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Bayesian non-parametric (BNP) modeling has been developed and proven to be a

powerful tool to analyze messy data with complex structures. Despite the increasing

popularity of BNP modeling, it also faces challenges. One challenge is the estimation of

the precision parameter in the Dirichlet processmixtures. In this study, we focus on a BNP

growth curve model and investigate how non-informative prior, weakly informative prior,

accurate informative prior, and inaccurate informative prior affect themodel convergence,

parameter estimation, and computation time. A simulation study has been conducted.

We conclude that the non-informative prior for the precision parameter is less preferred

because it yields a much lower convergence rate, and growth curve parameter estimates

are not sensitive to informative priors.

Keywords: non-parametric Bayesian, robust method, growth curve modeling, Dirichlet process mixture, prior,

precision parameter

1. INTRODUCTION

Bayesian non-parametric (BNP) modeling, also called semiparametric Bayesian modeling in the
literature, has been recognized as a valuable data analytical technique due to its great flexibility and
adaptivity (e.g., Müller and Mitra, 2004; Gershman and Blei, 2012). It is rapidly gaining popularity
among methodologists and practitioners and has been applied to a variety of models including
regressions, latent variable models with complex structures, sequential models, etc. BNP models
are on an infinite dimensional parameter space and the complexity of the models adapts to the
data. One of the most popular BNP models is Dirichlet process (DP) mixtures. Being able to adapt
the number of latent classes to the complexity of the data, DP mixtures are powerful in modeling
empirical data. However, they also face technical challenges. One challenge is the estimation of the
precision parameter in the DP mixture. In this study, we focus on the prior of precision parameter
and investigate how it affects model convergence, parameter estimation, and computation time in
BNP growth curve modeling.

Growth curve models are broadly used in longitudinal research (e.g., Meredith and Tisak, 1990;
McArdle and Nesselroade, 2014). Many popular longitudinal models in social and behavioral
sciences, such as multilevel models, some mixed-effects models, and linear hierarchical models,
can be written as a form of growth curve models. In growth curve models, dependent variables
are repeatedly measured and explained as a function of time and possible control variables. The
mean function between the dependent variables and time is the mean growth. Random effects
and measurement errors cause the individual growth trajectories to deviate from the mean growth
curve. Traditional growth curve modeling is typically based on the normality assumption. That
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is, both the random effects and measurement errors are
assumed to follow normal distributions. However, empirical
data often violate the normality assumption (Micceri, 1989;
Cain et al., 2017). Non-normal population distributions and
data contamination are two common causes of non-normality.
Although standard errors and test statistics have been corrected
to reduce the adverse effect of distributional assumption violation
(e.g., Chou et al., 1991; Curran et al., 1996), normal-distribution-
based maximum likelihood estimation may still yield inefficient
or inaccurate parameter estimates, and thus misleading statistical
inferences (e.g., Yuan and Bentler, 2001; Maronna et al., 2006).
Therefore, researchers have developed robust methods to obtain
accurate parameter estimation and statistical inference.

The ideas of robust methods can be divided into two types.
For the first type, the key idea is to downweight extreme cases.
To do so, this type of robust methods assigns a weight to each
subject in a dataset according to its distance from the center
of the majority of the data (e.g., Pendergast and Broffitt, 1985;
Singer and Sen, 1986; Silvapulle, 1992; Yuan and Bentler, 1998;
Zhong and Yuan, 2010). For the second type, the key idea is to
use non-normal distributions that are mathematically tractable
while building the statistical model. For example, latent variables
and/or measurement errors are assumed to follow a t or skew-t
distribution (Tong and Zhang, 2012; Zhang, 2016) or amixture of
certain distributions (Muthén and Shedden, 1999; Lu and Zhang,
2014). While being useful, these methods have limitations under
certain conditions. For example, the downweighting method
does not perform well when latent variables contain extreme
scores (see Zhong and Yuan, 2011). Using a t distribution or a
mixture of normal distributions still imposes restrictions on the
shape of the data distribution.

The aforementioned issues are automatically resolved by BNP
methods. BNP modeling relies on a building block, DP, to handle
the non-normality issue. DP is a distribution over probability
measures that can be used to estimate unknown distributions.
Consequently, the non-normality issue can be addressed by
directly estimating the unknown random distributions of latent
variables or measurement errors (i.e., obtaining the posteriors of
the distributions).

The advantages of using BNP methods with DP priors
have been discussed in the literature (e.g., Ghosal et al.,
1999; MacEachern, 1999; Hjort, 2003; Müller and Mitra, 2004;
Fahrmeir and Raach, 2007; Hjort et al., 2010). They do not
constrain models to a specific parametric form which may limit
the scope and type of statistical inferences in many situations,
especially when data are not normally distributed. Thus, a typical
motivation of using BNP methods is that one is unwilling to
make somewhat arbitrary and unverified assumptions for latent
variables or error distributions as in the parametric modeling.
Meanwhile, BNP methods can provide full probability models
for the data-generating process and lead to analytically tractable
posterior distributions.

BNP methods have been applied to complex models. For
example, Bush and MacEachern (1996), Kleinman and Ibrahim
(1998), and Brown and Ibrahim (2003) used DP mixtures to
handle non-normal random effects. Burr and Doss (2005) used
a conditional DP to handle heterogeneous effect sizes in the

context of meta-analysis. Ansari and Iyengar (2006) included
Dirichlet components to build a semiparametric recurrent choice
model. Dunson (2006) used dynamic mixtures of DP to estimate
the varied distributions of a latent variable, which change non-
parametrically across groups. Si and Reiter (2013), Si et al. (2015)
used DP mixtures of multinomial distributions for categorical
data with missing values. BNP approach has also been adapted to
structural equation modeling to relax the normality assumption
of the latent variables (e.g., Lee et al., 2008; Yang and Dunson,
2010). Tong and Zhang (2019) directly used a DP mixture to
model non-normal data in growth curve modeling.

Although the application of BNP modeling has increased
dramatically since the theoretical properties of BNP methods
were better understood and their computational hurdles were
removed (e.g., Neal, 2000), BNP modeling is still unfamiliar to
the majority of researchers in social and behavioral sciences.
Additionally, there are technical issues that have not yet been
fully addressed (Sharif-Razavian and Zollmann, 2009). The
convergence issue is one of such unanswered questions. Non-
convergence can occur when BNP method is applied to complex
models. Tong and Zhang (2019) found that non-convergence
was largely caused by the precision parameter of the mixing
DP. The precision parameter is a critical hyperparameter that
governs the expected number of mixture components. When
a non-informative prior was used for the precision parameter,
non-convergence occurred or a longer computation time was
observed (Tong and Zhang, 2019). Informative priors may help
solve this issue. However, only a few studies have noticed and
discussed the effect of the precision parameter in DP mixtures
(e.g., West, 1992; Ohlssen et al., 2007; Jara et al., 2011). Ishwaran
(2000) was among the few that studied the informative prior for
the precision parameter. Ishwaran (2000) suggested to use the
Gamma(2, 2) prior to encourage both small and large values of
the precision parameter. In sum, despite its impact on the model
convergence issue, no study has systematically investigated how
the prior for the precision parameter should be specified.

Therefore, in this study, we evaluate and compare non-
informative, weakly informative, accurate informative, and
inaccurate informative priors for the precision parameter of
DP mixtures. We study how these priors influence model
convergence, model estimation, and computation time in BNP
growth curve modeling. In the next section, we introduce
BNP growth curve modeling. After providing the conditional
posterior distribution of the precision parameter, we use a
simulation study to assess the impact of four types of priors
for the precision parameter. Recommendations are provided at
the end of the article. We also provide a guideline about the
implementation of BNP growth curve modeling using R (R Core
Team, 2019) in the Appendix.

2. BAYESIAN NON-PARAMETRIC GROWTH
CURVE MODELING

We now introduce a typical growth curve model and a BNP
method based on thismodel. Consider a longitudinal dataset with
N subjects and T measurement occasions. Let yi = (yi1, . . . , yiT)

′
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be a T × 1 random vector with yij being a measurement from
individual i at time j (i = 1, . . . ,N; j = 1, . . . ,T). A growth curve
model without covariates can be written as

yi = 3bi + ei,

bi = β + ui,

where 3 is a T × q factor loading matrix that determines the
growth curves, bi is a q × 1 vector of random effects, and ei is
a vector of measurement errors. The vector of random effects bi
varies around its mean β . The residual vector ui represents the
deviation of bi from β . When

3 =











1 0
1 1
...

...
1 T − 1











, bi =

(

Li
Si

)

, and β =

(

βL

βS

)

,

themodel is reduced to a linear growth curvemodel with random
intercept Li and random slope Si. The mean intercept and slope
are denoted as βL and βS, respectively.

Traditionally, ei and ui are assumed to follow multivariate
normal distributions with mean vectors of zero and covariance
matrices 8 and 9 , respectively, so ei ∼ MNT(0,8) and ui ∼

MNq(0,9). Here,MN denotes amultivariate normal distribution
and its subscript indicates its dimension. Measurement errors are
often assumed to be uncorrelated with each other and have equal
variances across time. Statistically, this simplification means the
covariance matrix of measurement error 8 is reduced to 8 =

σ 2
e Iwhere σ 2

e is a scale parameter. In linear growth curve models,
ui = (uLi, uSi)

′. Its covariance matrix is then 9 = cov(ui) =
(

σ 2
L σLS

σLS σ 2
S

)

. Here, σ 2
L and σ 2

S represent the variances of the

random intercept and slope across individuals, respectively, and
σLS represents the covariance between the random intercept
and slope.

BNP methods do not make arbitrary distributional
assumptions as in the parametric modeling and thus are
more flexible in handling non-normal data (e.g., Lee et al., 2008;
Tong and Zhang, 2019). Unlike conventional non-parametric
methods such as permutation tests, BNP methods use full
probability models to describe the data-generating process and
thus can derive posterior distributions for model parameters.

Within the BNP modeling scope, the parametric distributions
of latent variables andmeasurement errors in traditionalmethods
are replaced by unknown random distributions. To estimate
these unknown distributions, DP is frequently used as the prior
(Ferguson, 1973, 1974). Specifically, a random “sample” from a
DP is a random distribution. Here, we denote it as G. A DP
has two hyperparameters, α and G0. The base distribution, G0,
represents the central tendency or “mean” distribution in the
distribution space. The precision parameter, α, quantifies how far
away realizations of G deviate from G0. According to Ferguson
(1973), DP is a conjugate prior that has two desirable properties:
(1) a sufficiently large support, and (2) analytically manageable

posterior distributions. Ferguson further derived the posterior of
G, DP(α̃, G̃0). Here, α̃ = α + N and

G̃0 =
α

α + N
G0 +

N

α + N
GN

withGN being the empirical distribution of the data. Notably, the
posterior point estimate of G, E(G|data) = G̃0, is a weighted
average of the base distribution or prior mean G0 and the
empirical distribution or data GN . When α = 0, the posterior
point estimate is reduced to the empirical distribution GN , which
is pure non-parametric. When α approaches to infinity, the
posterior point estimate gradually approximates G0, which is
parametric. A common practice is to specify a gamma prior
for α, which would yield a posterior estimate that is neither 0
nor infinity.

In BNP growth curve modeling, latent variables and/or
measurement errors can be modeled non-parametrically. In
this article, we focus on the distributional assumption of
measurement errors. When the normality of measurement errors
is suspected, we assume that ei ∼ Ge where Ge is an unknown
random distribution that is determined by the data. In the BNP
framework, DP is typically adopted to specify Ge. Because the
distribution of ei is continuous but DP is essentially discrete, a
DPmixture (DPM) can be used tomodel themeasurement errors
such that

Ge =







































D(µ
(1)
e ,8(1)), with p = p1

D(µ
(2)
e ,8(2)), with p = p2

...
...

D(µ
(k)
e ,8(k)), with p = pk

...
...

,

where D represents a predetermined multivariate distribution
(e.g., multivariate normal, t, multinomial, etc.), and

µ
(k)
e and 8(k), k = 1, . . . ,∞ are means and covariances

of the multivariate distribution in the kth component with
probability pk. Theoretically, given an arbitrary distributional
shape, there could be infinite number of mixture components
as k goes to infinity. In practice, a finite number of mixture
components often can describe a distribution well and the
number of mixture components is determined by the DP
precision parameter α. Smaller α yields a smaller number of
mixture components. If α approaches infinity, there would be N
mixture components, one associated with each subject. Namely,
the precision parameter α is an important parameter that can
determine the complexity of the model and how well the model
fits the data, and thus may affect the convergence of the model.
For the intraindividual measurement errors in the typical linear
growth curve model, Tong and Zhang (2019) proposed that

ei|8i ∼ MNT(0,8i),

8i|G ∼ G,

G ∼ DP(α,G0).
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That is, the unknown distribution Ge is approximated by a
mixture of multivariate normal distributions where the mixing
measure has a DP prior, Ge ∼ DPM. The DP prior DP(α,G0)
can be obtained using the truncated stick-breaking construction
(e.g., Sethuraman, 1994; Lunn et al., 2013). Specifically, DP(·) =
∑C

j=1 pjδzj (·), 1 ≤ C < ∞, where C (1 ≤ C ≤ N,often set

at a large number) is a possible maximum number of mixture
components, δzj (·) denotes a point mass at zj and zj ∼ G0

independently. The random weights pj can be generated through
the following procedure. With q1, q2, . . . , qC ∼ Beta(1,α), define

p
′

j = qj

j−1
∏

k=1

(1− qk), j = 1, . . . ,C.

Then, pj is obtained by

pj =
p
′

j
∑C

k=1 p
′

k

, (1)

to satisfy that
∑C

j=1 pj = 1. In practice, the updating of ei can

proceed as in a typical DP mixture model and its distribution is
an infinite mixture distribution1.

In general, the distribution of ei through the truncated stick-
breaking construction is

Ge =























D(µ
(1)
e ,8(1)), with p = p1

D(µ
(2)
e ,8(2)), with p = p2

...
...

D(µ
(C)
e ,8(C)), with p = pC

,

where D represents a predetermined multivariate distribution,

µ
(j)
e and 8(j), j = 1, . . . ,C are means and covariances of the

multivariate distribution in the jth component, and pj is obtained
using Equation (1). Given that the mean of ei is 0, we constrain
∑C

j=1 pjµ
(j)
e = 0. For simplicity, in this study, we follow Tong

and Zhang (2019) and use multivariate normal distributions for

themixing components and constrainµ
(j)
e to be 0.We use inverse

Wishart priors p(8(j)) = IW(n0,W0) for the covariance matrices
of the mixture components, 8(j), j = 1, . . . ,C. Following
Lunn et al. (2013, p. 294), we fix the shape parameter n0 at
a specific number and assign an inverse Wishart prior to the
scale matrix W0. With such a specification, the measurement
error for individual i, ei, has a pj probability of coming from

the mixing component MN(0,8(j)). The measurement errors
for other individuals may also come from the same mixing
component. Let K denotes the number of mixing components or
MN(0,8(j)) with j = 1, . . . ,C. In other words,K is the number of
latent classes for ei and K can be smaller than C, K ≤ C. Within
each class, eis come from the same distribution.

We would like to note that a similar approach to BNP
modeling is finite mixture modeling (FMM). FMM estimates

1In practice, infinite-dimension means finite but unbounded dimension.

or equivalently approximates an unknown distribution using a
mixture of known distributions. A key difference between FMM
and BNP modeling is that the number of mixture components
is treated as known in FMM, whereas this number is treated as
unknown and is freely estimated in BNP modeling. As a result,
when FMM is used to handle non-normality, additional analyses
such as model comparison are needed to determine the unknown
number of mixture components. BNP modeling therefore is
believed to have the advantage of being more objective and data-
driven, given that additional analyses such as model comparison
that may be vulnerable to subjectivity are avoided.

Bayesian methods are applied to estimate BNP growth curve
models. Bayesian methods are becoming increasingly popular
in recent years because of their flexibility and powerfulness in
estimating models with complex structures (e.g., Lee and Shi,
2000; Lee and Song, 2004; Zhang et al., 2007; Lee and Xia, 2008;
Tong and Zhang, 2012; Serang et al., 2015). The key idea of
Bayesian methods is to compute the posterior distributions for
model parameters by combining the likelihood function and the
priors. As introduced previously, β ,8, and 9 are the model
parameters in traditional growth curve model. In a BNP growth
curve model, β and 9 remain model parameters. In contrast,
the measurement error covariance matrix 9 is not directly
estimated. Instead, we obtain ei based on which we can get 8.
Another important parameter in BNP growth curve modeling
is the precision parameter α. Let p(β ,9 ,α) be the joint prior
distribution of model parameters, and let L be the likelihood
function. The joint posterior distribution of model parameters is

p(β ,9 ,α|yi) ∝

∫

p(β ,9 ,α)× L db,

where b = (b
′

1, . . . , b
′

N)
′
. It is difficult to solve for this integral

in practice. Instead, Markov chain Monte Carlo (MCMC)
methods (e.g., Gibbs sampling; Robert and Casella, 2004)
are often used to obtain parameter estimates and statistical
inferences. Specifically, we first derive the conditional posterior
distribution for each of the parameters. We then iteratively
draw samples from the derived conditional posteriors to obtain
empirical marginal distributions of the model parameters.
Finally, statistical inferences are made based on the empirical
marginal distributions (Geman and Geman, 1984).

3. PRECISION PARAMETER IN BNP
MODELS

The convergence issue in BNP growth curve modeling is likely
related to the precision parameter (Tong and Zhang, 2019). Here,
we provide a theoretical discussion on how the prior of the
precision parameter can influence the number of latent classes
for ei.

The DP precision parameter α is the key to govern the
expected number of latent classes. It directly determines the
distribution of K, the number of latent classes of ei. With a
larger K, measurement errors of different individuals are more
likely to have different distributions. West (1992) found that K
asymptotically follows a Poisson distribution
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TABLE 1 | Different percentiles (5, 50, 95%) of the distribution of the number of clusters K, given different values of precision parameter α, and sample size N.

α = 0.1 α = 1 α = 2

5% 50% 95% 5% 50% 95% 5% 50% 95%

N = 200 1 1 3 3 7 11 7 13 19

N = 600 1 2 3 4 8 13 9 15 21

N = 1,000 1 2 3 4 8 13 10 16 23

K = 1+ x, x ∼ Poisson
(

α
(

γ + logN
))

(2)

where γ is Euler’s constant. Several percentiles of the distribution
of K are given in Table 1. As shown in the table, K increases as α

and N increases.
As discussed previously, a gamma prior Gamma(a1, a2) is

often used for the hyperparameter α. Given such a prior,
West (1992) derived the posterior of α as a mixture of two
gamma densities

α|· ∼ πxGamma(a1 + K, a2 − logx)

+(1− πx)Gamma(a1 + K − 1, a2 − logx),

where x is an augmented variable x|· ∼ Beta(α + 1,N) and the

weights πx is defined by πx/(1− πx) =
a1 + K − 1

N(a2 − logx)
. Although

West (1992) also provided an approximation to the posterior of
α, p(α|·) ≈ Gamma(a1 + K − 1, a2 + γ + logN), how good the
approximation was has not been investigated.

A non-informative prior for α seems to be reasonable,
especially when the information about number of latent classes
are not available. However, a non-informative prior may cause
non-convergence of Markov chains. Therefore, it is worth
evaluating different priors for the precision parameter.

4. A SIMULATION STUDY

We now present a simulation study to evaluate the influence
of the prior for the precision parameter in BNP growth curve
modeling when data are normally distributed and contain
outliers2. The linear growth curve model in the previous section
is used. Measurement errors are modeled non-parametrically
to address the non-normality. Based on the results of previous
studies, the number of times points (T), the covariance between
the random intercept and slope (σLS), and themeasurement error
variance (σ 2

e ) have trivial effects on the performance of BNP
growth curve modeling (e.g., Tong and Zhang, 2019). Therefore,
we only consider a set of values for these parameters in this
study. We follow the empirical data analysis results in Tong and
Zhang (2019) to select the population parameter values: the fixed
effects are fixed at β = (βL,βS)

′ = (6.2, 0.3) ′; the number of
measurement occasion is T = 4; measurement error variance

2Note that non-normal data may be caused by non-normal population

distributions or data contaminations. We work with outliers in this simulation

study because BNP methods are essentially infinite mixture modeling procedures.

Generating and dealing with outliers frommultiple different distributions aremore

manageable as we easily know the true number of underlying classes. It is worth

verifying the conclusions of this paper for non-normal population distributions in

the future.

σ 2
e = 0.5; variances of the random intercept and slope are 1

and 0.1, respectively, and the covariance between the random
intercept and slope σLS = 0.

Three potentially influential factors are manipulated in the
simulation study, including sample size, data distribution, and
precision parameter prior. First, two sample sizes are considered,
N =200 or 600, representing small and large sample sizes.
Second, data are either normal or containing outliers. When
generating outliers, three proportions of outliers are considered,
r% =5, 10, or 20%. To generate outliers, we randomly select r%
observations at each measurement occasion and replace them
by extreme values. The extreme values are generated from 10
different distributions with a large mean of Li + Si(j − 1) +
mσe where m ≥ 5 is generated from a truncated Poisson
distribution, and a variance of σ 2

e which is the same as that of
the normal data. As a result, the true distribution of the data
is a mixture of 11 distributions. Outliers generated in this way
conform to the definition of outliers (Yuan and Zhong, 2008;
Tong and Zhang, 2017). See Supplementary Figures 1, 2 to aid
the understanding of the shape of generated normal data and data
with outliers. Third, four priors for the precision parameter are
investigated (see Figure 1): a diffuse prior Gamma(0.001, 0.001),
a weakly informative prior Gamma(2, 2) suggested by Ishwaran
(2000), an accurate informative prior Gamma(100, 100), and an
inaccurate informative prior Gamma(10, 100). Gamma(10,100)
is an inaccurate informative prior because its mean is 0.1 and
its variance is as small as 0.001. According to Table 1, the
resulting number of latent classes ranges from 1 to 3, whereas
the true number of mixed underlying distribution is 11. For
all the other model parameters, conventional non-informative
priors such as those in Zhang et al. (2013) are used. Specifically,
fixed effects β have non-informative diffuse priorsN(0, 106). The
covariance matrix of the random intercept and slope 9 has an
inverse-Wishart prior with an identity scale matrix and degrees
of freedom being 2.

In each simulation condition, 500 datasets are generated. BNP
growth curve modeling is applied for each dataset using JAGS
with the rjags package in software R (Plummer, 2017; R Core
Team, 2019). The total length of Markov chains is set at 50,000
and the first half of iterations is the burn-in period3. We assess
how different priors affect model convergence rate, parameter
estimation, and computation time.

Geweke tests (Geweke, 1991) are used to perform the
convergence diagnostics. After the burn-in period, if parameter
values are sampled from the stationary distribution of the chain,

3Multiple lengths of Markov chains were tested before the current setting was

selected. The convergence results with 50,000 iterations were about the same as

those for longer chains.
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FIGURE 1 | Density curves for the four precision parameter priors used in the simulation study.

the means of the first and last parts of the Markov chain
(by default the first 10% and the last 50%) should be equal
and Geweke’s statistic asymptotically follows a standard normal
distribution. A Markov chain converges when the Geweke’s
statistic is between –1.96 and 1.96. If none of the convergence
diagnostics (i.e., Geweke tests) for all model parameters suggest
non-convergence, the model is said to have converged. In
each simulation condition, the convergence rate is defined
as the proportion of converged models out of the total 500
generated replications.

For the assessment of model estimation, we obtain the
parameter estimate bias, average standard error (ASE), empirical
standard error (ESE), mean squared error (MSE), and coverage

probability (CP) of the 95% highest posterior density (HPD)
credible intervals for each parameter based on converged
simulation replications4.

In addition, the estimation time (in seconds) is recorded
for each replication. The average estimation time (AET) is the
average of the estimation time for all the converged replications.

4ASE is the mean estimated standard error across replications. ESE is the standard

deviation of the parameter estimates from all replications. MSE is computed as

squared bias plus squared ESE. Posterior credible interval, also called credible

interval, is the Bayesian counterpart of the frequentist confidence interval. A HPD

interval is essentially the narrowest interval on a posterior that covers a given

proportion of the probable posterior values.
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FIGURE 2 | Convergence rate for different priors when N = 200.

All program code and detailed results for the simulation
study are available on our GitHub site: https://github.com/
CynthiaXinTong/PrecisionParPrior_BNP_GCM.

4.1. Main Results
Figure 2 shows the convergence rate for BNP growth curve
modeling with different precision parameter priors when sample

size is 200. This figure clearly shows that outliers harm model

convergence. Note that the convergence rate for data with 5%

outliers is the lowest. This may be because a small proportion
of outliers (e.g., 5%) creates a steep and high-curvature region

for the Markov chain to enter and thus more difficult to
converge. As the outlier proportion increases, the curvature
becomes smoother so the convergence rate is higher. Among
the four studied priors, the non-informative prior for the
precision parameter always leads to the lowest convergence
rate, i.e., less than 30% across all the simulation conditions.
Informative priors substantially increase the model convergence
rate. Specifically, the convergence rate doubles when we switch
from the non-informative prior to the weakly informative prior
suggested by Ishwaran (2000) in the condition with normal
data. The incremental amount is about 30% of the original
convergence rate in the conditions with outliers. Both accurate
informative priors and inaccurate informative priors lead to
higher convergence rates. The importance of using informative

priors is more salient when data are not normal. Note that
inaccurate informative priors yield slightly higher convergence
rates than accurate informative priors because the variance of the
inaccurate prior is lower and thus its precision is higher. When
N = 600, model convergence results for BNP growth curve
models follow the same pattern, and thus are not reported here.

For converged replications, we evaluate the impact of
precision parameter priors on parameter estimation and
computation time. Results for N = 200 are summarized
in Tables 2–5. The relative performance of the four priors in
conditions with a larger sample size (N = 600) has a similar
pattern. Detailed results for N = 600 are available in the
Supplementary Document.

From Tables 2–5, we obtain the following findings. First, the
estimates of growth curve parameters (βL,βS, σ

2
L , σ

2
S , σLS, σ

2
e ) are

not affected by different priors. Estimation bias, standard errors,
MSE, and coverage probability of the 95% HPD credible interval
across different precision parameter prior conditions are very
close to each other, respectively. Note that when outliers exist
(see Tables 3–5), the true population parameter value of the
measurement error variance σ 2

e is unknown. So, bias, MSE, and
CP for this parameter cannot be calculated.

Second, the estimation of the hyperparameter α is greatly
affected by different priors. When the non-informative prior
is used, the estimated α can be very large (e.g., 28.284 in
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TABLE 2 | Model estimation for BNP growth curve modeling with different precision parameter priors when data are normal and N = 200.

Prior Est. Bias ASE ESE MSE CP AET

Gamma(0.001, 0.001) βL 6.204 0.004 0.082 0.084 0.007 0.957 539.332

βS 0.301 0.001 0.033 0.032 0.001 0.957 539.332

σ 2
L 0.999 –0.001 0.138 0.142 0.020 0.936 539.332

σ 2
S

0.118 0.018 0.021 0.018 0.001 0.922 539.332

σLS –0.010 –0.010 0.040 0.034 0.001 0.993 539.332

σ 2
e 0.497 –0.003 0.024 0.036 0.001 0.816 539.332

K 2.113 – 0.803 2.331 – – 539.332

α 11.134 – 18.109 104.805 – – 539.332

Gamma(2, 2) βL 6.198 –0.002 0.082 0.080 0.006 0.958 740.331

βS 0.302 0.002 0.033 0.031 0.001 0.965 740.331

σ 2
L 1.008 0.008 0.139 0.131 0.017 0.965 740.331

σ 2
S

0.118 0.018 0.021 0.018 0.001 0.927 740.331

σLS –0.010 –0.010 0.040 0.034 0.001 0.983 740.331

σ 2
e 0.499 –0.001 0.024 0.034 0.001 0.823 740.331

K 4.106 – 2.415 0.776 – – 740.331

α 0.732 – 0.526 0.126 – – 740.331

Gamma(100, 100) βL 6.200 0.000 0.083 0.083 0.007 0.948 1024.509

βS 0.299 -0.001 0.033 0.032 0.001 0.958 1024.509

σ 2
L 1.014 0.014 0.139 0.133 0.018 0.967 1024.509

σ 2
S

0.117 0.017 0.021 0.018 0.001 0.942 1024.509

σLS –0.010 –0.010 0.040 0.036 0.001 0.976 1024.509

σ 2
e 0.499 –0.001 0.024 0.036 0.001 0.827 1024.509

K 5.037 – 1.924 0.407 – – 1024.509

α 0.992 – 0.099 0.004 – – 1024.509

Gamma(10, 100) βL 6.202 0.002 0.082 0.082 0.007 0.945 370.307

βS 0.301 0.001 0.033 0.031 0.001 0.971 370.307

σ 2
L 1.001 0.001 0.138 0.129 0.017 0.971 370.307

σ 2
S

0.117 0.017 0.021 0.018 0.001 0.942 370.307

σLS –0.012 –0.012 0.040 0.037 0.001 0.974 370.307

σ 2
e 0.498 –0.002 0.024 0.035 0.001 0.835 370.307

K 1.981 – 0.874 0.199 – – 370.307

α 0.099 - 0.031 0.001 – – 370.307

Est, estimate; ASE, average standard error; ESE, empirical standard error; MSE, mean squared error; CP, coverage probability of the 95% HPD credible interval; AET, average

estimation time.

Table 3) or small (e.g., 0.019 in Table 5), associating with a large
standard error. When Gamma(2, 2) or Gamma(100, 100) is used,
estimated α is almost always close to 1. When Gamma(10, 100)
is used, estimated α is around 0.1. Different α values indicate
a different total number of classes K. In general, a larger α

value may yield a larger number of latent classes. Since the
estimated α has a large standard error when the non-informative
diffuse prior is used, the corresponding estimated K can also
be large or small. For the weakly informative and accurate
informative priors, the estimated number of latent classes ranges
from 4 to 6 for different data conditions, whereas for the
inaccurate informative prior, the estimated number of latent
classes is about 2 or 3. It is interesting to see that although
distinctively different hyperparameter estimates are obtained
leading to different number of latent classes, the estimated growth

curve parameters are essentially similar. This is because although
outliers are generated from 10 different distributions, the 10
different distributions are not separated far apart.With a low class
separation, one distribution may be enough to describe several
outliers generated from different distributions. Thus, even the
inaccurate informative prior can yield a precision parameter that
is adequate to model the measurement errors.

Third, BNP growth curve modeling with the inaccurate
informative prior Gamma(10, 100) requires the shortest
computation time. This is because the inaccurate informative
prior here has the smallest variance and thus is most
“informative” among the four priors.

Fourth, outliers affect the performance of BNP growth curve
modeling. When data contain a large proportion of outliers (e.g.,
20%), estimation bias for the average of random intercepts βL
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TABLE 3 | Model estimation for BNP growth curve modeling with different precision parameter priors when data contain 5% of outliers and N = 200.

Prior Est. Bias ASE ESE MSE CP AET

Gamma(0.001, 0.001) βL 6.300 0.100 0.092 0.083 0.017 0.793 841.706

βS 0.313 0.013 0.037 0.036 0.001 0.948 841.706

σ 2
L 1.006 0.006 0.160 0.145 0.021 0.956 841.706

σ 2
S

0.118 0.018 0.024 0.017 0.001 0.985 841.706

σLS –0.009 –0.009 0.046 0.044 0.002 0.985 841.706

σ 2
e 3.133 – 0.125 0.138 – – 841.706

K 5.184 – 1.189 5.433 – – 841.706

α 28.284 – 51.922 75.124 – – 841.706

Gamma(2, 2) βL 6.311 0.111 0.092 0.088 0.020 0.763 971.782

βS 0.311 0.011 0.037 0.034 0.001 0.957 971.782

σ 2
L 1.007 0.007 0.161 0.146 0.021 0.967 971.782

σ 2
S

0.117 0.017 0.024 0.018 0.001 0.976 971.782

σLS –0.008 –0.008 0.046 0.041 0.002 0.976 971.782

σ 2
e 3.119 – 0.124 0.136 – – 971.782

K 6.515 – 2.905 0.981 - - – 971.782

α 1.126 – 0.676 0.171 – – 971.782

Gamma(100, 100) βL 6.298 0.098 0.091 0.090 0.018 0.794 1088.448

βS 0.314 0.014 0.037 0.034 0.001 0.944 1088.448

σ 2
L 0.987 –0.013 0.158 0.134 0.018 0.964 1088.448

σ 2
S

0.117 0.017 0.024 0.018 0.001 0.976 1088.448

σLS –0.004 –0.004 0.045 0.041 0.002 0.992 1088.448

σ 2
e 3.133 – 0.124 0.130 – – 1088.448

K 6.161 – 1.930 0.467 – – 1088.448

α 1.003 – 0.100 0.005 – – 1088.448

Gamma(10, 100) βL 6.311 0.111 0.091 0.090 0.020 0.767 561.074

βS 0.311 0.011 0.037 0.034 0.001 0.952 561.074

σ 2
L 0.985 –0.015 0.158 0.144 0.021 0.960 561.074

σ 2
S

0.119 0.019 0.024 0.018 0.001 0.964 561.074

σLS –0.009 –0.009 0.046 0.042 0.002 0.968 561.074

σ 2
e 3.118 – 0.124 0.136 – – 561.074

K 2.903 – 0.872 0.240 – – 561.074

α 0.103 – 0.032 0.001 – – 561.074

Est, estimate; ASE, average standard error; ESE, empirical standard error; MSE, mean squared error; CP, coverage probability of the 95% HPD credible interval; AET, average

estimation time.

and variance of random intercepts σ 2
L are much larger than those

when outlier proportion is low. In addition, outliers influence
computation time. It is worth mentioning that it is most time
consuming when the outlier proportion is 5%. A possible reason
is that a small proportion of outliers creates a steep and high-
curvature region forMarkov chains to enter and thus takes longer
time to converge. With more outliers, the curvature is smoother
so the computation is faster.

5. DISCUSSION

Restricting to a parametric probability family can delude
investigators and falsely make an illusion of posterior certainty
(Müller and Mitra, 2004). On the contrary, BNP methods
are adaptive and powerful to discover complex patterns in

real data. Although BNP growth curve modeling has been
proposed, the effect of the precision parameter was not fully
studied. In this article, we have conducted a simulation study
to investigate how different types of precision parameter priors
impact the convergence rate, model estimation, and computation
time in BNP growth curve modeling. We found that the non-
informative prior suffered from the lowest convergence rates
while the inaccurate informative prior with the smallest prior
variance yielded the highest convergence rates and the fastest
computations. Furthermore, we found that the estimation of
growth curve parameters was not affected by the prior of the

precision parameter. Based on these results, we recommend to

use informative priors with high precision in practice.
We would like to note that although it seems counterintuitive

that the inaccurate informative prior for the precision parameter
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TABLE 4 | Model estimation for BNP growth curve modeling with different precision parameter priors when data contain 10% of outliers and N = 200.

Prior Est. Bias ASE ESE MSE CP AET

Gamma(0.001, 0.001) βL 6.437 0.237 0.103 0.102 0.066 0.348 591.282

βS 0.335 0.035 0.043 0.039 0.003 0.917 591.282

σ 2
L 1.018 0.018 0.187 0.173 0.030 0.977 591.282

σ 2
S

0.126 0.026 0.028 0.022 0.001 0.917 591.282

σLS –0.007 –0.007 0.053 0.047 0.002 0.977 591.282

σ 2
e 5.464 – 0.173 0.180 – – 591.282

K 3.112 – 1.106 1.728 – – 591.282

α 1.041 – 2.885 7.422 – – 591.282

Gamma(2, 2) βL 6.424 0.224 0.103 0.105 0.061 0.426 938.496

βS 0.336 0.036 0.043 0.038 0.003 0.886 938.496

σ 2
L 1.020 0.020 0.187 0.174 0.031 0.966 938.496

σ 2
S

0.121 0.021 0.027 0.020 0.001 0.970 938.496

σLS –0.008 –0.008 0.053 0.044 0.002 0.979 938.496

σ 2
e 5.448 – 0.172 0.171 – – 938.496

K 6.314 – 2.798 0.942 – – 938.496

α 1.090 – 0.652 0.163 – – 938.496

Gamma(100, 100) βL 6.428 0.228 0.104 0.100 0.062 0.398 1045.439

βS 0.332 0.032 0.043 0.040 0.003 0.903 1045.439

σ 2
L 1.020 0.020 0.188 0.172 0.030 0.964 1045.439

σ 2
S

0.123 0.023 0.027 0.021 0.001 0.961 1045.439

σLS –0.009 –0.009 0.053 0.043 0.002 0.982 1045.439

σ 2
e 5.459 – 0.174 0.175 – – 1045.439

K 6.091 – 1.911 0.409 – – 1045.439

α 1.002 – 0.100 0.004 – – 1045.439

Gamma(10, 100) βL 6.426 0.226 0.103 0.102 0.062 0.395 389.282

βS 0.333 0.033 0.043 0.041 0.003 0.897 389.282

σ 2
L 1.011 0.011 0.185 0.177 0.032 0.957 389.282

σ 2
S

0.123 0.023 0.027 0.021 0.001 0.943 389.282

σLS –0.007 –0.007 0.052 0.045 0.002 0.975 389.282

σ 2
e 5.457 – 0.172 0.169 – – 389.282

K 2.935 – 0.878 0.206 – – 389.282

α 0.103 – 0.032 0.001 – – 389.282

Est, estimate; ASE, average standard error; ESE, empirical standard error; MSE, mean squared error; CP, coverage probability of the 95% HPD credible interval; AET, average

estimation time.

performed the best, such findings have been observed in the
literature. For example, Finch and Miller (2019) found that
slightly informative priors can be advantageous in small samples
even when these priors are incorrect. Depaoli (2013) showed
that growth mixture model estimations obtained with inaccurate
priors were still more accurate than maximum likelihood
or Bayesian estimation with diffuse priors. Zitzmann et al.
(2020) explicitly discussed this issue for small samples. Our
simulation results also supported the argument that the amount
of information in the prior can be more important than the
accuracy of the prior under certain circumstances.

We also want to point out that the estimation bias was
relatively large in our simulation study, when compared to that
in previous studies (Tong and Zhang, 2019). This is because
we consider much higher outlier proportions. When the outlier

proportion is low (i.e., 5%), parameter estimates are very close to
the true population values. As the outlier proportion increases,
the bias increases. One possible way to improve the performance
of BNP growth curve modeling when the outlier proportion is
high is to use a non-normal base distribution. In our simulation
study, for simplicity, we used normal distributions with zero
mean as the mixing components of BNP modeling. This cannot
handle asymmetric non-normal distributions, which may partly
explain the less satisfactory performance of BNP modeling in the
conditions with high outlier proportions. But BNP methods in
general are very flexible. A non-normal base distribution may
overcome this limitation. While future studies may continue
along this path, we want to emphasize that BNP modeling as in
our study still outperforms traditional growth curve modeling
and is recommended to use in general when data are suspected
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TABLE 5 | Model estimation for BNP growth curve modeling with different precision parameter priors when data contain 20% of outliers and N = 200.

Prior Est. Bias ASE ESE MSE CP AET

Gamma(0.001, 0.001) βL 6.890 0.690 0.149 0.120 0.490 0.000 460.170

βS 0.385 0.085 0.061 0.054 0.010 0.735 460.170

σ 2
L 1.321 0.321 0.315 0.284 0.183 0.884 460.170

σ 2
S

0.141 0.041 0.038 0.027 0.002 0.952 460.170

σLS 0.019 0.019 0.080 0.062 0.004 0.980 460.170

σ 2
e 9.238 – 0.242 0.258 – – 460.170

K 2.713 – 0.810 0.307 – – 460.170

α 0.019 – 0.047 0.089 – – 460.170

Gamma(2, 2) βL 6.890 0.690 0.150 0.120 0.490 0.000 949.186

βS 0.381 0.081 0.061 0.052 0.009 0.787 949.186

σ 2
L 1.358 0.358 0.321 0.279 0.206 0.879 949.186

σ 2
S

0.143 0.043 0.038 0.024 0.002 0.962 949.186

σLS 0.011 0.011 0.082 0.064 0.004 0.983 949.186

σ 2
e 9.167 – 0.245 0.265 – – 949.186

K 5.458 – 2.392 0.564 – – 949.186

α 0.941 – 0.566 0.095 – – 949.186

Gamma(100, 100) βL 6.882 0.682 0.149 0.121 0.480 0.000 1056.953

βS 0.381 0.081 0.061 0.054 0.010 0.774 1056.953

σ 2
L 1.323 0.323 0.314 0.284 0.185 0.878 1056.953

σ 2
S

0.143 0.043 0.038 0.026 0.003 0.944 1056.953

σLS 0.010 0.010 0.081 0.062 0.004 0.981 1056.953

σ 2
e 9.172 – 0.243 0.256 – – 1056.953

K 5.695 – 1.811 0.321 – – 1056.953

α 0.998 – 0.099 0.003 – – 1056.953

Gamma(10, 100) βL 6.897 0.697 0.150 0.116 0.499 0.000 391.429

βS 0.379 0.079 0.061 0.052 0.009 0.803 391.429

σ 2
L 1.354 0.354 0.319 0.280 0.204 0.861 391.429

σ 2
S

0.141 0.041 0.038 0.026 0.002 0.956 391.429

σLS 0.014 0.014 0.081 0.064 0.004 0.980 391.429

σ 2
e 9.166 – 0.242 0.255 – – 391.429

K 2.880 – 0.855 0.151 – – 391.429

α 0.103 - 0.032 0.001 – – 391.429

Est, estimate; ASE, average standard error; ESE, empirical standard error; MSE, mean squared error; CP, coverage probability of the 95% HPD credible interval; AET, average

estimation time.

to be non-normal (Tong and Zhang, 2019) no matter the non-
normality is caused by non-normal population distribution or
data contamination.

The convergence rate of BNP growth curve modeling
was found to be higher in previous studies, i.e., close
to one (Tong and Zhang, 2019). We would like to note
that the difference is likely due to the list of parameters
counted during convergence assessment. In Tong and Zhang
(2019), the convergence rate was computed only for growth
curve parameters. When only growth curve parameters are
considered, non-convergence rarely occurred in our study.
The major problem is the precision parameter. As shown
in the simulation study, non-convergence frequently arose
for this parameter (detailed Geweke tests results for each
parameter are available on our GitHub site: https://github.

com/CynthiaXinTong/PrecisionParPrior_BNP_GCM). Another
possible reason why convergence rates were relatively low (below
70%) in our simulation is that Geweke tests often yield lower rates
of convergence than other diagnostic methods (e.g., Jang and
Cohen, 2020). However, as pointed out in Jang and Cohen, the
pattern of convergence rates for model comparison was similar
for different diagnostic tests. Namely, our conclusions about
which precision parameter priors to use in BNP growth curve
modeling will not be affected by the diagnostic tests. We further
discuss the use of Geweke tests in the next paragraph. Notably,
although the non-convergence for the precision parameter
seemed not to impact parameter estimates for the growth
curve parameters, such issue may mislead model fit assessment.
Although model assessment and model comparison methods
have been proposed for variousmodels, samples of different sizes,
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and data structures (e.g., Celeux et al., 2006), their performance
in BNP analysis has not been studied. Therefore, future studies
on how different precision parameter priors affect model fit
assessment are encouraged.

In our study, model convergence diagnostics were conducted
using Geweke tests. Although Geweke tests are commonly
used in the Bayesian literature, it is impossible to say with
certainty that a finite sample from an MCMC algorithm is
representative of an underlying stationary distribution and a
combination of strategies aiming at evaluating and accelerating
MCMC sampler convergence is recommended (Cowles and
Carlin, 1996). For our simulation study, Geweke tests were
relatively easy to systematically implement. In empirical studies,
we recommend using multiple strategies (e.g., trace plots,
multiple chains) to check model convergence. In addition,
since Zitzmann and Hecht (2019) pointed out that it is
possible that the approximation of the Bayesian estimates is
still not optimal even when a chain converges, we recommend
substantive researchers conducting sensitivity analysis and
evaluating how the length of the Markov chains affects the model
estimation results.

Our study echoed the previous literature in that using
informative priors may help reduce computation time in
Bayesian modeling. We would like to note that there are
other approaches that can be used to further increase the
computation efficiency. For example, Berger et al. (2020) and
Daniels and Kass (1999) proposed shrinkage priors, and Hecht
et al. (2020) proposed a model reformulation approach in which
the sample covariance matrix was modeled instead of individual
observations. This latter approach has been applied to the
Bayesian continuous-time model (Hecht and Zitzmann, 2020) as
well as the Bayesian STARTS model (Ludtke et al., 2018). Future
research on BNP growth curve modeling could incorporate this
approach and other potentially efficient approaches to reduce
computation time.

The employment of BNP growth curve modeling is a field
still in its early stage. New DP variants and generalizations
are being proposed every year to cater to specific applications.
BNP modeling was only used to handle the non-normality
in intraindividual measurement errors in our study. The
similar strategy can be used for random effects, such as
random intercepts and slopes. Also, although we worked with
balanced data, BNP growth curve modeling should be able to
handle unbalanced data (e.g., individually varying time points).
However, as implied by previous studies (Tong, 2014), the
convergence issue may be more challenging, thereby awaiting
future studies.
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