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Abstract

Bioturbation is one of the most widespread forms of ecological engineering and has significant implications for the
structure and functioning of ecosystems, yet our understanding of the processes involved in biotic mixing remains
incomplete. One reason is that, despite their value and utility, most mathematical models currently applied to bioturbation
data tend to neglect aspects of the natural complexity of bioturbation in favour of mathematical simplicity. At the same
time, the abstract nature of these approaches limits the application of such models to a limited range of users. Here, we
contend that a movement towards process-based modelling can improve both the representation of the mechanistic basis
of bioturbation and the intuitiveness of modelling approaches. In support of this initiative, we present an open source
modelling framework that explicitly simulates particle displacement and a worked example to facilitate application and
further development. The framework combines the advantages of rule-based lattice models with the application of
parameterisable probability density functions to generate mixing on the lattice. Model parameters can be fitted by
experimental data and describe particle displacement at the spatial and temporal scales at which bioturbation data is
routinely collected. By using the same model structure across species, but generating species-specific parameters, a generic
understanding of species-specific bioturbation behaviour can be achieved. An application to a case study and comparison
with a commonly used model attest the predictive power of the approach.
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Introduction

The activities of burrowing organisms affect most, if not all, parts

of the Earth’s surface [1,2]. As ecosystem engineers, they play an

influential role in the structure and functioning of terrestrial,

freshwater and marine ecosystems, including biogeochemical

cycling and net carbon storage. Despite recognition of the

importance of bioturbation over a century ago [3], resolving the

mechanistic basis of how biotic activity affects soil or sediment

functionality remains a challenge for contemporary ecologists.

Whilst terrestrial contributions have remained largely descriptive

[2], an extensive body of literature has emerged from marine

benthic systems that seek to quantify the rate and spatial extent of

infaunal-mediated particle and pore water fluid redistribution [4].

The principal way in which quantification has been achieved has

been through the empirical administering and recovery of

particulate tracers [5–11] following a short incubation (typically

1 d, e.g. [12], to 1 mo, e.g. [13]) in the presence of a known species

or assemblage. A vertical profile of the redistributed tracer (typically

at 0.5 or 1 cm resolution [14]) is then constructed and various

mathematical models [15] can be fitted to the measured profile.

The most widely applied model to describe patterns of tracer

profiles is the diffusion model, which applies Fick’s Law of

diffusion to simulate particle dispersal by analogy with diffusive

heat transport and calculates a biodiffusion coefficient, Db [16–

19]. Db is defined as the rate at which the variance of particle

location changes over time, where the variance is a measure of the

spread of particles in a tracer profile and is proportional to the

squared velocity of the diffusing particle [20]. In recognition that

species do not necessarily relocate particles diffusively, the

foundation of this approach has been extended to a family of

non-local models [19,21,22] that describe alternative modes of

particle reworking reflecting observations of species-specific

behaviours that translocate particles from one location to a non-

adjacent location, i.e. the behaviour of epifauna (e.g. Hyas araneus,

[23]), surficial modifiers (e.g. Brissposis lyrifera, [24]), gallery

biodiffusers (e.g. Hediste diversicolor, [22]), upward (e.g. Molpadia

oolitica, [25]) and downward conveyors (e.g. Cirriformia grandis, [26])

and regenerators (e.g. Uca Pugnax, [27]). In order to describe these

different modes of particle redistribution, non-local models

incorporate an exchange function K that describes particle

exchange between non-adjacent sediment layers, the form of

which is often specific to particular modes of particle movement

[28]. Whilst such models are of great value for a mathematically

coherent and elegant description of sediment particle dynamics,

they are limited in providing an understanding of the ecological
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processes that underpin particle displacement. For example, an

inherent property of the biodiffusion model is that it assumes an

infinite speed of propagation, which means the model predicts

tracer particles will penetrate deeper into the sediment than is

physically realistic [29]. Also the mismatch between the basic

assumptions of continuous mixing in differential models and

distinct mixing events can, in reality, lead to a bias towards larger

Db values, such that the relative contribution of infaunal

bioturbation will be overestimated (see e.g. [30]). Further, the a

priori assumptions made about how particles may be transported

(e.g. [23–27]), although intuitive, do not necessarily account for

the full suite of organism behaviour that may be encountered over

time [31].

An alternative to analytical approaches is the use of stochastic,

process-based simulations. Within ecology, the use of simulation

models has rapidly increased [32–34] due to the availability of

high performance computers. Random walk and lattice automa-

ton models [35–39], which allow the stochastic behaviour of

individual particles to be extrapolated into a deterministic

description of bulk sediment transport [15,35], have been offered

as an alternative to differential models. However, these models

have not been implemented in a way that allows them to be

parameterised with experimental data, nor has the code been

made available to facilitate testing and further development.

Recently, non-invasive imaging techniques have been devel-

oped that are capable of visualising optically distinct tracers

(luminophores) at high spatial (mm) resolution over time (minutes,

e.g. [23,40,41]), enabling the extent and influence of discrete

infaunal bouts of activity on particle displacement to be quantified.

Despite the step change in the quality of data these techniques

provide, it remains difficult to describe key general processes with

sufficiently few model parameters. The lack of such a broadly

applicable solution for these high resolved data has been

highlighted as a major impediment in research capability [4,14],

because the inability to establish generality limits the development

of theory and replication in multiple systems [42,43]. Here, a

simulation model is presented, together with the source code and

instructions on application (see worked example in Supplemental

Information S1), that combines the advantages of rule-based

lattice models with those of parameterisable probability density

functions to generate mixing on the lattice. Our objectives are to 1)

provide and demonstrate a mechanistic modelling framework that

can be widely adopted and applied, and that generates ecologically

relevant model output parameters that are amenable to statistical

analysis and have the potential to be incorporated into ecological

studies, and 2) show the applicability and predictive power of that

framework using an example of highly spatio-temporally resolved

experimental data on the bioturbation activity of the polychaete

Hediste diversicolor and 3) encourage further development of a

tractable framework that will hasten generic understanding

through widespread application.

Methods

Bioturbation model
We have developed a process-based, spatially explicit (2D)

simulation model that encapsulates particle displacement due to

bioturbation at high temporal and spatial resolution (see worked

example, Supplemental Information S1; sample data, Data S1; and

programming code, Code S1). The core of the model represents a

random walk approach for active particle movement and a

discrete and stochastic version of an advection model accounting

for indirect displacement ensuring mass balance across the

sediment profile. In addition to these core features, the model

can be adapted to account for limiting depth of particle mixture,

unequal probabilities of upwards- vs. downwards movement, as

well as differences in movement characteristics of marked (e.g.

luminophore tracers, [44]) and non-marked particles.

The model consists of two parts. First, the active displacement of

particles is simulated using a stochastic process that follows a strict

set of rules (see below) defining the probability, direction and

distance that each particle is displaced. Second, the model

accounts for the secondary passive rearrangement of particles that

must occur following any active redistribution of particles. For

each time step of the simulation, the two parts of the model are

repeated to determine the distribution of luminophores.

Model rules. The sediment is simulated as a grid of d rows

( = depth) and w columns ( = width) of cells with a side length that

can be adapted to the spatial resolution of the experimental data.

The dlum uppermost horizontal sediment layers represent the depth

of the experimentally applied luminophores. For each

luminophore pixel, the probability of being displaced is given by

the constant parameter ‘activity’. Since the parameter ‘activity’ is

negatively correlated to the rest period, the expected rest period of

a particle can be calculated as (1-activity)6length of one time step.

Each displaced particle is moved by a number of layers defined by

the parameter ‘distance’. The direction of vertical particle

displacement is drawn from a Bernoulli trial that can be

parameterised as appropriate (using the parameter ‘downwards’)

depending on the expected probabilities that particles will move

either upwards or downwards. Further a limiting depth of the

particle reworking activity can be set by the parameter ‘range’, in

case information on the maximal residing depth of organisms (or

particle displacement) is available.

Based on this information, particles are subtracted from layer hi

and added to layers hi+dist within the sediment profile, delimited by

the sediment-water interface at the upper boundary and the

maximal depth, d, at the lower boundary. We assume wall

boundary conditions since they closely reflect the natural system

(i.e. particles will remain in the uppermost layer instead of being

absorbed or reflected).

The active displacement of particles in one layer results in the

translocation of an equivalent number of particles into a new layer,

since each layer has a finite capacity defined by the width of the

grid, w. The method which we applied to redistribute the particles

accordingly is as follows: Starting from the bottom layer, the

number of surplus particles is calculated. The particles to be

moved are chosen randomly and relocated upwards to the layer

above. To account for any differences in the characteristics of

tracer and sediment particles, a weighting factor ‘tracerdif’ can be

applied to adapt the probability of tracer displacement relative to

non-marked particles. Now the same procedure is repeated for the

layer above and so on until the surface of the sediment is reached.

In each step, the particles that are relocated are newly chosen from

all particles present in that layer. Thus, the whole upwards

movement is divided into a large number of small steps by

different particles. In case this procedure results in a surplus of

particles at the upper-most layer (i.e. if there was active upwards-

movement) the procedure is inversed and particles are step-wise

moved downwards starting with the top-most layer.

Model parameterisation. The model described above

includes three parameters (all constant in space and time) that

can be estimated using high resolution data typically generated

from bioturbation experiments, e.g. [23,40,41]: the probability of

each particle to be displaced at a given time step, ‘activity’, the

mean distance a particle is displaced ‘distance’, and the weighting

factor ‘tracer.dif’ which accounts for possible differences in the

dislocation probability between the tracer (luminophores) and

Bioturbation Simulation Model
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non-marked sediment particles. The source of such particle

discrimination may reflect a number of effects, including

differences in the composition or surface properties of individual

particles or selective particle redistribution by fauna, but is not

necessarily known. Since the resolution of the model can be

adapted to the resolution of the data, model simulations and

experimental results can directly be compared.

To quantify the quality of the parameter values and to search

for their best combination, an objective function that reflects the

differences between simulation results to experimental data is

needed. Here, we use the summed squares of differences (sum of

sq) between the data and the model prediction for the number of

luminophores in each layer and time step. The optimal

combination of parameter values for the parameters is found

using optimisation techniques implemented within the ‘optim’

function in the core package of the programming language R [45].

To reduce computing time, optimisation is achieved in two steps.

First, a simulated annealing approach (SANN) is used to broadly

approximate the global minimum of the objective function across

parameter space. Whilst simulated annealing is very useful to find

good parameter values on a rough surface, and has a low risk of

becoming trapped at local minima [46], the method is relatively

slow [47]. Thus, as a second step, the local, but faster, Broyden-

Fletcher-Goldfarb-Shanno (BFGS) optimization algorithm [48–

51] is applied to refine the optimal parameter values.

We applied the model framework described above to investigate

the bioturbation activity of the ragworm Hediste diversicolor. In the

following, we describe the experimental data, model fitting, and

sensitivity analysis of the parameter values.

Experimental design and data collection. Sediment and

individuals of the polychaete Hediste (Nereis) diversicolor were

collected from the Ythan estuary, Scotland (57u20.0859N,

02u0.2069W). Sediment was sieved (500 mm mesh) in a seawater

bath to remove macrofauna, allowed to settle for 24 h (to retain

the fine fraction, ,63 mm) and homogenised. Sediment was added

to thin aquaria (2065640 cm) to a depth of 1561 cm, overlain by

25 cm of seawater (UV sterilized, 10 mm filtered, salinity 33).

Biomass was fixed at 2.0 g per aquarium (equivalent to

200 g m22), a level consistent with that of the study site.

Aquaria were aerated and maintained in a constant temperature

room (1162uC).

Particle bioturbation was visualised using a custom-built, time-

lapse sediment profile imaging camera (f-SPI, [23]) and fluores-

cent-dyed sediment particles (luminophores, 125–250 mm, [44]).

The f-SPI was housed inside a custom built UV illuminated

imaging box (32687662 cm; Figure S1) consisting of a camera

(Canon 400D, 390062600 pixels, i.e. 10.1 megapixels, effective

resolution = 67667 mm per pixel) and a UV light source (16
Phillips blacklight, 8W). The UV light source is necessary for

luminophore excitation (l= 375 to 500 nm) and provides

sufficient light to illuminate the sediment profile and distinguish

the sediment-water interface. Following [23], a yellow filter

(Medium yellow #010, Lee Filters, UK) was fitted to the camera

lens to remove light wavelengths solely used for luminophore

excitation (l= 375 to 480 nm) whilst allowing remaining light

wavelengths (l= 480 to 500 nm and l= 700 to 800) through to

the camera. The camera was set for an exposure of 10 s, f = 4.0,

film speed equivalent to ISO 200 and was controlled using third

party timelapse software (GB Timelapse, v. 2.0.20.0, available

from http://www.granitebaysoftware.com). After an acclimatisation

period of 24 h to allow macrofaunal burrow establishment,

luminophores (pink, 125–250 mm, 5 g aquaria21) were evenly

distributed across the sediment surface before the start of the time

lapse sequence. For the purpose of developing the model and

reducing computing time, but also because short-term particle

displacement will largely determine the displacement profile, 100

images were taken at 5 minute intervals (total experimental

time = 500 mins). Observations were taken in the dark at a time

that matched the natural dark period.

Image analysis. Images were saved in red-green-blue (RGB)

colour with JPEG (Joint Photographic Experts Group)

compression and analysed using a custom-made, semi-automated

macro adapted from Solan et al. (2004 [23]) within ImageJ (v.

1.40), a java-based public domain program developed at the USA

National Institutes of Health (available at http://rsb.info.nih.gov/ij/

index.html). The user manually draws in the sediment-water

interface on each image and selects an appropriate threshold to

select all luminophores. As the primary interest is the vertical

distribution of particles relative to the sediment water interface, it

is important that depth is measured relative to the sediment-water

interface. Therefore, the macro returns a binary matrix

(0 = sediment, 1 = luminophores) using the sediment-water

interface as the uppermost horizontal row. The total

luminophores in each pixel row are then summed to provide a

row total, which is used to construct the vertical profile of

luminophore pixels.

Fitting the bioturbation model. Following the size of the

experimental setup and the resolution of the image analysis, we

simulated the particle displacement on a grid containing 149

vertical layers (1 layer = 1 pixel row) by 2980 pixels (horizontal

width, 1 pixel = 73673 mm). In this experiment, the applied layer

of luminophore particles at time zero occupied the uppermost 20

of the 149 layers. Since we had no information on whether

particles are preferentially displaced in a particular vertical

direction (i.e. upwards or downwards), we assumed a symmetric

distribution with a mean displacement of zero (i.e. we chose a

value of 0.5 for the parameter ‘downwards’). The parameter ‘range’

was set to 1 allowing bioturbation across the whole depth of the

simulated profile. With this setup we simulated 24 time steps

(5 min time step21).

To get a first rough estimation of the shape of the objective

function across parameter space, we evaluated the sum of squares

between experimental data and model predictions for a set of 512

parameter combinations. This preliminary analysis revealed a

strong correlation between the parameter activity and the mean

distance of particle displacement when considering their influence

in the evolving sediment profile over time (Figure S2). We

therefore fixed the parameter ‘activity’ to the best value found by

the parameter scanning ( = 0.674) in order to allow for a more

stable and fine-tuned optimization of the values for the parameters

‘distance’ and ‘tracerdif’. To reduce computing time, only 1/10 of the

width of the sediment in the experimental set-up was modelled for

the parameter estimation (the dimension of the simulated grid was

d6w/10). Since we can assume that the same mixing events may

occur across the whole width of the sediment, it is valid to rescale

the model results to the full width afterwards in order to directly

compare model results and experimental data.

Sensitivity analysis. Following optimisation, we performed

a sensitivity analysis for the average distance a particle is displaced

and the difference in movement characteristics between marked

and non-marked particles. We ran the model for all possible

combinations of the values for distance at 230% to +30% relative

to the optimized value in 12 steps with equal step-size and, for

tracerdif, from 230% relative to the optimized value to +10% in 8

steps with equal step-size (since values for tracerdif are restricted

between 0 and 1.0). To quantify the relevance of the two

parameters to the dynamics of the simulation model, the objective

function is calculated for all parameter combinations as described

Bioturbation Simulation Model
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above. The range and step-width of parameter values was chosen

arbitrarily, but proved to procure an informative picture of

parameter sensitivity.

Results

The bioturbation activities of H. diversicolor resulted in a

downward redistribution of luminophore particles over time,

attaining a maximum penetration depth of ,6 mm after 500 mins

(Figure 1). During this time, individuals of H. diversicolor were

continuously active (Sequence S1) such that the majority of the

applied luminophores were located between 2–3 mm depth, but

repetitive cycles of burrow relocation and construction during

gallery formation translated into alternating bouts of high and low

rates of particle displacement (see temporal variations in central

tendency of depth trend, Figure 1). These changes, albeit subtle,

were the net effect of both the upward and downward

displacement of particles (e.g. at 0:10, 0:30 and 0:39 s, Sequence

S1), reflecting a range of frequently occurring passive and active

transport mechanisms that are not necessarily analogous to

exclusively diffusive or non-local descriptors.

By generating a visual representation of the surface of the

objective function across parameter space prior to calibration (see

worked example in Supplemental Information S1), a strong

negative correlation was found between activity and distance in their

effect on the spatio-temporal patterns within the bioturbation

model. This meant that a wide range of value combinations

(ranging from low values for activity and high values for distance, to

high values of activity and low values for distance) were similarly

plausible; the surface of the objective function shows a furrow

rather than a clear global minimum (Figure S2). However, this

preliminary optimisation showed that the best value for the

parameter activity was 0.674. For the subsequent calibration of the

two remaining parameters this value was therefore fixed to ensure

a more stable optimisation procedure. The starting values for the

parameter fitting using simulated annealing were distance = 5 and

tracerdif = 0.9. Convergence occurred after approximately 300

iterations, returning values of distance = 4.242 and tracerdif = 0.929.

Replicate (n = 10) runs of the BFGS fitting procedure indicated

that the experimentally observed sediment profiles were most

likely to be generated by mean particle displacements (6 SD) of

distance = 4.3060.07 sediment layers ( = 0.31460.03 mm), with the

mean (6 SD) likelihood that a non-marked particle will be

dislocated upwards in the passive reallocation part of the model of

98.6960.02%. Visualisation of the model output is depicted in

Figure 2, providing a reasonable approximation of experimental

observations (Figure 1).

Sensitivity analysis of distance and tracerdif showed a clear

improvement of model predictions with rising values of tracerdif

and mid-range values of distance (Figure 3). In general, however,

the sensitivity of model predictions is much lower close to the

global minimum (when tracerdif$0.80 and distance is $4.0 but

#5.0) relative to the edges of the parameter space.

The capacity of the simulation model to approximate faunal-

mediated particle movement is consistently better than that

achieved with the version of our model assuming pure diffusion

(compare model predictions in Figures 2 and 4 with the observed

data in Figure 1), especially at shallower depths within the

sediment profile. This improvement appears to be conserved over

time (compare panels in Figure 5), even though the simulation

model is describing the average movement of particles over the

whole experimental time period. These data also confirm that the

suitability of estimating Db decreases as luminophore profiles

become more complex in shape over time and less similar to the

exponential decrease described by diffusional transport. In

contrast, the simulation model performs well with the sum of

squares between the simulated and observed luminophore

distribution pattern remaining low and less variable (Figure 6),

Figure 1. Visualisation of experimental data where grey shades denote the relative density of luminophores at a given depth (y-
axis) and time point (x-axis).
doi:10.1371/journal.pone.0028028.g001
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Figure 2. Visualisation of the results of the simulation model where grey shades denote the relative density of luminophores at a
given depth (y-axis) and time point (x-axis).
doi:10.1371/journal.pone.0028028.g002

Figure 3. Visualisation of the sensitivity analysis (±30%) for the activity parameter and the parameter accounting for density
differences between luminophores and non-marked particles, ‘density’. Low values of the objective function (dark grey shades) indicate a
good fit between model predictions and the observed data. The white square indicates the location of the optimised parameter combination. Sum of
sq = sums of squares.
doi:10.1371/journal.pone.0028028.g003
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providing confidence in the fitting procedure. Moreover, the

improvement in fit of the simulation model (after ,50 minutes)

coincides with deterioration in fit of the diffusional model,

providing reassurance that the simulation model is more

appropriate as particle redistribution patterns become more

complex and integrate a wider range of infaunal activity over

time. It is important to emphasise here, however, that other

bioturbation models not presented here will also show an

improvement in fit over Db. Nevertheless, we make the

comparison here as Db is the most frequently applied model in

empirical studies that use bioturbation as a response variable

[4,52].

Discussion

The ability to collate information on faunal mediated particle

transport at high spatial (mm) and temporal (s to mins) resolution,

as achieved here, has now become routine and has led to a step

change in information capability on bioturbation [23,40,41],

replacing previous methods that involved the slicing of sediment

cores at low resolution ($0.5 cm; [53–57]). The comparative

approach we adopted here confirmed that profiles obtained at low

resolution (cm) are more likely to approximate the broadly

exponential decrease of tracers with depth, rather than the fine

detail of the tracer distribution necessary for formulating an

improved understanding of faunal mediated bioturbation. When

coupled with supporting evidence from theory [15,39] and

simulation studies [30], the argument that it is no longer

acceptable to model faunal mediated particle displacement at

low spatio-temporal resolution becomes compelling.

As a first step towards the development of a generically

applicable methodology, we have successfully applied a rule based

simulation model to highly resolved spatio-temporal bioturbation

data, avoiding the need for an exchange function that is specific to

the mode of sediment transport [14,22,28]. Hence, the simulation

model can be applied to a full range of infaunal species and/or

assemblages and direct comparisons of the output parameters can

be made using standard statistical procedures. Importantly, as

strict rules define the probability, direction and distance that each

particle is displaced, output parameters directly relate to the net

effects of faunal reworking rather than to abstract concepts (e.g.

Db refers to the rate at which the variance of particle location

changes over time; [20]) that are more difficult to interpret within

an ecological context.

A key objective of our model development was the inclusion of

sufficient detail so that we were able to reproduce the observed

distribution of tracer particles, whilst retaining sufficient simplicity

that we maximised predictive power, applicability and generic

value [58,59]. Additionally, our aim was to keep the number

parameters sufficiently low so that we avoided problems related to

over fitting [28,60]. Importantly, our work has revealed strong

sensitivity of model output to the relative values of distance and

tracerdif, indicating the potentially critical importance of accounting

for differences in density or particle behaviour between marked

(e.g. luminophores) and non-marked tracer particles [4]. Such

tracer dependent effects occur even when the luminophores are

matched as closely as possible to the natural sediment by size and

has important implications for experimental design and the

interpretation of tracer profiles; the simulation model was not

able to obtain a subsurface peak to match experimental

observations in the absence of a tracer difference (i.e. tracerdif).

Thus, a major benefit of the modelling approach we have taken is

the ease with which any differences between natural sediment and

tracer particle behaviour can be identified and accounted for.

Figure 4. Visualisation of the predicted distribution of tracer particles (luminophores) assuming a purely diffusional form of
redistribution. Grey shades denote the predicted relative density of luminophores at a given depth and time point.
doi:10.1371/journal.pone.0028028.g004

Bioturbation Simulation Model
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Having fitted tracerdif to the experimental data, it is straightforward

to explore (by running the model with tracerdif = 1.0) how tracer

particles of the same density as non-marked particles would

redistribute over time. A key recommendation of our work is that

all future studies fitting models to similar tracer data critically

evaluate whether there are differences in particle density and,

where necessary, account for same.

In fitting our model to the H. diversicolor data, we have found

there to be insufficient information to robustly fit both activity and

distance. This is due to the strong negative correlation that was

found between the two parameters in their effect on the spatio-

temporal patterns within the bioturbation model. If our single

objective was the construction of the most parsimonious model for

this particular species, there would be a strong case for reducing

the number of parameters from 3 to 2, collapsing activity and

distance into a single parameter. However, our aim is to provide a

more general framework that can incorporate species-specific or

context-specific changes in infaunal behaviour where the third

parameter may become necessary for explaining spatio-temporal

patterns of sediment redistribution. Also, in differentiating

between the likelihood of particles being displaced and the

distance they are moved when displaced, retention of the two

parameters promises to aid interpretation of results. Our

recommendation, at least until we have sufficient information

across a range of species to indicate we should do otherwise, is that

the model should always be initially fitted using all three

parameters.

The effectiveness of the biodiffusive model in describing the

bioturbation behaviour of H. diversicolor has been questioned

previously [13,22], although such discussion is a distraction as

alternative and more suitable models are available and investiga-

tors have not always applied Db appropriately [52]. It is

important, however, to consider how the output parameters

obtained here relate to the behaviour of H. diversicolor. It is clear

that the redistribution of particles by H. diversicolor occurs in bouts

of activity (every ,100 minutes) that are associated with burrow

construction, maintenance and the repositioning of the upper

region of the burrow during the establishment of new connections

with the sediment-water interface. These bouts of activity, which

presumably reflect changes in feeding behaviour following

resource depletion [61–64], result in the movement of sediment

over large spatial increments (distance = 0.31460.03 mm) relative

to mean particle size at the study site ( = 50 mm, [62]).

Importantly, advection of sediment from depth to the sediment-

water interface occurs alongside the downward movement of

particles (Sequence S1), highlighting that the a priori allocation of

species to single mechanisms of particle transport (e.g. as in [22–

27]) may not reflect changes in behaviour. By avoiding such

categorisation, the output from our model is more amenable to

direct comparison with other species and/or environmental

Figure 5. Selected profile examples of experimental data (solid line), Db predictions from a diffusional model fitted analogously to
the simulation model (dotted line) and simulation model predictions (dashed line) at time t = 100 min, 300 min and 500 min. x-axis
depicts number of luminophore pixels in a 300 pixel wide sediment profile.
doi:10.1371/journal.pone.0028028.g005
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contexts, as well as for correlating the faunal mediated

redistribution of particles to functional measures, such as nutrient

generation.

Although the model presented here considered a single species

and set of circumstances, we have provided an open modelling

structure that can be readily expanded and improved beyond

current capabilities. We envisage that this will be particularly

important as more detailed (e.g. 3- and 4-dimensional data, e.g.

[65–66]) or more stochastic (e.g. discrete event triggered

bioturbation, [23]) data becomes available in the future. Indeed,

the high resolution of the data used in the present study allowed us

to account for the differences in behaviour between the tracer

(luminophores) and natural sediment and factor it out when

characterising the species-specific parameters. Such an increased

capacity for deriving more complete approximations of bioturba-

tion is of tremendous value to, for example, efforts linking

ecosystem process to changes in levels of ecosystem functioning

(e.g. [57]). The modelling framework may be extended to

incorporate parameters that would explicitly describe temporal

variation (and indeed temporal patterns) in bioturbation activity.

Such information may become particularly useful as we begin to

scale-up from single to multi-species systems; when there is an

assemblage of bioturbators, the spatio-temporal patterns of particle

movements may be driven by a combination of, for example, high

frequency local movements, (e.g. the ghost shrimp, Neotypaea

californiensis, [67]), lower frequency (due to lower organism

densities; e.g. by spider crabs, Hyas araneus, [23]) or periodic

displacements governed by feeding behaviour (e.g snapping

shrimp, Alpheus macellarius, [68]; bivalves, Abra ovata and Abra nitida,

[41]), and/or displacement events over long distances (e.g

Holothurians, Molpadia oolitica, [25]; Polychaetes, Cirriformia grandis,

[26]). In the meantime, if we are to fully derive the benefit of

pooling experimental efforts that attempt to formulate an

improved understanding of how bioturbation contributes to global

nutrient cycling, primary productivity and other components of

the marine system, it is imperative that experimental replication

over novelty is valued [42–43], and periodic reviews and meta-

analyses (e.g. [4]) are undertaken with a view to applying and

developing theory, establishing generality and generating predic-

tive power that is relevant and of practical value [69]. It is our

hope that the model presented here will facilitate this process.

Supporting Information

Figure S1 Diagram of the custom built UV illuminated
imaging box showing the UV lighting (upper centre),
camera (right) and aquarium (left) containing sediment
(brown) and luminophores (pink). The inside of the box is

painted matt black to minimise internal reflection. A side of the

box is removed in the diagram to show the inside. Drawn to scale

(Box size = 32687662 cm).

(TIF)

Figure S2 The sum of squares (colour shades) between
the activity parameter and the mean distance of particle
displacement for the sample dataset for Hediste diver-
sicolor. Tracer difference (tracerdif) = 0.9. The sums of squares are

minimised as distanceR6.5 and activityR0.5 (darkest green

shading).

(TIF)

Code S1 Programming code in Tinn-R text editor
format (http://sciviews.org/Tinn-R/) for the process-

Figure 6. The sum of squares (measure of fit) of the commonly used Db model (grey) and the simulation model (black) over time.
We acknowledge that alternative models of bioturbation (not presented here) may also show a better measure of fit than the Db model, but provide
this comparison as Db is often the preferred model in empirical investigations using bioturbation as a response variable.
doi:10.1371/journal.pone.0028028.g006
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based, spatially explicit (2D) bioturbation simulation
model.
(R)

Data S1 Raw counts of the vertical distribution of pink
luminophore tracer particles over time for the poly-
chaete, Hediste diversicolor, used in the worked exam-
ple detailed in Supplemental Information S1.
(TXT)

Sequence S1 Time-lapse fluorescent sediment profile
imaging sequence detailing the redistribution of pink
luminophore tracer particles for the polychaete, Hediste
diversicolor. Each frame = 5 minutes of elapsed time.

(MOV)

Supplemental Information S1 Detailed guide on how to
apply and parameterise the process-based, spatially

explicit (2D) bioturbation simulation model detailed in
this contribution.

(DOC)
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