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ABSTRACT

Nontuberculous mycobacteria (NTM) are a
group of atypical bacteria that may cause a
spectrum of clinical manifestations, including
pulmonary, musculoskeletal, skin and soft tis-
sue, and cardiac infections. Antimycobacterial
medication regimens for NTM infections
require multiple agents with prolonged

treatment courses and are often associated with
poor tolerance in patients and suboptimal
clinical outcomes. This review summarizes NTM
pharmacotherapy, including treatment con-
cepts, preferred medication regimens according
to NTM species and site of infection, and
emerging treatment methods for difficult-to-
treat species.
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Key Summary Points

Mycobacterial infections constitute a
substantial worldwide problem because of
their ubiquitous nature, inherent drug
resistance, and increasing incidence.

Designing safe and effective
nontuberculous mycobacterial infection
treatments is challenging because of
variability in treatment regimens for
different mycobacterial species, infection
sites, and disease severity, in addition to
medication adverse effects, the prolonged
duration of therapy, and common patient
comorbid conditions.

Nontuberculous mycobacterial treatment
regimen framework designs generally
include the use of at least two drugs,
which may include an intensive stage
followed by a maintenance stage, and
drug choices are often informed by
microbiologic data.

Emerging treatments include tetracycline
derivatives, oxazolidinones, combination
b-lactams, b-lactamase inhibitors, and
phage therapy.

INTRODUCTION

As a human pathogen, Mycobacterium tuberculo-
sis (which causes tuberculosis) is familiar to
clinicians, but infections caused by nontuber-
culous mycobacteria (NTM) may be less well
known. NTM most commonly cause pulmonary
infections, especially among patients with
structural airway disease (e.g., cystic fibrosis and
bronchiectasis), but can also cause lym-
phadenitis, skin and soft tissue infection (SSTI),
cardiac infection, bone and joint infections,
and disseminated disease [1, 2].

Mycobacteria are aerobic organisms known
for their acid-fastness and thick, lipid-rich cell
walls [3]. Cell wall impermeability, along with

biofilm formation, contributes to the antimi-
crobial, high-temperature, and disinfectant
resistance of mycobacteria [4]. NTM are ubiq-
uitous in the environment and commonly
found in water and soil reservoirs. Inhalation
and ingestion are the purported leading routes
of transmission, and direct person-to-person
transmission is rare, unlike that of M. tubercu-
losis. NTM commonly colonize hot tubs, peat-
based potting soils, hemodialysis clinics, fish
tanks, and domestic water systems, and have
been linked to nosocomial outbreaks [5, 6].

More than 190 NTM species and subspecies
have been identified to date, many of which
were recently discovered because of advances in
culture techniques and molecular diagnostics
[7, 8]. Classically, NTM have been divided into
rapid (B 7 days for mature colony formation in
solid media) and slow ([ 7 days for coloniza-
tion) growers. Of the NTM species known to
cause human disease, notable rapid growers
include Mycobacterium abscessus complex (Mabs,
comprising M. abscessus subsp. abscessus, M.
abscessus subsp. bolletii, and M. abscessus subsp.
massiliense), Mycobacterium fortuitum, and
Mycobacterium chelonae. Slow growers known to
cause human disease include Mycobacterium
avium complex (MAC, comprising Mycobac-
terium avium, Mycobacterium intracellulare, and
Mycobacterium chimaera), Mycobacterium kansa-
sii, and Mycobacterium xenopi. Among both rapid
and slow growers, MAC is the most common
cause of NTM pulmonary disease in the US,
followed by M. kansasii and Mabs [8].

NTM infections appear to be increasing
worldwide, with an estimated incidence of
4.1–14.1 cases per 100,000 patient-years [9, 10].
Proposed reasons for this increase include
higher air pollution levels, a population
increasing in age and comorbid conditions, use
of immunosuppressive therapies, and chronic
use of inhaled corticosteroids [9, 10]. However,
improved diagnostics may also contribute to
the apparent increase in NTM infections [6, 11].
Diagnosis of NTM infections is based on a
combination of clinical, microbiologic, and
radiographic criteria that often involve infec-
tious diseases and/or pulmonary specialists.
NTM diagnostic criteria and the decision to
initiate treatment are described in detail
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elsewhere and are considered outside the scope
of this pharmacotherapy review [8, 12].

Mycobacterial infections pose a substantial
problem because of their widespread prevalence
worldwide and their increasing incidence [13].
Treatment of these infections is challenged by
the need for multiple antimicrobial agents,
varying resistance patterns among mycobacte-
rial species, and long duration of therapy. Here,
we review current and emerging approaches to
pharmacologic management of NTM infections.

This article is based on previously conducted
studies and does not contain any new studies
with human participants or animals performed
by any of the authors.

CURRENT TREATMENTS

Treatment Concepts

Antimycobacterials are often used in combina-
tion with bronchial hygiene/clearance regimens
and/or surgical resection to decrease bacterial
burden [8]. However, designing safe and effec-
tive pharmacotherapy for NTM disease is com-
plex, in part because of treatment regimen
variability based on different NTM species,
infection sites, and disease severities. Patient-
specific factors can increase this complexity,
including advanced patient age, body weight
extremes, and comorbid conditions. NTM
treatment commonly requires the administra-
tion of multiple drugs for long durations,
accompanied by clinical and laboratory moni-
toring. In addition to the lack of association
between in vitro and in vivo activity for most
antimicrobials, systematic controlled trials of
first-line treatment regimens, including pre-
ferred drug choice, dose, and duration, for var-
ious NTM species and diseases are also sparse
[12].

Despite these challenges, a general frame-
work for NTM treatment can be useful after
reaching a definitive diagnosis and should
contain the following elements:

1. At least 2 drugs with likely or confirmed
activity against the isolated NTM species
should be used. Combination therapy

prevents emergent resistance, and certain
drug pairings can be synergistic. Disease
severity and infection location guide the
number of drugs initially used. Up to
4 drugs are commonly used for severe dis-
ease, such as fibrocavitary and pulmonary
MAC infection, whereas 2 drugs may be
used for uncomplicated NTM SSTI.

2. For infections caused by certain species,
such as Mabs, treatment may occur in 2
stages: an initial, intensive phase lasting
approximately 1–3 months, followed by a
prolonged maintenance phase. The initial
phase typically contains more drugs and
intravenous (IV) administration when indi-
cated. The maintenance phase ideally
involves only orally administered drugs
and may include as few as 2 drugs. Total
treatment duration is guided by clinical
response and patient tolerability. Treatment
duration is best defined for pulmonary NTM
infection as continuing for 12 months after
sputum culture conversion to negative [8].

3. Mycobacterium species identification and
susceptibility testing guide drug choice.
Data showing an association between
in vivo clinical outcomes and in vitro sus-
ceptibility test results are lacking for most
NTM infections, although amikacin and
clarithromycin are notable exceptions for
MAC and Mabs infections, as well as
rifampin for M. kansasii infection. Never-
theless, performing susceptibility testing is
generally recommended. Empiric treatment
based on usual susceptibility patterns is
often initiated for severe and/or dissemi-
nated disease while awaiting further micro-
biologic test results. Macrolides, except
when resistance is evident, are a backbone
of most NTM treatment regimens [12].

Patients should be counseled about the NTM
disease process, goals of therapy, chances of
treatment success, medication administration
and adverse effects, and laboratory monitoring
requirements before committing to NTM ther-
apy. A multidisciplinary team supporting the
patient is key to success and may include
infectious diseases and pulmonary physicians,
advanced practitioners, pharmacists, surgeons,
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respiratory therapists, nurses, dieticians, micro-
biologists, and radiologists.

Common Pharmacotherapeutics for MAC

Because MAC infections are overwhelmingly
the most common NTM infection type, MAC is
the most extensively studied NTM species.
Many studies have aimed to determine optimal
MAC treatment, and uniform treatment regi-
mens are supported by high-level evidence from
randomized, controlled trials. In contrast,
treatment recommendations for other species
are less extensively investigated. Therefore, the
following discussion focuses on MAC treatment
recommendations. Other species and active
antimicrobial agents are summarized in Table 1.

Guidelines for pulmonary MAC recommend
a three-drug regimen consisting of a macrolide
(azithromycin or clarithromycin), ethambutol,
and a rifamycin (rifampin or rifabutin) [8].
Macrolides are generally regarded as the
cornerstone of MAC treatment, and clinical
outcomes do not differ between azithromycin
and clarithromycin treatment [8]. Azithromycin
may be favored more than clarithromycin
because azithromycin is associated with fewer
drug–drug interactions, better patient tolerance,
and a lower pill burden [8].

Hallmark adverse effects of macrolides
include gastrointestinal and taste disturbances,
QTc prolongation, other cardiac disturbances,
and auditory toxicities [8]. Because ethambutol
helps prevent the development of macrolide
resistance in MAC infections, it is the preferred
second agent. Notable adverse effects of
ethambutol include ocular toxicity and periph-
eral neuropathy [8]. The addition of a rifamycin
to macrolide/ethambutol combination treat-
ment may provide further protection against
macrolide resistance [8]. Rifampin causes many
drug–drug interactions by inducing several
cytochrome P450 enzymes, most notably
CYP3A4, and UDP-galactose transporter.
Rifampin also causes red–orange discoloration
of bodily secretions (e.g., urine, saliva, perspi-
ration, and tears), hepatotoxicity, and cytope-
nia [8].

The aminoglycoside amikacin has consider-
able activity against most NTM species, includ-
ing MAC. IV amikacin is a potential fourth drug
in macrolide-nonsusceptible and cavitary MAC
disease, although some experts may recom-
mend an inhaled route for noncavitary disease
[8, 14]. Inhaled or IV amikacin are both options
for refractory pulmonary disease [8]. Both for-
mulations are associated with a risk of kidney,
vestibular, and auditory toxicity, although
these risks are considerably lower with inhala-
tion [8, 14]. Medications with activity against
MAC and other NTM species are listed in
Table 1.

THERAPEUTIC DRUG MONITORING

Therapeutic drug monitoring (TDM) is standard
for patients receiving IV amikacin because of its
drug toxicity risks. An extrapolated peak of
35–45 mcg/mL and trough of less than 5 mcg/
mL are targeted with daily administration of IV
amikacin (15–20 mg/kg ideal body weight) [8].
Amikacin peaks can be extrapolated with 2- and
6-h postinfusion concentrations to avoid sam-
pling before reaching serum–tissue drug equi-
librium. If two serum concentrations are not
readily available, an approximate peak can be
measured 1 h after the end of infusion, with a
peak goal of 25–35 mcg/mL. A 3timesaweek IV
amikacin dose of 25 mg/kg, with a peak goal of
65–80 mcg/mL and undetectable trough, is an
alternative dosing strategy for pulmonary NTM
infection [8, 20].

Serum TDM of oral NTM agents is not well
established but is considered in certain circum-
stances, such as concern for adequate drug
absorption (e.g., a history of Roux-en-Y proce-
dure, graft-versus-host disease of the gut, and
severe gastrointestinal disease such as Crohn’s
disease), pharmacokinetic drug interactions,
kidney or liver dysfunction, or a lack of clinical/
microbiologic response to therapy. Measuring
serum drug levels at two time points, typically
at 2–3 h after drug administration and again at
6 h after administration, is generally used with
oral TDM to assess for potential delayed drug
absorption [15]. Table 2 includes the target Cmax

concentrations (i.e., peak blood/serum drug
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Table 1 Classification of NTM species and pharmacotherapeutics with in vitro microbiologic activity [8, 12, 15–19]

Classification and
major groups

Pharmacotherapeutics

Preferred agentsa Alternative agents

Slow-growing NTM (colonization[ 7 days)

M. avium complexb AMK, AZM, EMB, RFB, RIF BDQ, CLO, CLR, CZA, ETO, LZD, MXF, SXT,

TGC, TZD

M. kansasii AZM, CIP, EMB, INH, LVX, MXF,

RFB, RIF

AMK, BDQ, CLO, CLR, LZD, SXT, TGC, TZD

M. marinum AZM, EMB, RFB, RIF AMK, CIP, CLR, DOX, INH, IPM, LVX, LZD, MIN,

MXF, SXT, TZD

M. scrofulaceum AZM, CIP, CLR, LVX, MXF EMB, LZD, MIN, RFB, RIF

M. haemophilum AZM, CIP, CLR, RFB, RIF AMK, CLO, DOX, SXT

M. terrae complexc AZM, CLR, EMB, RIF AMK, CIP, ETO, LVX, LZD, MXF, SXT

M. xenopi AZM, CLR, EMB, RFB, RIF AMK, INH, LVX, MXF

M. ulcerans AMK, AZM, EMB, RFB, RIF CLR, MXF, SXT, TET

M. malmoense AZM, EMB, LVX, MXF, RFB, RIF CLR, INH

M. celatum AZM, EMB, LVX, MXF, RFB AMK, CLR, INH, PZA

M. genavense AZM, RFB, RIF AMK, CLO, CLR, EMB, LVX, MXF

M. simiae complexd CLR, EMB, MXF, RFB, RIF, SXT AMK, CLO, LZD

M. szulgai AZM, EMB, RIF AMK, CLR, INH, LVX, MXF, PZA

M. gordonae AZM, CLR, EMB, RIF INH, LVX, LZD, MXF, RFB, SXT

Rapid-growing NTM (colonization B 7 days)

M. fortuitum complexe AMK, CIP, DOX, IPM, LVX, MIN,

MXF, SXT

FOX, LZD, OMC, TGC, TOB

M. chelonae AZM, IPM, LZD, TOB CIP, CLO, CLR, DOX, LVX, MIN, MXF, OMC, SXT,

TGC

M. abscessus complexf AMK, AZM, FOX, IPM BDQ, CIP, CLO, CLR, ERV, IMR, LVX, LZD, MXF,

OMC, TGC, TZD

M. smegmatis groupg AMK, CIP, DOX, MXF, SXT AZM, CLO, CLR, EMB, FOX, IPM

M. immunogenum AMK, AZM, TGC CLR, IPM, LZD, TZD
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concentrations) for TDM during NTM infection
treatment.

ALTERNATIVE NTM
PHARMACOTHERAPY AGENTS

Treating mycobacterial infections is challenging
because of the complexity of the disease and
therapeutics used. NTM harbor intrinsic resis-
tance and also quickly acquire resistance, which
renders many antimicrobial classes ineffective.
Medication tolerability issues with traditional
NTM pharmacotherapeutics can arise, especially
because long-term treatment courses are gener-
ally required. Relatively established alternative
NTM agents with distinct pharmacologic con-
siderations are summarized in Table 3. Studies
of select alternative pharmacotherapy agents
are reviewed in Table 2.

Bedaquiline

Bedaquiline is a diarylquinoline antibiotic that
inhibits the proton pump of mycobacterial ATP

synthase, which is conserved across mycobac-
terial species [33]. Bedaquiline is used to treat
pulmonary multidrug-resistant tuberculosis [34]
and has a dose-dependent bacteriostatic effect
against MAC and Mabs in vitro and synergism
with clofazimine [35]. Bedaquiline was added as
off-label salvage therapy for 10 patients with
treatment-refractory MAC or Mabs lung infec-
tions. Despite a modest microbiologic and
clinical response, no cures were reported [23].
Bedaquiline is administered as a daily 400mg
dose for 2 weeks, followed by 200 mg adminis-
tered 3 times per week (with food) and taken in
combination with other drugs for at least
6 months [34].

Bedaquiline is metabolized via CYP3A4, and
potential drug interactions should be assessed,
particularly with CYP3A4 inducers. Substan-
tially decreased serum concentrations of beda-
quiline occur with coadministration of
rifamycins [36], which limits the usefulness of
bedaquiline for MAC treatment. Extreme cau-
tion must be used when substituting a rifamy-
cin with moxifloxacin because both
medications can prolong the QTc interval,

Table 1 continued

Classification and
major groups

Pharmacotherapeutics

Preferred agentsa Alternative agents

M. mucogenicum AMK, AZM, CIP, FOX, IPM, LVX,

MXF, SXT

AMX, CLR, DOX, LZD, MIN

AMK amikacin, AMX amoxicillin, AZM azithromycin, BDQ bedaquiline, CIP ciprofloxacin, CLO clofazimine, CLR
clarithromycin, CZA ceftazidime/avibactam, DOX doxycycline, EMB ethambutol, ERV eravacycline, ETO ethionamide,
FOX cefoxitin, IMR imipenem/relebactam, INH isoniazid, IPM imipenem, LVX levofloxacin, LZD linezolid, MIN
minocycline, MXF moxifloxacin, NTM nontuberculous mycobacterial, OMC omadacycline, PZA pyrazinamide, RFB
rifabutin, RIF rifampin, SXT sulfamethoxazole/trimethoprim, TET tetracycline, TGC tigecycline, TOB tobramycin, TZD
tedizolid
aComplete regimen is typically composed of 2–4 agents according to infection site and disease severity. Drug selection is
based on clinical evidence for effectiveness, safety, ease of administration, and medication tolerability
bM. avium complex comprises M. avium, M. intracellulare, and M. subsp. chimaera
cM. terrae complex comprises M. terrae, M. triviale, M. nonchromogenicum, and M. hiberniae
dM. simiae complex comprises M. simiae, M. sherisii, M. lentiflavum, M. triplex, M. heidelbergense, and M. simiae subsp.
palustre
eM. fortuitum complex comprises M. fortuitum, M. neworleansense, M. peregrinum, M. boenickei, M. alvei, M. porcinum, M.
conceptionense, M. farcinogenes, M. senegalense, and M. mageritense
fM. abscessus complex comprises M. abscessus subsp. abscessus (sensu stricto), M. abscessus subsp. massiliense, and M. abscessus
subsp. bolletii
gM. smegmatis group comprises M. smegmatis, M. wolinskyi, and M. goodii
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Table 2 Common pharmacotherapeutics used to treat NTM infections [8, 12, 15, 16, 19–22]

Pharmacotherapeutics Standard
NTM dosing

Typical
Cmax,
mcg/mLa

Adverse drug events Therapeutic
drug
monitoring

Comments

Amikacin (IV) 15 mg/kg

(daily 5

times/wk)

or

25 mg/kg

(daily 3

times/wk)

35–45 (1

time/d)

65–80 (3

times/

wk)

Ototoxicity,

nephrotoxicity

BMP,

audiography,

peak and

trough

concentrations

Amikacin (inhaled

liposomal)

590 mg

(every

24 h)

N/A Sore throat,

bronchospasm,

dysphonia,

tinnitus

Respiratory

status, SCr,

serum level if

indicated,

audiography

Amoxicillin/clavulanate

(oral)

875 mg/

125 mg

(every

12 h)

N/A GI symptoms, rash,

hepatotoxicity

CBC, ALT, SCr

Azithromycin (oral/IV) 250–500 mg

(every

24 h) or

500 mg (3

times/wk)

0.2–0.7 GI symptoms,

prolonged QT,

hearing loss

ECG, LFT,

audiography

Bedaquiline (oral) 400 mg

(every 24 h

for 2 wk,

then

200 mg 3

times/wk

thereafter)

1.0–2.5 GI symptoms,

prolonged QT,

hepatotoxicity,

arthralgia

ECG, CMP,

CBC

Limited distribution

through 1 specialty

pharmacy in the US;

must be shipped to a

health care facility and

cannot be sent directly

to patient home

Cefoxitin (IV) 2–4 g (every

8–12 h)

N/A Hepatotoxicity,

myelosuppression,

rash

CBC, LFT, SCr

Ceftazidime/avibactam

(IV)

Not

established

N/A Hepatotoxicity,

myelosuppression,

rash

CBC, LFT, SCr

Ciprofloxacin (oral/IV) 500–750 mg

(every

12 h)

4–6 GI symptoms,

prolonged QT,

tendinitis, AAA

ECG, SCr
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Table 2 continued

Pharmacotherapeutics Standard
NTM dosing

Typical
Cmax,
mcg/mLa

Adverse drug events Therapeutic
drug
monitoring

Comments

Clarithromycin (oral) 500 mg

(every

12 h) or

500 mg

(every 12 h

on 3 d/wk)

2–7 GI symptoms,

prolonged QT,

hearing loss

ECG, LFT,

audiogram

CYP3A4 inhibitor

Clofazimine (oral) 50–100 mg

(every

24 h)

0.5–2.0 Body fluid

discoloration, skin

changes, GI

symptoms,

prolonged QT,

hepatotoxicity

ECG, LFT Obtain through IND or

expanded access MPP

Doxycycline (oral/IV) 100 mg

(every

12 h)

N/A GI symptoms,

photosensitivity,

esophageal

ulceration

Ethambutol (oral) 15–20 mg/kg

(every

24 h),

maximum

1600 mg

2–6 Optic neuritis,

peripheral

neuropathy

Eye

examination,

Ishihara test

Ethionamide (oral) 15–20 mg/kg

(every

24 h),

maximum

1000 mg

2–5 Optic neuritis,

peripheral

neuropathy,

hepatotoxicity

Eye

examination,

LFT

Imipenem-cilastatin

(IV)

1000 mg

(every

12 h)

N/A Hepatotoxicity,

myelosuppression,

seizure

CBC, LFT, SCr

Imipenem-cilastatin/

relebactam (IV)

Not

established

N/A Hepatotoxicity,

myelosuppression,

seizure

CBC, LFT, SCr

Isoniazid (oral/IM) 5 mg/kg

(every

24 h),

maximum

300 mg

3–6 Peripheral

neuropathy,

hepatotoxicity

LFT Administer with

pyridoxine 50–100 mg

daily
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Table 2 continued

Pharmacotherapeutics Standard
NTM dosing

Typical
Cmax,
mcg/mLa

Adverse drug events Therapeutic
drug
monitoring

Comments

Levofloxacin (oral/IV) 500–750 mg

(every

24 h)

8–13 GI symptoms,

prolonged QT,

tendinitis, AAA

ECG, SCr

Linezolid (oral/IV) 300–600 mg

(every

24 h)

12–26 GI symptoms,

myelosuppression,

neuropathy

CBC

Minocycline (oral/IV) 100 mg

(every

12 h)

N/A GI symptoms,

photosensitivity,

esophageal

ulceration,

dizziness

Moxifloxacin (oral/IV) 400 mg

(every

24 h)

3–5 GI symptoms,

prolonged QT,

tendinitis, AAA

ECG

Omadacycline (oral/IV) 300 mg

(every

24 h)

N/A GI symptoms,

hepatotoxicity

LFT

Pyrazinamide (oral) 25–40 mg/kg

(every

24 h),

maximum

2000 mg

20–60 GI symptoms,

arthralgia, myalgia,

hepatotoxicity

CBC, SCr, LFT

Rifabutin (oral) 5 mg/kg

(every

24 h),

maximum

300 mg

0.45–0.90 Discoloration of

body fluids, GI

symptoms, uveitis,

myelosuppression,

arthralgia

CBC, LFT CYP3A4 inducer

Rifampin (oral/IV) 10 mg/kg

(every

24 h),

maximum

600 mg

8–24 Discoloration of

body fluids, GI

symptoms,

myelosuppression,

arthralgia,

hepatotoxicity

CBC, LFT Multiple CYP inducer

Sulfamethoxazole/

trimethoprim (oral/

IV)

800 mg/

160 mg

(every

12 h)

N/A GI symptoms, rash,

nephrotoxicity,

myelosuppression

CBC, BMP,

LFT
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which increases risk of ventricular arrhythmia
[37]. Electrocardiographic monitoring of
patients treated with bedaquiline is recom-
mended. Adverse effects include hepatotoxicity,
peripheral neuropathy, otovestibular toxicity,
anemia, thrombocytopenia, neutropenia, and
kidney impairment [37, 38]. A clinical trial
comparing bedaquiline with a rifamycin in a
treatment regimen for pulmonary MAC infec-
tion is ongoing and has an estimated comple-
tion date in late 2024 (clinicaltrials.gov,
NCT04630145).

Clofazimine

Clofazimine is an antimicrobial phenazine dye
that inhibits bacterial proliferation by binding
to DNA. It also acts on the bacterial cell wall to
generate toxic lysophospholipids [39]. It has
in vitro bacteriostatic activity against MAC and
Mabs and synergism with amikacin and/or
clarithromycin [40]. Substituting rifampin with
clofazimine in ethambutol/clarithromycin-
containing regimens enhanced bacterial clear-
ance in a murine model of pulmonary MAC

infection, and this substitution led to equiva-
lent patient outcomes in retrospective analyses
[24, 41]. Addition of clofazimine and/or aero-
solized amikacin to drug regimens for macro-
lide-resistant pulmonary MAC infection is
recommended, although prospective studies
have not been performed [14]. In a murine
model of pulmonary Mabs infection, adminis-
tration of clofazimine increased bacterial clear-
ance, which was enhanced by the addition of
bedaquiline [42]. Retrospective analyses of
infection in humans show moderate effective-
ness against Mabs when clofazimine is com-
bined with other antibiotics [25].

Adverse effects of clofazimine include dis-
coloration of the conjunctiva and skin (orange
to brownish-black) that may not reverse for
months to years after discontinuation. Crystal-
lization of the drug in tissues such as the
intestinal mucosa may cause abdominal pain
with nausea and vomiting and can rarely lead to
intestinal obstruction. Clofazimine may
increase concentrations of CYP3A4/5 substrates.
QTc prolongation is not a major risk but may be
enhanced in combination with certain medi-
cations; thus, electrocardiographic monitoring

Table 2 continued

Pharmacotherapeutics Standard
NTM dosing

Typical
Cmax,
mcg/mLa

Adverse drug events Therapeutic
drug
monitoring

Comments

Tigecycline (IV) 50 mg (every

12–24 h)

N/A GI symptoms,

hepatotoxicity

LFT

Tedizolid (oral/IV) 200 mg

(every

24 h)

2–3 GI symptoms,

myelosuppression,

neuropathy

CBC

Tobramycin (IV) 5–7 mg/kg

(every

24 h)

20–30 (1

time/d)

Ototoxicity,

vestibulotoxicity,

nephrotoxicity

BMP,

audiogram,

peak and

trough drug

levels

AAA abdominal aortic aneurysm, ALT alanine aminotransferase, BMP basic metabolic panel, CBC complete blood cell
count, CMP comprehensive metabolic panel, CYP cytochrome P450, ECG electrocardiography, GI gastrointestinal, IM
intramuscular, IND investigational new drug, IV intravenous, LFT liver function testing, MPP multipatient protocol, N/A
not applicable, NTM nontuberculous mycobacterial, SCr serum creatinine
aCmax is defined as the peak drug concentration in sampled blood or plasma
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Table 3 Recent reports of NTM in vivo pharmacotherapya

Pharmacotherapeutic/
citation

Study design and methods Notable outcomes Conclusion

BDQ

Philley et al. [23], 2015 Case series of off-label use of

BDQ for treatment failure

in lung disease caused by

MAC or Mabs in 10 adult

patients treated with best-

available concurrent NTM

therapy

Included patients needed

access to BDQ and C 12-mo

treatment failure for MAC

and C 6 mo for Mabs

Oral BDQ 400 mg 1 time/d

for 2 wk then 200 mg 3

times/wk (600 mg/wk)

After 6 mo of therapy,

microbiologic response rate

was 60%, with 50% C 1

negative culture result

Common adverse effects were

nausea (60%), arthralgias

(40%), anorexia, subjective

fever (30%)

No abnormal ECG findings

were observed

Potential clinical and

microbiologic activity of

BDQ for advanced MAC or

Mabs lung disease

Needs confirmation by larger

studies

CLO

Jarand et al. [24], 2016 Retrospective review of clinical

and microbiologic outcomes

for MAC-LD in those

receiving CLO and/or RIF

with macrolide and

ethambutol

Adult patients with MAC-LD

who were treated and

monitored for C 6 mo after

treatment were included

(n = 170)

Majority (84%) were treated

with CLO and (13%) with

RIF

Most patients (95%) had

conversion from positive to

negative sputum culture

results in mean (SD) 4.5

(4.2) mo

More patients treated with

CLO had conversion to

negative culture results vs.

patients treated with RIF

(100% vs. 71%, P\ 0.001)

Microbiologic relapse occurred

in 52 of 107 patients (49%)

Initial outcomes and

retreatment rates were at

least as good in patients

treated with CLO-

containing regimens as in

patients receiving RIF-

containing regimens

CLO should be considered as

an alternative drug for

MAC-LD
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Table 3 continued

Pharmacotherapeutic/
citation

Study design and methods Notable outcomes Conclusion

Yang et al. [25], 2017 Evaluated clinical efficacy of

CLO-containing regimen

for Mabs-LD via

retrospective review

Patients with Mabs-LD who

were treated with CLO-

containing regimens for

initial or refractory disease

were included (n = 42)

Treatment response rate was

81% according to symptoms

and 31% according to

radiographic findings

Sputum culture conversion

was achieved in 10 (24%)

patients after CLO-

containing antibiotic

treatment

Substantial decreases in

positive semiquantitative

sputum culture results for

acid-fast bacilli in both the

initial and salvage groups

during treatment

CLO-containing regimens

may improve treatment

outcomes in patients with

Mabs-LD, and a prospective

evaluation is warranted

Martiniano et al. [26],

2017

Observational cohort study

assessed CLO in 112

pediatric and adult patients

with and without CF and

pulmonary or

extrapulmonary Mabs,

MAC, or various NTM

infections as part of a

multidrug regimen

Median (range) CLO duration

was 383 (3–2419) days

Sixteen patients (14%)

stopped CLO because of

ADRs after a median (95%

CI) of 101 (63–119) days

Half of patients with

pulmonary disease had

sputum culture conversion

within 12 mo

CLO was safe, reasonably

tolerated, and active for

NTM infection in pediatric

and adult patients with and

without CF

CLO should be considered as

an alternative drug for NTM

disease

LZD

Parize et al. [27], 2016 Report the efficacy and

tolerability of LZD with

CLR for M. chelonae
infection in patients who

were immunocompromised

All patients had rapid clinical

efficacy without relapse after

a median follow-up duration

of 2.25 y

ADRs were frequent,

including thrombocytopenia,

myalgia, and mitochondrial

toxicity

All ADRs were reversible after

discontinuing LZD

LZD/CLR combination was

suggested as an initial

therapy for M. chelonae skin
infections in patients who

are immunocompromised
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Table 3 continued

Pharmacotherapeutic/
citation

Study design and methods Notable outcomes Conclusion

Winthrop et al. [28],

2015

Retrospective cohort study of

LZD tolerability in 102

patients with NTM

infections at 6 NTM

treatment centers in North

America

Median (range) LZD therapy

duration after initial drug

start was 21.4 (1–201) wk

Most (79%) were administered

600 mg (1 time/d); 12%,

300 mg (1 time/d); 5%,

600 mg (2 times/d)

ADRs occurred in 46 (45%)

patients, including peripheral

neuropathy (n = 24, 24%),

GI intolerance (n = 9, 9%),

anemia (n = 8, 8%), and

thrombocytopenia (n = 6,

6%)

LZD can be used for long

durations in multidrug

NTM treatment

ADRs necessitating drug

discontinuation were

common, occurring

in[ 40% of patients

regardless of concomitant

vitamin B6 use

OMC

Pearson et al. [29], 2020 Case series of 4 patients

treated with OMC with

multidrug therapy for Mabs

infection

NTM syndromes were

cutaneous disease (n = 2),

pulmonary disease (n = 1),

osteomyelitis, and

bacteremia (n = 1)

Median (range) duration of

OMC treatment was 166

(104–227) d

Clinical cure was achieved in 3

of 4 patients, with 1 patient

improving with ongoing

treatment

A patient discontinued OMC

after 6 mo because of nausea

OMC is a novel oral option

for the treatment of Mabs

Further data are required to

determine its definitive role

Morrisette et al. [30],

2021

Case series of 12 patients

treated with OMC with

multidrug therapy for Mabs

infection

Majority were pulmonary

infections (n = 7/12, 58%)

Median (IQR) OMC

treatment duration was 6.2

(4.2–11.0) mo

Clinical success occurred in 9

of 12 (75%) patients. Three

patients had a possible ADR

Prospective studies and larger

postmarket reports are

needed for OMC as NTM

therapy
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is recommended [26]. Aluminum/magnesium
antacids may interfere with clofazimine oral
absorption. Clofazimine (50–100 mg) should be
taken 2 times daily with a meal and separately
from aluminum/magnesium-containing
antacids.

Rifabutin

Rifabutin, similar to rifampin, is a semisynthetic
rifamycin antibiotic that inhibits the bacterial
DNA-dependent RNA polymerase, which inhi-
bits transcription of bacterial RNA and leads to
cell death. Rifabutin has in vitro activity against
most NTM species and is recommended for

pulmonary MAC, M. kansasii, and Mycobac-
terium xenopi infections [8]. In a preclinical
murine model, daily rifabutin (10 mg/kg) for
10 days reduced Mabs concentration by 1 log,
which is similar to that with clarithromycin
[43]. Rifabutin is usually orally administered as
a daily 150 to 300mg dose or 3 times a week at
300 mg, depending on indication and potential
drug–drug interactions [8].

Rifabutin adverse effects include orange-
brown discoloration of body fluids, rash, gas-
trointestinal symptoms (e.g., nausea and diar-
rhea), and neutropenia [44]. Rifabutin induces
CYP3A4 activity and therefore reduces the
concentrations of many drugs, although

Table 3 continued

Pharmacotherapeutic/
citation

Study design and methods Notable outcomes Conclusion

Duah and Beshay [31],

2022

Case series of 3 patients

administered OMC as part

of a first-line treatment for

Mabs pulmonary infection

All 3 patients had reported

clinical improvement

One patient had a possible

ADR (nausea/vomiting)

Findings support future study

of OMC as a potential oral

first-line option for Mabs

pulmonary disease

TDZ

Poon et al. [32], 2021 Single-center retrospective

cohort study of adult solid-

organ transplant recipients

receiving LZD or TDZ for

NTM infection

During 7 wk, LZD and TZD

did not differ for platelet

counts, ANC, or

hemoglobin, but ANC was

significantly decreased for

both LZD and TZD

(P = 0.04)

Approximately 20% of

patients in each arm

discontinued LZD or TZD

because of an ADR

Seven of 12 (58%) and 2 of 3

(67%) patients were cured or

clinically cured

No significant safety benefit of

TZD vs. LZD

TZD and LZD had potential

benefit for symptomatic and

microbiologic improvement

for NTM infections in solid-

organ transplant recipients

ADR adverse drug reaction, ANC absolute neutrophil count, BDQ bedaquiline, CF cystic fibrosis, CLO clofazimine, CLR
clarithromycin, ECG electrocardiograph, GI gastrointestinal, LD lung disease, LZD linezolid, Mabs Mycobacterium abscessus,
MAC Mycobacterium avium complex, NTM nontuberculous mycobacteria, OMC omadacycline, RIF rifampin, TZD
tedizolid
aAll reports published in 2015 or later
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typically to a lesser extent than does rifampin.
However, rifabutin is also metabolized by
CYP3A4 and thus has greater potential for
bidirectional drug interactions than does
rifampin [44].

Linezolid

Linezolid is an oxazolidinone antibiotic that
binds to bacterial 23S ribosomal RNA of the 50S
subunit to inhibit bacterial protein synthesis
and has in vitro activity against most
mycobacterial species [45–47]. Clinical out-
comes data in humans are most readily avail-
able for Mabs and M. chelonae infections
[27, 28, 48]. Linezolid is also considered an
alternative treatment option for MAC [28].
Long-term tolerability is limited by hematologic
and neurologic toxicities, including pancy-
topenias and peripheral and optic neuropathies.
A daily 600mg dose of linezolid is often used for
mycobacterial infections to improve long-term
tolerability, although outcomes studies directly
comparing 1- vs. 2-time daily dosing are not
available [49]. Other methods to limit drug
toxicities, including pyridoxine (vitamin B6)
supplementation, were not beneficial [28].

Linezolid has reversible, weak inhibitory
properties against monoamine oxidase, which
led to labeling precautions for serotonin syn-
drome when it is combined with other sero-
tonergic agents and for hypertensive crisis with
tyramine-rich foods. Serotonin syndrome risk,
although low overall, may increase with con-
comitant administration of serotonergic agents
and according to their serotonergic potential
[50–52].

EMERGING TREATMENTS

NTM treatment outcomes remain suboptimal
with established regimens. This highlights the
need for developing novel therapeutics and
repurposing currently approved therapeutics for
antimycobacterial management. Studies of such
emerging treatments are reviewed in Table 2.

Tetracycline Derivatives

Tetracyclines reversibly bind to the bacterial 30S
ribosomal subunit and inhibit protein synthe-
sis. Tigecycline is a third-generation tetracycline
approved for complicated skin and intra-ab-
dominal infections. It also has been studied for
its efficacy against NTM disease and is currently
recommended as a preferred IV antimycobac-
terial agent for Mabs in multiple NTM treat-
ment guidelines [8, 53–55]. However,
tigecycline use is associated with dose-limiting
nausea and vomiting and has a boxed warning
for increased risk of death. This boxed warning
resulted from outcomes in patients treated for
bacterial bloodstream infections [56]. Tigecy-
cline is available only as an IV formulation
because of its poor oral absorption [57].

Omadacycline was recently approved for
bacterial pneumonia and SSTI, and eravacycline
was approved for complicated intra-abdominal
infections. Both drugs are better tolerated than
their predecessor tigecycline [58] and are
attractive therapeutic options for NTM disease.
Two in vitro studies reported eravacycline
activity against NTM [59, 60], and several
in vitro [60–64] and in vivo case reports/series
described the use of omadacycline [29–31, 65]
in combination therapy for Mabs infection.
Omadacycline is under investigation in a phase
2 clinical trial for NTM infection treatment
(clinicaltrials.gov, NCT04922554).

Omadacycline is the only novel tetracycline
derivative available as an oral formulation.
Administering food 2 h before oral omadacy-
cline reduced omadacycline concentrations by
40–63% in clinical trials [66]. Therefore, fasting
is recommended for oral omadacycline admin-
istration, with no food or drink, except water,
consumed 4 h before or 2 h after administra-
tion. Absorption is further impaired by antacids
containing polyvalent cations, such as calcium
or aluminum. Dairy products, antacids, and
multivitamins should not be consumed for at
least 4 h after omadacycline administration.
Although the approved dosing for oral omada-
cycline includes a loading dose, omitting the
loading dose in NTM treatment may increase
gastrointestinal tolerability [29]. Eravacycline is
a CYP3A4 substrate that can interact with
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CYP3A4 inducers such as rifampin. Because
both omadacycline and eravacycline depress
plasma prothrombin activity, concomitant
anticoagulant treatment may require dose
reduction.

Tedizolid

Tedizolid is a novel oxazolidinone antibiotic
that inhibits bacterial protein synthesis in a
similar mechanism to that of linezolid. In vitro
activity of tedizolid is reported for many slow-
growing and rapid-growing NTM species,
including MAC, M. kansasii, Mabs, M. chelonae,
M. fortuitum, Mycobacterium marinum, Mycobac-
terium smegmatis group, and Mycobacterium
immunogenum. Minimum inhibitory concentra-
tions (MICs) for tedizolid are generally compa-
rable to or several dilutions lower than those of
linezolid [67–71]. Clinical evidence for tedizolid
use for NTM treatment is limited. Discrepant
effectiveness and safety findings of tedizolid in
comparison with linezolid are reported
[32, 72, 73]. Two case reports describe successful
tedizolid use for NTM infection in patients with
previous linezolid-induced cytopenia [72, 73].
Tedizolid has greater antibacterial potency,
better pharmacokinetic/pharmacodynamic
profiles, and lower hematologic and neurologic
toxicity than does linezolid [74, 75]. The rela-
tively weak monoamine oxidase inhibition and
poor central nervous system penetration of
tedizolid may also lead to fewer drug interac-
tions with serotonergic agents [76, 77]. The
improved long-term safety, high bioavailability,
and daily dosing regimen are favorable factors
for tedizolid use in NTM therapy.

Combination b-Lactams

Dual b-lactam combination therapy is an
evolving area of interest, in which two b-lactam
agents are used to induce synergistic bacterici-
dal activity. Such combinations are most
extensively studied for Mabs infections, which
often have limited treatment options and
poorer clinical outcomes than infections with
other NTM species, with culture conversion
rates of 25–42% among macrolide-resistant

isolates [16]. In vitro synergistic activity is
reported for several combinations, including
imipenem/ceftaroline, ceftazidime/ceftaroline,
imipenem/cefoxitin, imipenem/cefdinir, and
imipenem/doripenem [78–82]. Imipenem/cef-
taroline synergism was also replicated in an
in vivo mouse model of pulmonary Mabs
infection [83].

Several possible mechanisms of synergy have
been proposed. Both cefoxitin and imipenem
are slowly hydrolyzed by the Mabs class A b-
lactamase (BlaMab). In the absence of readily
available inhibitors of BlaMab, dual b-lactam
combination therapy may overwhelm BlaMab to
allow more drug to reach the target binding site.
Cephalosporins and carbapenems have differ-
ent binding affinities to Mabs L,D-transpeptidase
proteins LdtMab1–5 [84, 85]. These different
affinities may provide greater saturation of
molecular targets with both drugs than with
either agent alone. This mechanism is analo-
gous to ampicillin and third-generation cepha-
losporin synergy against Enterococcus faecalis
infection [86]. Molecular simulation studies
suggest that LdtMab2 undergoes ligand-induced
conformational changes in which initial imi-
penem docking may alter or open additional
binding sites for ceftaroline [85].

b-Lactamase Inhibitors

Although imipenem and cefoxitin are often
recommended as first-line IV NTM therapy [8],
the presence of BlaMab renders them inactive
[87]. However, in vitro models suggest that
novel b-lactamase inhibitors may block BlaMab

and restore b-lactam activity. Relebactam and
avibactam (diazabicyclooctane b-lactamase
inhibitors) and vaborbactam (boronic acid b-
lactamase inhibitor) have been studied in vari-
ous combinations. Relebactam and vaborbac-
tam (4 mcg/mL) reduce the MIC of M abscessus
subsp. abscessus when combined with oral and
IV carbapenems and cephalosporins [88].
Another in vitro study assessed different ratios
of b-lactam to b-lactamase inhibitor for efficacy
against M abscessus subsp. abscessus, M abscessus
subsp. bolletii, and M abscessus subsp. mas-
siliense. Although the currently available dose/
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ratio of imipenem/relebactam was optimized,
no combination of ceftazidime/avibactam was
effective. However, triple-combination imipe-
nem, relebactam, and meropenem resulted in
the lowest MICs and minimum bactericidal
concentrations for all three subspecies [89].
Other studies have shown that the addition of
ampicillin to imipenem/relebactam, and to a
lesser extent to ceftazidime/avibactam, can
result in lower Mabs MICs [89, 90]. Currently,
all three b-lactamase inhibitors are available
only in coformulations with b-lactams:
imipenem/cilastatin with relebactam, cef-
tazidime with avibactam, and meropenem with
vaborbactam. To achieve potentially active
combinations that include meropenem or
ampicillin, the patient must also receive non-
contributory b-lactams, such as ceftazidime.

Thus far, b-lactam and b-lactamase inhibitor
combinations have been studied only in vitro,
and the optimal combination, dose, and toler-
ability in humans are unknown. The risk of
bone marrow suppression with long-term b-
lactam use is a theoretical concern and may be
exacerbated by overlapping drug toxicity pro-
files. Therefore, caution is needed when using
these combinations in clinical practice.

Phage Therapy

Mycobacteriophages are viruses that infect
mycobacterial hosts. Phage therapy uses bacte-
riophages to specifically target and lyse patho-
genic bacteria [91] and is an emerging strategy
to combat multidrug-resistant infections,
including mycobacterial infections [92]. Suc-
cessful phage therapy for nonmycobacterial
infections has been described [93].

Dedrick et al. [91] reported a case of a
15-year-old patient with cystic fibrosis who had
a disseminated Mabs infection after lung trans-
plant and was successfully treated with phage
therapy. A 2022 report describes the use of
phage therapy in 20 patients with drug-resistant
mycobacterial disease [94]. Therapy was
administered by IV infusion, aerosolization, or
both. No adverse reactions were reported, and
favorable clinical or microbiological responses
occurred in 11 patients. These data suggest that

phage therapy is a strategy for NTM infections
without other viable treatment options [94, 95].
Challenges for the broader use of this therapy
include the limited availability of therapeuti-
cally useful bacteriophages, variability in bac-
teriophage susceptibility among clinical
isolates, unclear dosing and route of adminis-
tration, lack of understanding of the added
benefit of cotreatment with antimicrobials or
antiinflammatory agents, and the need to
counter bacteriophage resistance. More research
is needed to establish best practices for using
this evolving technology.

EXPERIMENTAL AND PRECLINICAL
THERAPIES

The repurposing of commercially available
antibiotics with in vitro antimycobacterial
activity has expanded the available therapeutic
options. In addition, several antimycobacterial
agents are currently undergoing first-in-human
testing in phase I and II clinical trials [96].
Addition of inhaled nitric oxide or granulo-
cyte–macrophage colony-stimulating factor has
been used as adjunctive therapy for patients
with pulmonary NTM infections [97, 98]. Non-
pharmacologic interventions, such as host
modulation with stem cells, photodynamic
therapy, antibiofilm therapy, nanoparticles,
vaccines, and antimicrobial peptides, are also
currently in development [99].

CONCLUSION

NTM infections are increasingly common and
pose a substantial problem worldwide. Strate-
gies used to treat NTM infections include mul-
tidrug therapy, modification of existing
antibiotic classes, and phage therapy. Although
further evidence is needed to establish novel
treatments as a standard of care, a multidisci-
plinary management approach can optimize
treatment for the breadth of NTM infections.
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