upregulated in response to several pathological stimuli [44], including excess
Ang II [45]. We found a higher, but not significant, elevation of TGF-β1 in MUN hearts.
Therefore, although it is possible that it can play a role in the observed cardiac remodeling,
it may not be the sole mechanism. Several cytokines associated with cardiac hypertrophy
are also synthesized by fibroblasts and cardiomyocytes, as well as by circulating immune
cells [44], and it has been proposed that low grade of systemic inflammation leading to
oxidative stress may contribute to myocardial remodeling. For example, in patients with
preserved ejection fraction, this is a plausible mechanism leading to cardiomyocyte hyper-
trophy [46]. In addition, in a rat model of fetal programming induced by preeclampsia,
myocardial inflammatory pathways have been described in males, but not in females [47].
21-day old MUN males exhibited a normal ejection fraction, but diastolic dysfunction
together with hypertrophy and fibrosis, and we have previously demonstrated that males,
but not females, exhibit increased plasma oxidative damage biomarkers [12] and elevated
cardiac NADPH oxidase expression [13]. Since oxidative stress plays a central element in
cardiac hypertrophy and fibrosis in the context of elevated Ang II, through the activation of
NADPH oxidase [44,48], we suggest that oxidative damage could be a potential mechanism
implicated in the Ang-II mediated pathological responses observed in the heart from MUN
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males. The role of inflammation as intermediate mechanisms between fetal undernutrition
and cardiovascular remodeling deserves additional studies.

Regarding the contribution of the four types of receptors analyzed, in intramyocar-
dial arteries from MUN rats, we found a higher immunoreactivity of AT1, but a lower
expression of AT2 receptors. Regarding the contribution of receptors for Ang-(1–7) and
alamandine, we found an increase in Mas, but a decrease in the MrgD receptor. Both
receptors play a similar role, reducing fibrosis and increasing vasodilatation [15,49]. Since
the highest immunoreactivity was found for AT1 receptors, we suggest that AT1-mediated
responses are likely to play a major role in the intramyocardial artery remodeling pro-
cess. This could also explain our previous findings regarding oxidative stress in this rat
model, since NADPH oxidase effects are mediated through AT1 receptors [50]. The lower
expression of AT2 and MrgD receptors may also participate, through a reduction in their
antifibrotic and antiproliferative counter-regulatory actions. Besides, a reduction in these
receptors could contribute to coronary artery dysfunction later in life by reducing vascular
relaxation. In the myocardium from MUN rats, we did not find a significant difference in
AT1, AT2 or Mas receptors, but did find a lower MrgD immunoreactivity. This receptor
counteracts the proliferative and fibrotic actions of Ang II [28,38]. AT1 exhibited the highest
immunoreactivity from all the receptors analyzed, and Ang II was markedly elevated in
the plasma from MUN rats. We suggest that a reduced expression of MrgD could result in a
disbalance between proliferative/antiproliferative responses, contributing to the observed
ventricular hypertrophy.

Echocardiographic data showed that, by the age of 21 days, MUN males already
exhibited a reduction in diastolic function, demonstrated by the significant decrease in the
E/A ratio. This alteration is likely the consequence of cardiac remodeling. The elevation of
LVM and the increased PWT are indicative of concentric remodeling [51]. This structural
alteration, together with the elevation of interstitial collagen, increased ventricular stiffness,
reducing the filling capacity of the ventricles, as demonstrated by the smaller end-diastolic
diameter in the hearts from MUN rats. Despite the alteration in diastolic function, we did
not find significant changes in the ejection fraction, which we have reported in MUN rats
at old age [13]. Cardiac dysfunction in adult and old age has been previously described in
other animal models of fetal programming. For example, moderate undernutrition during
intrauterine life in baboons produces myocardial remodeling and reduced cardiac function
in adults [52]. Rats exposed to hypoxia or to undernutrition during fetal life showed
increased left ventricular end diastolic pressure and reduced recovery after ischemia
reperfusion injury at the age of 7 months [4]. However, early diastolic dysfunction induced
by fetal programming has not been previously reported. The presence of concentric
remodeling is associated with a worse prognosis and heart failure [23]. Therefore, our data
suggest that the perinatal development of concentric remodeling and diastolic dysfunction
in MUN rats represents an initial stage of heart disease, developing into heart failure
in ageing. Besides, a rigid ventricle, together with the observed intramyocardial artery
remodeling and fibrosis, may also compromise coronary artery function.

ACE inhibitors and AT1-blockers are widely prescribed for the treatment of hyper-
tension and congestive heart failure in humans. In animal models of fetal programming,
these drugs have been shown to be effective in blood pressure lowering [19]. Our data add
evidence that early RAS alterations may be an initial step in later development of heart
failure and suggest the possibility to prevent cardiac dysfunction by targeting RAS. Further
studies are needed to analyze the potential of RAS blockade in early stages of life as a
therapeutic target in LBW individuals with high risk of CVD.

5. Conclusions

We found that fetal undernutrition followed by accelerated growth induces cardiac
concentric hypertrophy and intramyocardial artery remodeling, accompanied by fibrosis,
together with alterations in Ang II levels and a disbalance in some RAS receptors. We
suggest that the aforementioned alterations may be responsible for the reduced diastolic
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function already observed at this early age, which can set the basis for later development
of cardiac dysfunction and coronary heart disease in later stages of life. Based on our
previous data evidencing increased ROS and NADPH oxidase expression in the heart
during lactation, we suggest that oxidative stress plays a central role and may be the link
between RAS disequilibrium and cardiac structural alterations, and the role of inflammation
as a mediator of these responses deserves further attention. Figure 7 summarizes the main
conclusions of the study.
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