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Abstract: “Extracellular” Heat Shock Protein-90 (Hsp90) was initially reported in the 1970s but was
not formally recognized until 2008 at the 4th International Conference on The Hsp90 Chaperone
Machine (Monastery Seeon, Germany). Studies presented under the topic of “extracellular Hsp90
(eHsp90)” at the conference provided direct evidence for eHsp90’s involvement in cancer invasion and
skin wound healing. Over the past 15 years, studies have focused on the secretion, action, biological
function, therapeutic targeting, preclinical evaluations, and clinical utility of eHsp90 using wound
healing, tissue fibrosis, and tumour models both in vitro and in vivo. eHsp90 has emerged as a critical
stress-responding molecule targeting each of the pathophysiological conditions. Despite the studies,
our current understanding of several fundamental questions remains little beyond speculation. Does
eHsp90 indeed originate from purposeful live cell secretion or rather from accidental dead cell
leakage? Why did evolution create an intracellular chaperone that also functions as a secreted factor
with reported extracellular duties that might be (easily) fulfilled by conventional secreted molecules?
Is eHsp90 a safer and more optimal drug target than intracellular Hsp90 chaperone? In this review,
we summarize how much we have learned about eHsp90, provide our conceptual views of the
findings, and make recommendations on the future studies of eHsp90 for clinical relevance.

Keywords: extracellular Hsp90; stress; mechanism of action; wound healing and cancer

1. Introduction

For decades, the Heat Shock Protein-90 (Hsp90) family proteins have been recognized
as ATP binding-dependent molecular chaperones inside almost all types of cells throughout
evolution. This understanding has served as an indisputable foundation for both laboratory
research and cancer clinical trials targeting the intracellular function of the Hsp90 family
proteins [1–6]. Meanwhile, a cell-surface form of Hsp90-related molecule was reported as
early as the late 1970s with several publications that appeared to challenge the definition
of Hsp90 as an exclusively intracellular chaperone. The question was first raised in the
1990s by Csermely and colleagues, who stated that “the major cellular function of Hsp90
is probably not its chaperone behaviour, but its dynamic participation in the organization
and maintenance of the cytoarchitecture” [7], although the exact nature of the dynamic
participation was not further elaborated. Throughout the following decade, however, few
in the Hsp90 field credited the possible existence of a non-chaperone form of Hsp90 and
regarded the reported extracellular or secreted Hsp90 as artifacts, such as leakage by a
small number of dying cells in culture. A breakthrough emerged in the 2000s when several
laboratories independently demonstrated a critical role for secreted Hsp90 in various
pathophysiological processes such as cancer cell invasion and wound healing. Increasing
lines of evidence are raising the possibility that cell surface-bound, exosome-anchored, or
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simply free-secreted Hsp90 may serve as safer and more effective therapeutic targets than
their intracellular counterparts in cancer and other inflammatory human disorders. This is
especially relevant considering that targeting the intracellular ATP-dependent chaperone
function of Hsp90 has encountered setbacks in clinical trials. Several generations of small
molecule inhibitors have entered numerous cancer clinical trials since 1999, but to date
none have received FDA approval [5,6]. In this review article, we provide a comprehensive
walk-through of the discovery, characterization, mechanism of action, and evaluation by
animal models and human patients of what is now collectively referred to as “extracellular
Hsp90” (eHsp90). More importantly, we offer our answers for the fundamental question of
why eHsp90 is chosen by evolution for duties that cannot be served by other conventional
extracellular factors.

2. History of eHsp90 Discovery

In the late 1970s, several laboratories independently reported a glucose-regulated 90-
kDa protein both on the surface and in the conditioned medium of tumour virus-infected
mouse and human fibroblast cells [8–12]. In 1983, Hughes et al. provided direct evidence
that Hsp90 protein is located on the external surface of macrophage and mouse embryo
3T3 cells [13]. Srivastava et al. then reported a membrane-associated 96-kDa protein in
chemically induced sarcoma cells [14] and Ullrich et al. showed that a Hsp90-related
protein was detected on the external surface of both Meth A tumour and NIH3T3 cells
using antibody binding to the cells at 4 ◦C that prevented membrane internalization [15]. A
follow-up study by Thangue and Latchman showed cell surface accumulation of Hsp90
in HSV-infected cells [16]. While the findings of these studies were intriguing, they may
have not resonated at the time. The observations of extracellular Hsp90 in these studies
were thought to be due to intracellular Hsp90 being released non-specifically from dead or
dying cells, and there was little preclinical or clinical relevance available. In 1992, Erkeller
Yuksel et al. reported that the external surface expression of Hsp90 was a feature of about
20% of the patients with systemic lupus erythematosus (SLE) and it correlated with the
severeness of the disease [17]. After the finding, Thomiadou and Patsavoudi reported
a 94-kDa “neuron-specific cell surface antigen” recognized by the monoclonal antibody
4C5 [18]. The 94-kDa protein was later identified as an Hsp90-related protein by the
same group using mass spectrometry [19]. The take-home message of these studies was
the association of the surface or secreted Hsp90 with inflammatory diseases and tissue
development. The findings of these earlier studies were, however, largely overlooked
by the Hsp90 community due to lack of evidence for active secretion and the undefined
function of surface-bound or secreted forms of Hsp90.

In the early 2000s, two laboratories, which had never studied Hsp90 before, were
independently searching for secreted proteins that support two distinct and mechanistically
related pathophysiological processes, tumour cell invasion and skin wound healing. In
2004, Jay’s group at Tufts University first reported the identification of a secreted protein
from the conditioned medium of a fibrosarcoma cell line, HT-1080, and showed that the
secreted protein promoted tumour cell invasion in vitro by activating the matrix metallo-
proteinase 2 (MMP2) [20]. In 2007, Li’s laboratory at the University of Southern California
reported the purification of a secreted protein from the conditioned medium of hypoxia-
stressed primary human dermal fibroblasts and keratinocytes through chromatography
and showed that this secreted protein strongly stimulated skin cell migration in vitro
and promoted wound healing in mice [21,22]. The common protein involved in tumour
cell invasion in vitro and wound healing in vivo was identified as the secreted form of
Hsp90α. Additional publications on secreted Hsp90α have since emerged and are begin-
ning to receive attention. To provide a common terminology that covers the meanings
of “cell surface-bound”, “cell-released”, “cell-secreted” Hsp90α, Isaacs and colleagues
recommended “eHsp90” for extracellular Hsp90 which has since become widely accepted
by the Hsp90 community [23]. Over the past 20 years, there have been two dozen excellent
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review articles on eHsp90, especially eHsp90α [24–41], which we use as the stepping-stones
for construction of this article.

3. eHsp90α vs. eHsp90β: Who Calls the Shots and Why?

In comparison to over 70 reports on eHsp90α as of May 2022, several studies in the
past have also reported the presence of either eHsp90β alone or the eHsp90α and eHsp90β
proteins together in the conditioned medium of various cell types [42,43]. This leads to
the question of whether eHsp90β also has extracellular functions. If one only considers
the functionality of a protein in its purified form as the ultimate evidence, the answer
is negative. Cheng et al. showed that human recombinant Hsp90α (hrHsp90α), but not
hrHsp90β, stimulated human keratinocyte migration [22]. Jayaprakash et al. showed that
hrHsp90α, but not hrHsp90β, promoted wound healing in pigs [44]. Zou and colleagues
demonstrated that the intravenous injection of hrHsp90α, but not hrHsp90β, protein
strongly promoted tumour formation and lung metastasis in mice [45].

The human Hsp90α and Hsp90β proteins differ by a total of 100 amino acid residues
along their respective 732- (Hsp90α) and 724- (Hsp90β) amino acid sequences, including
58 conservative and 42 non-conservative amino acid substitutions, in addition to 12 amino
acid deletions in Hsp90β. The highest variations between Hsp90α and Hsp90β occur within
the linker region (LR) and a part of the middle domain (M), with only 61% amino acid
identity, the location where Li’s group identified the functional “F-5” fragment of eHsp90α
that promotes wound healing [46,47]. Mouse genetic studies also showed distinct and
non-compensating roles for Hsp90α and Hsp90β during development. Voss et al. reported
that Hsp90β gene knockout causes a defect in placental labyrinth formation, resulting in
mouse embryonic lethality on E10.5 [48]. In contrast, mice with either chaperone-defective
mutations in Hsp90α [49,50] or complete Hsp90α knockout [51] showed indistinguishable
difference in their phenotypes from their wild-type counterparts. The straightforward inter-
pretations were that (1) Hsp90β is more critical than Hsp90α during mouse development
and (2) Hsp90α is not required under homeostasis.

4. Is eHsp90 Secreted by Living Cells on Purpose or Leaked by Dead Cells
by Accident?

While it is technically difficult to prove that eHsp90, specifically eHsp90α, does
not result from the leakage of intracellular Hsp90 from a small number of dead cells
in culture, several lines of evidence strongly support that eHsp90α is actively secreted.
Studies showed that the quantity of eHsp90α was less or undetectable from secreted
molecules of normal cells under physiological conditions in vitro, i.e., in serum-containing
and pH-balanced medium under normoxia at 37 ◦C. In comparison, several fold higher
eHsp90α proteins became detectable from the conditioned medium of the same cells under
a variety of medically-defined stress signals including reactive oxygen species (ROS), heat,
hypoxia, gamma-irradiation, UV, and tissue injury [28,52,53]. In contrast, many tumour
cells constitutively secrete eHsp90α due to intrinsic oncogenes, such as overexpressing
HIF-1α [21], or mutant forms of tumour suppression genes including p53 [42,54]. Eustace
et al. showed only Hsp90α and not Hsp90β in the conditioned medium of tumour cells,
suggesting a specific secretion of Hsp90α rather than the non-specific release of both forms
from dead cells [20]. Cheng and colleagues showed that while both TGFα and EGF bind
and signal through EGFR and both promote cell survival and cell growth, only TGFα
stimulates the Hsp90α translocation to plasma membrane and secretion to the extracellular
environment by primary human keratinocytes, the most critical cell type for skin wound
healing [22]. Finally, the stress-induced secretion of Hsp90α was further substantiated by an
in vivo observation that skin injury caused up to a 10-fold increase in eHsp90α deposition
into the wound bed in a time-dependent fashion. As shown in Figure 1, skin injury in
pigs causes an accumulatively increased deposition of eHsp90α into the wound bed in a
time-dependent fashion. Since the location with increased anti-Hsp90α antibody staining
includes areas in the skin dermis that does not have the continued presence of cells, the
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massive staining cannot be explained by increased intracellular Hsp90α [55]. This finding
provides the first in vivo evidence of biological stress-induced Hsp90α secretion.
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Figure 1. Tissue damage induces massive deposition of eHsp90α into the wound bed. Pig skin is
biologically closest to the human skin. 1.5 cm × 1.5 cm full-thickness excision wounds were created
in the indicated area of pig torso. Full wedge (2 cm) biopsies cross the wound were made on the
indicated days and immediately frozen on dry ice. Sections of the biopsies were stained with an anti-
Hsp90α antibody. The red arrows point out the locations of the specific antibody staining (brown).
Quantitation of the staining in blue boxes was done using Gabriel Landini’s “color deconvolution”
and ImageJ analysis. The intensity readings were converted to Optical Density (OD) (The image was
taken from reference [55] with permission).
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So far, the studies on mechanism(s) of eHsp90α secretion have raised more questions
than answers. Two laboratories reported that the secretion can be regulated by either
phosphorylation or the C-terminal amino acid EEVD motif of the Hsp90α protein [56,57].
Luo’s laboratory further identified a critical role for Rab coupling protein (RCP) in mutp53-
induced Hsp90α secretion [54]. Several studies suggested that eHsp90α is secreted via
exosomes, based on the observation that DMA (Dimethyl amiloride), an inhibitor of the
exosome secretion pathway, blocks Hsp90α secretion both in HIF-1-overexpressing tumour
cells and TGFα-stimulated human keratinocytes cells, where Hsp90α was associated with
isolated exosome fractions. Therefore, eHsp90α is secreted via the non-classical exosome
trafficking pathway [58–61]. Guo and colleagues further identified the proline-rich Akt
substrate of 40 kDa (PRAS40) as the unique downstream effector that mediates TGFα-
stimulated Hsp90α secretion via exosomes [62]. Tang and colleagues have recently made
an interesting observation that eHsp90α is located at the external surface of tumour cell-
secreted exosomes [63]. However, recent observations suggest that approximately 90% of
both normal and tumour cell- secreted Hsp90α is not associated with secreted exosomes
isolated by ultracentrifugation (C. Cheng, X, Tang and W. Li, unpublished; A. Bernstein
and D. Jay, unpublished). Taken together, eHsp90α is a secreted protein by cells under
either internal or external stress. This general understanding is depicted in Figure 2, where
eHsp90α promotes tissue repair under physiological conditions or promotes tumorige-
nesis under pathological conditions, defined as a “double-edged sword” by Hence and
colleagues [30].
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Figure 2. Secretion of eHsp90α by normal cells under medically defined stress and by tumour cells
driven by oncogenic signals. Almost all kinds of medically defined stresses have been shown to
trigger eHsp90α secretion in a wide variety of cell types. Tumours have either constitutively activated
oncogenes or mutant tumour suppressor genes that each triggers eHsp90α secretion even in the
absence of environmental stress cues. The mechanisms by which the stress and oncogenic signals
cause Hsp90 secretion remain largely unstudied, in which exosome-mediated secretion of Hsp90α
only accounts for 10% of the total secreted Hsp90α in both normal and tumour cells. The reported
optimal working concentration for the full-length eHsp90α protein was around 3–10 µg/mL.
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5. Two Main Biological Functions of eHsp90α
5.1. Promoting Cell Survival under Ischemic Stress

Shortly after tissue injury, the broken blood vessels clot and cells in the injured tissue
encounter an ischemic (paucity of nutrient and oxygen) environment. The immediate
challenge the cells face is survival, at least temporarily, by adapting a self-supporting
mechanism. Similarly, when tumour cells invade surrounding tissues too quickly and
temporarily outstrip the nearest blood vessel for 150 mirom or more, they similarly face the
stress of ischemia [64]. Under these conditions, the tumour cells must find an autocrine
cycle to survive without the help from blood vessels. Bhatia and colleagues showed that
topical application of hrHsp90α to burn wounds in pigs prevented heat-induced skin cell
apoptosis around the hypoxic wound bed [65]. Dong and colleagues demonstrated that
eHsp90α protected tumour cells from hypoxia-triggered apoptosis, whereas neutralizing
eHsp90α function with a monoclonal antibody enhanced hypoxia-induced tumour cell
apoptosis [66]. Gao and colleagues reported that extracellular supplementation with
hrHsp90α (10 µM or ~1 mg/mL) protein promoted rat bone mesenchymal stem cell (MSC)
survival and prevented cell apoptosis under ischemic conditions by activating the Akt
and ERK kinases [67]. Cheng et al. showed that 10 µg/mL hrHsp90α protein stimulated
the maximum migration of primary human skin cells [22] and Dong et al. reported that a
similar dosage of hrHsp90α prevented the death of Hsp90α-KO MDA-MB-231 cells under
hypoxia [66]. Nonetheless, the conformation and composition of the eHsp90α under the
above circumstances is less clear in comparison to its intracellular counterpart.

5.2. Promoting Cell Motility (Not Growth) during Tissue Repair and Tumour Invasion

The initial indication that eHsp90α regulates cell migration was reported in the
1990s by Patsvoudi’s group, who showed that a monoclonal antibody against a mouse
granule cell surface antigen called 4C5 inhibited the cell migration during cerebellar
development [68,69]. The same group later confirmed by immunoprecipitation followed
by mass spec that the 4C5 antigen is related to Hsp90 protein [19]. During the same pe-
riod, Jay’s group showed that eHsp90α from the conditioned medium of tumour cells
was required for tumour cell invasion via activation of MMP2 in vitro [20]. The direct
evidence that eHsp90α protein alone acts as a bona fide pro-motility factor came from Li’s
group that demonstrated hrHsp90α, but not hrHsp90β, stimulated primary human dermal
fibroblasts and keratinocyte migration in the total absence of serum factors. Moreover, the
pro-motility effect of hrHsp90α could reach approximately 60% of the total pro-motility of
10% FBS-containing medium. Under similar conditions, however, hrHsp90α showed little
mitogenic effect on cell growth. More surprisingly, both the wild type and ATPase-defect
mutant proteins of Hsp90α bind the cell surface receptor LRP-1 (low-density lipopro-
tein receptor-related protein 1) and had compatible prom-motility effects on the same
cells [21,22].

6. Mechanisms of Action by eHsp90α

By and large, there have been two major parallel mechanisms of action proposed
for eHsp90α [28]. The central debate is whether eHsp90α still acts as an ATP-dependent
chaperone outside the cell or alternatively acts as a previously unrecognized signalling
molecule no longer dependent on ATP hydrolysis. Eustace and colleagues tested DMAG-
N-oxide, a cell membrane-impermeable geldanamycin/17-AAG-derived inhibitor that
targets the ATPase activity of Hsp90, and showed that it inhibits tumour cell invasion [20].
Similarly, Tsutsumi and colleagues showed that the DMAG-N-oxide inhibitor reduced the
invasion of several cancer cell lines in vitro and lung colonization by B16 melanoma cells
in mice [70]. Furthermore, Sims et al. showed that blocking ATPase using ATP-gamma
S actually increased the ability of hrHsp90α to activate MMP2 in vitro [71]. In particular,
a recent elegant study from Bourboulia‘s group showed that TIMP2 and AHA1 act as a
molecular switch for eHsp90α that determines the inhibition or activation of the eHsp90α
client protein MMP2 [72]. Song and colleagues showed that Hsp90α, but not Hsp90β,
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stabilized MMP2 and protected it from degradation in tumour cells in an ATP-independent
manner and was mediated by the middle domain of Hsp90α binding to the C-terminal
hemopexin domain of MMP2 [73]. Taken together, these studies suggest that the N-terminal
ATP-binding domain and the intrinsic ATPase of Hsp90α remain essential for eHsp90α
function outside of the cells. Results of other studies from different laboratories also
supported the “eHsp90α chaperone mechanism” via their extracellular client proteins,
most noticeably MMP2, MMP9, and TLR, just to mention a few. To avoid redundance in
this special issue, we refer readers to two excellent review articles, a prior one by Wong
and Jay [32] and the current one in this special issue by Bourboulia and colleagues for more
detailed analysis of this mechanism.

On the other hand, the ATPase-independent mechanism has largely focused on the
so-called “eHsp90α > LRP-1” signalling pathway [28]. Li’s laboratory utilized both deletion
and site-directed mutagenesis to narrow down the essential epitope along the 732-amino
acid human eHsp90α for supporting the pro-survival, pro-motility, and pro-invasion activ-
ity of eHsp90α in vitro and in vivo. First, Cheng and colleagues reported that the ATPase-
defective mutants, Hsp90α-E47A (~50% ATPase activity), Hsp90α-E47D (ATPase-defect),
and Hsp90α-D93N (ATPase-defect), showed an indistinguishable degree of pro-motility
activity from the Hsp90α-wt protein on primary human skin cells in vitro [22]. Second, they
narrowed down the pro-motility activity to a 115-amino acid fragment called F-5 (aa-236
to aa-350) between the LR (linker region) and the M (middle domain of human) Hsp90α,
as previously mentioned. They demonstrated that the F-5 peptide alone promoted skin
cell migration in vitro and wound healing in vivo as effectively as the full-length Hsp90α-
wt [46]. Third, they illustrated the so-called “eHsp90α > LRP-1” signalling pathway as:
(1) the subdomain II in the extracellular part of the low-density lipoprotein receptor-related
protein-1 (LRP-1) that receives the eHsp90α signal; (2) the NPVY, but not NPTY, motif
in the cytoplamic tail of LRP-1 that connects the eHsp90α signalling to the serine-473,
but not threonine-308, phosphorylation in Akt kinases and (3) activated Akt1 ang Akt2
trigger cell migration [47]. Finally, within the F-5 fragment, Zou and colleagues identified
a dual lysine motif (Lys-270/Lys-277) that are evolutionarily conserved in all members
of the Hsp90α subfamily but absent in all Hsp90β subfamily members. Mutations at the
lysine residues eliminated Hsp90α’s ability to promote cell migration in vitro and tumour
formation in vivo. Substitutions of the two different amino acids at the corresponding sites
in Hsp90β granted Hsp90β with pro-motility activity like Hsp90α [45]. These authors pre-
sented an illustration of the F-5 fragment and the dual lysine motif locations in a schematic
monomer structure of Hsp90α, as shown in Figure 3, which shows a potential target in
eHsp90α for therapeutics. These findings suggest that the N-terminal ATPase domain and
the C-terminal dimer-forming and co-factor-binding domain are dispensable for eHsp90α
function. More interestingly, Gopal showed a novel crosstalk mechanism involving the
eHsp90α-LRP1 dependent regulation of EphA2 function, in which the eHsp90α-LRP1
signalling axis regulates AKT signalling and EphA2 activation during glioblastoma cell
invasion [23]. In addition, Tian et al. showed that clusterin served as an eHsp90α modu-
lator to synergistically promote EMT (epithelial-to-mesenchymal transition) and tumour
metastasis via LRP1 [74]. Besides binding to MMP2 and LRP-1, Garcia et al. reported that
eHsp90α binds to the type I TGFβ receptor to stimulate collagen synthesis, which provides
pavement for cell attachment and migration [75]. Nonetheless, the chaperone-dependent
mechanism, such as the activation of MMP2, and the chaperone-independent mechanism,
such as F-5 binding the LRP-1 receptor, do not necessarily have to be mutually exclusive,
as schematically depicted in Figure 4, which may represent two parallel mechanisms of
action by eHsp90α. The selectivity and specificity of these two pathways under various
pathophysiological conditions remain to be further studied.
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Figure 4. Two proposed mechanisms of action by eHsp90α. eHsp90α acts via an ATPase-dependent
or ATPase-independent mechanism, which is determined by different binding partners, as shown. It
is possible that the two mechanisms take place in parallel and work synergistically to achieve the
ultimate goal under pathophysiological conditions.

7. Preclinical Studies of eHsp90α

eHsp90α has been studied in several human disease models in animals, including
cancer, wound healing, idiopathic pulmonary fibrosis (IPF) and wasting syndrome (WS).
The implication of eHsp90α in blood circulation supporting tumour metastasis in a number
of animal models is especially encouraging considering the long-term and heavy emphasis
of Hsp90 on cancer.
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7.1. Wound Healing

When tissue is injured and the broken blood vessels clotted, all of the cells surrounding
the wound bed face ischemic stress, as previously described. Bhatia and colleagues made
full-thickness skin wounds in pigs, biopsied the wounds over time, and immunostained
the tissue samples with an anti-Hsp90α antibody. They found a massive, time-dependent
increase in the antibody staining in both the epidermis and dermis [56] (see Figure 1). Song
and Luo reported that eHsp90α localized on blood vessels in the granulation tissue of
wounded skin and promoted angiogenesis during wound healing in mice [76]. A series
of studies from Li’s group demonstrated that topical application of hrHsp90α, but not
hrHsp90β, strongly promoted closure of trauma (excision), burn, and diabetic wounds
in mice and pigs. In reserves, topically administered antibodies against eHsp90α blocks
wound closure [21,44,55,65,77]. Bhatia and colleagues carried out a clever study by taking
advantage of Hsp90α transgenic mice where the Hsp90α’s intracellular chaperone function
is nullified but the truncated Hsp90α protein still contains the entire F-5 region. They found
that these mice heal skin wounds as efficiently as their wild-type counterparts, indicating
that the chaperone function of Hsp90α is dispensable. However, topical application of
mAb 1G6D7 against eHsp90α inhibited the wound healing, suggesting an essential role
for eHsp90α instead [55]. As previous mentioned, the wound healing-promoting effect of
the full-length eHsp90α is entirely replicable by the F-5 fragment [46], which is currently
undergoing clinical trials for the treatment of diabetic foot ulcers.

7.2. Tissue Fibrosis

While Hsp90α enhances wound healing, excess eHsp90α in the injured lung may
do more harm than good [78]. Pulmonary fibrosis is characterized by overactivated lung
fibroblasts and massive collagen deposition by the cells at the injured site. Using BLM-
induced pulmonary injury and the fibrosis mouse model, which represents failed wound
healing, Dong and colleagues showed that mAb 1G6-D7, a monoclonal antibody against
eHsp90α, inhibited eHsp90α function and significantly protected against BLM-induced
pulmonary fibrosis by ameliorating fibroblast overactivation and ECM production [79]. The
same group proposed a possible mechanism by which eHsp90α links the ER stress to the
PI-3K-Akt pathway [80]. Ballaye and colleagues reported the significant increase of both
eHsp90α and eHsp90β in the circulation of patients with idiopathic pulmonary fibrosis
(IPF), and the higher levels correlated with disease severity. They found that eHsp90α
signalled through LRP-1 to promote myofibroblast differentiation and persistence in a
rat ex vivo model [81]. Together, the above studies argue that the specific inhibition of
eHsp90α is a promising therapeutic strategy to reduce pro-fibrotic signalling in IPF.

7.3. Wasting Syndrome

Wasting syndrome (WS) refers to the unwanted weight loss of more than 10 percent
of a person’s body weight, with diarrhea, weakness, and fever that can last up to 30 days.
WS is often a sign of disease, such as cancer, AIDS, heart failure, or advanced chronic
obstructive pulmonary disease. “Cachexia”, characterized by muscle wasting, is a major
contributor to cancer-related mortality. A recent study by Zhang et al. reported elevated
serum Hsp70 and Hsp90 in Lewis lung carcinoma (LLC)-bearing mice. The tumour-released
and exosome-bound eHsp90 and eHsp70 were both necessary and sufficient to induce
muscle wasting in a syngeneic tumour mouse model [82]. These studies may suggest
clinical value in inhibiting eHsp90 for WS.

7.4. Tumorigenesis

Given the specific supporting role of eHsp90α in cancer, and the failure of many clini-
cal trials using pan- inhibitors targeting all intracellular Hsp90 chaperone members, several
groups have reported on the benefit of selectively inhibiting eHsp90α for reducing tumour
metastasis and improving patient survival. Stellas et al. reported that intraperitoneal
injection with monoclonal antibody (100–200 µg per mouse daily) against 4C5 antigen
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(cell surface eHsp90α) into C57BL/6 mice 24 h following tail vein injection with B16-F10
melanoma cells reduced tumour lung colonization and improved the survival of the mice
in reference to placebo-treated mice [83]. These authors reported a similar finding using
a human breast cancer xenograft model and showed that the antibody disrupted inter-
actions of eHsp90 with MMP2 and MMP9 [84]. Tsutsumi and colleagues showed that
DMAG-N-oxide (a membrane-impermeable version of 17-DMAG inhibitor) blocked lung
colonization by B16 melanoma cells in nude mice [71]. Results of the study suggest that the
N’-terminal ATP-binding of Hsp90α is still required for eHsp90α function. Using a differ-
ent anti-Hsp90α monoclonal antibody, Song and colleagues showed the dose-dependent
inhibition of tumour growth and angiogenesis of B10-F10 cells in nude mice [74]. Using
orthotopic breast cancer mouse models, Hou and colleagues showed that the injection of
hrHsp90α protein increased primary tumour lymphatic vessel density and sentinel lymph
node metastasis. In reverse, injection of another independent anti-Hsp90α neutralizing
antibody reduced 70% of lymphatic vessel density and 90% of sentinel lymph node metasta-
sis [85]. Using the well-known human triple negative breast cancer cell line, MDA-MB-231,
xenograft mouse model, two laboratories independently reported a critical role for eHsp90α
in tumour growth and lung metastasis. Stivarou and colleagues showed that injection with
an antibody against 4C5 antigen (Hsp90) inhibited both de novo tumour growth and growth
of already established mammary tumours [86]. Zou and colleagues demonstrated that
injection with hrHsp90α, but not hrHsp90β, protein rescued the tumorigenesis of Hsp90α-
knockout MDA-MB-231 cells in nude mice. More interestingly, the authors showed that the
ATPase-defective Hsp90α (Hsp90α-D93N) protein showed exactly the same effect as the
wild type Hsp90α on tumour formation and lung metastasis. In reverse, injection with the
monoclonal antibody mAb1G6-D7, not only blocked de novo tumour formation and lung
metastasis, but also significantly reduced (~35%) the continued growth of already formed
tumours [45]. Consistently, Secli el al recently reported that “Morgana”, a co-chaperone of
eHsp90α, induced cancer cell migration through TLR2, TLR4, and LRP1. A monoclonal
antibody targeting Morgana inhibited mouse breast cancer cells, EO771, from metastasizing
to the lung in C57BL/6 mice [87]. Milani and colleagues established mouse models with
human acute lymphoblastic leukemia (ALL) and showed that the background plasma
level of eHsp90α was below 1ng/mL blood in healthy mice, whereas the plasma level of
eHsp90α was elevated into the 100–150 ng/mL range within two months in a fashion that
closely correlated with the increased percentage of hCD45+ cells, a monitoring marker of
ALL, in the blood, bone marrow, liver, and spleen of the animals [88]. A recent study by
Luo’s group showed that PKM2 (pyruvate kinase M2)-like eHsp90α is secreted by lung
cancer cells and detected in blood samples of human cancer patients. The injection of
mouse recombinant PKM2 protein into blood circulation promoted tumour metastasis to
the lung via binding to integrin β1 [89]. Since PKM2 is associated with Hsp90α inside
cells [90], it is possible that the secreted PKM2 is in complex with eHsp90α, which remains
to be experimentally confirmed.

8. Clinical Studies of eHsp90α in Patients with Cancer and Inflammatory Disorders

Since 2008, close to two dozen clinical studies have compared the eHsp90α levels
in blood circulation between healthy humans and patients with various types of cancers
and other inflammatory diseases. The cancers from the patients include all of the NCI
(National Cancer Institute, USA)-listed major human cancers. Due to space limitations, we
are unable to describe each of the individual studies and their findings in detail. Rather, we
chose to summarize the common findings of these studies, i.e., elevated plasma eHsp90α
in circulation, in Table 1. While the exact amount of plasma/serum eHsp90α markedly
vary (from pg/mL to mg/mL) among different reports (though they all used ELISA-based
detection methods), a majority of the studies showed a statistically significant increase in
cancer patients compared to normal patients in a range of sub µg/mL. More intriguingly,
the higher levels of plasma eHsp90α closely correlated with the later stages of the diseases,
such as metastasized tumours. These studies raise the possibility of utilizing plasma
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eHsp90α as a new serum marker for cancer detection and therapeutic targeting, as well as
for other chronic inflammatory diseases in humans.

Table 1. Summary of clinical studies on plasma eHsp90 in blood circulation *.

Cancer Type # of Patients Plasma eHsp90α # of Healthy
Humans Plasma eHsp90α Refs.

Mix of liver, lung, breast,
colorectal, stomach,

pancreatic, esophagus
cancer, and lymphoma.

300
IQR 87.01–235.5
Median 157.80

(ng/mL)
132

IQR 22.87–44.46
Median 31.19

(ng/mL)
[91]

Colon (CRC) 635 51.4 (33.8, 80.3)
ng/mL 295 43.7 (34.3, 54.8)

ng/mL [92]

Mix of Breast & Other
cancers 85 >50 (ng/mL) 16 50.00 (ng/mL) [56]

Liver 782
IQR 96.7–246.8
Median 159.9

(ng/mL)
572

IQR 21.1–42.2
Median 30
(ng/mL)

[93]

Lung 1046 Ave. 220.46
(ng/mL) 592 Ave. 48.0 (ng/mL) [94]

Colon (CRC) 77 135 ± 101.94
(ng/mL) 76 44 ± 15.35

(ng/mL) [95]

Melanoma 98 Median. 49.76
(ng/mL) 43 Median

25.7(ng/mL) [96]

AML 82 Ave. 295 (ng/mL) 20 Ave. 12.1 (ng/mL) [97]

Pancreas 20 0.57 ± 0.23
(mg/mL) 10 0.18 ± 0.05

(mg/mL) [98]

Pancreatic ductal
adenocarcinoma 114 1 ± 0.86 (mg/mL) 10 0.18 ± 0.05

(mg/mL) [98]

Hepatocellular
carcinoma 76 274 ± 20.3

(µg/mL) 14 186 ± 18.3
(µg/mL) [99]

Hepatocellular
carcinoma 659 144 ± 4.98

(ng/mL) 230 46 ± 1.11 (ng/mL) [100]

Esophageal squamous
cell carcinoma 193 ≥82.06 (ng/mL) [101]

Esophageal squamous
cell carcinoma 93 Ave. 85 (ng/mL) 0 0 [102]

Cervical cancer 220 80.6–212.8
(ng/mL) 75 48.6–89.6 (ng/mL) [103]

Prostate cancer 18
Median 50.7
(25.5–378.1)

(ng/mL)
13

Median 27.6
(13.9–46.5)
(ng/mL)

[104]

Childhood acute
lymphoblastic leukemia 21 1.22–23.85

(ng/mL) No exact number 3.16–33.58
(ng/mL) [105]

Gastric cancer 976 Median 64.3
(ng/mL) 100 45.16 (ng/mL) [106]

Lung cancer 560 97.64 ± 103.36
(ng/mL) 78 38.44 ± 15.4

(ng/mL) [107]

Mix of Breast, Liver,
Lung, Colon,

Esophageal, Gastric and
Colorectal

370 57.97–294.63
(ng/mL) Reference range 0~82.06 (ng/mL) [108]
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Table 1. Cont.

Cancer Type # of Patients Plasma eHsp90α # of Healthy
Humans Plasma eHsp90α Refs.

Non-small-cell lung
cancer

60
Pre-chemotherapy 0.29–0.93 (ng/mL) 60 After 4-cycles of

chemotherapy 0.12–0.24 (ng/mL) [109]

Malignant melanoma 60 70.8–140.77
(ng/mL) 60 42.56–61.42

(ng/mL) [110]

Nasopharyngeal
carcinoma 196 212 ± 144.32

(ng/mL) 106 35 ± 17.47
(ng/mL) [111]

Non-cancer diseases

Crohn’s disease 53 6.4~55.1 [112]

Psoriasis 80 100 ± 193.66
(AU/mL) 80 63 ± 49.71

(AU/mL) [113]

Chronic
glomerulonephritis 32 33.31–77.25

(ng/mL) 10 22.32 [114]

Amyotrophic lateral
sclerosis 58 17.02 ± 10.55 85 12.7 ± 9.23 [115]

Overweight and obese
children with

Nonalcoholic fatty liver
disease

26 3.59–119.85
(ng/mL)

Overweight &
obese children

without
Nonalcoholic fatty

liver disease

0–105.4 (ng/mL) [116]

Chronic
glomerulonephritis with

nephrotic syndrome
21 33.31–77.25

(ng/mL) 10 Approx. 25–30
(ng/mL) [114]

Systemic sclerosis 92 9.6–17.9 (ng/mL) 92 7.7–12.4 (ng/mL) [117]

Diabetic lower extremity
arterial disease

(DLEAD)
46 Ave. 263.88

(pg/mL) [11]

Idiopathic pulmonary
fibrosis (IPF) 31 Ave. 60 (ng/mL) 9 Ave. 35 (ng/mL) [118]

* Note: The reported original data on plasma Hsp90 from patients varied dramatically from pg/mL to mg/mL,
while the reasons remain unclear. Two presentations, “range” and “average”, by the original studies were adopted
here. Nonetheless, higher plasma Hsp90 levels in patients’ blood are evident. IQR: Interquartile range (IQR).

Taking tumorigenesis as an example, the recognized five steps of tumour development
include gene mutations, hyperplasia, dysplasia, primary tumour formation, and tumour
metastasis [119–122]. The vast majority of the United States Food and Drug Administration
(FDA)-approved oncology drugs (>1000 by the end of 2020) target primary tumours, even
though cancer patients die predominantly from metastasis [123]. These drugs extend
patients’ survival for variable periods of time, but many lose efficacy shortly after several
months of treatment due to new mutations generated in the tumours. On the other hand,
tumour metastasis begins with local expansion and invasion of the tumour at the primary
organ driven by oncogenic signals with tumour microenvironmental assistance. Tumour
cells migrate away from their origin and infiltrate into new surrounding tissues in which
the tumour cells intravasate into the nearest blood circulation or the lymphatic system.
After entry into the circulation, the tumour cells become known as circulating tumour cells
(CTCs). Continued distal metastasis requires the tumour cells to survive and disseminate
via the blood circulation, so-called hematogenous metastasis. Only a small number of
CTCs successfully extravasate by crossing the endothelial barrier, leaving the circulation,
and entering a distant organ. Thus, identification of a plasma factor that provides critical
assistance for CDC to achieve the ultimate success of metastasis could lead to the sought-
after target for next generation of anti-tumour therapeutics. If elevated plasma eHsp90α
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in cancer patients proves to promote CTC survival and dissemination through blood
circulation during metastasis, interruption of the plasma eHsp90α function by antibodies
that target the F-5 region of eHsp90α, as schematically proposed in Figure 5, would be
an attractive approach to slow down tumour metastasis and buy time for patients to
eliminate the primary tumours via surgery and the currently available therapies. For the
next few years, the potential importance of the plasma eHsp90α reported in human cancer
patients must be carefully studied by engineering the pathological plasma eHsp90α levels
in Hsp90α-knockout animal models.
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of the clinical studies shown in Table 1 have raised an exciting possibility that monoclonal antibody
therapeutics against plasma eHsp90α block tumour metastasis. Since plasma eHsp90α is low and
unessential for homeostasis, targeting plasma eHsp90α in cancer patients may prove to be safer and
more effective than targeting the intracellular Hsp90α and Hsp90β.

9. Is eHsp90α a More Effective and Safer Drug Target than Intracellular Hsp90?

As mentioned at the beginning of this article, over the past two decades, intracellular
Hsp90 chaperones (Hsp90α, Hsp90β, and possibly other related chaperones) have been
targeted by at least 18 small molecule inhibitors binding to the N-terminal ATP/ADP
binding site of the proteins in more than 60 cancer clinical trials [4–6]. To date none has
received FDA approval for clinical treatment of human cancers due to various speculative
reasons [124]. A recent study raised a serious and previously overlooked concern that
there might be a complete lack of a druggable window between tumour and normal
tissues for ATP-binding inhibitors. Tang and colleagues showed a wide range of Hsp90
expression in different host organs which further exhibited a wide range of toxicity to an
ATP-binding inhibitor and heterogenous responses against the conversional theory to the
same ATP-binding inhibitor among different tumour cells. These findings could seriously
complicate patient and biomarker selections, toxicity readout, and efficacy of the drug
candidates for clinical trials [125]. In contrast to the essential role of the intracellular Hsp90,
especially Hsp90β for cell and organ homeostasis, the requirement of eHsp90α for life has
not been reported. Instead, only when tissue homeostasis is broken, such as during wound
healing or disease occurrence such as tumour growth, does eHsp90α then come into the
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picture. To support this notion, Bhatia and colleagues showed that selectively blocking
eHsp90α by antibodies delayed wound healing [55]. Similarly, CRISPR-knockout of the
Hsp90α gene selectively eliminated the ability of the MDA-MB-231 tumour cells to invade a
Matrigel barrier and form tumours in mice. More remarkably, the defective tumorigenicity
of Hsp90α-KO tumour cells could be fully rescued by extracellular supplementation with
hrHsp90α proteins in an ATPase-independent fashion [45]. Therefore, in theory, drugs
targeting eHsp90 should achieve higher efficacy and pose minimum toxicity to patients. A
schematic representation of this simplified thought is depicted in Figure 6.
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hurdles for ATP-binding inhibitors of Hsp90, especially Hsp90β, in cancer clinical trials. In contrast,
selectively targeting eHsp90α with membrane impermeable drug candidates has immerged as a new
therapeutic strategy in cancer and beyond.

10. Why Is eHsp90α Co-Opted for Extracellular Duties?

Our current understanding of this fundamental question remains little beyond spec-
ulation. An entry point to understand the question is the fact that Hsp90 maintains
an unusually high expression level in almost all cell types. Although the statement of
“1–2% Hsp90 of total cellular proteins” has been used for decades, this number did not
come from direct experimental measurements, but rather from estimations. The first quan-
titation of the cellular Hsp90 protein was completed by Sahu and colleagues in 2012. Using
classical biochemical techniques, these authors demonstrated that Hsp90 accounted for
2–3% of the total cellular proteins among four normal cell lines and 3–7% of the total
cellular proteins among four cancer cell lines tested [126]. More surprisingly, a recent study
involving 12 (eight tumour and four normal) cell lines reported a much greater variation in
the total cellular Hsp90 (α and β) expression, a range of 1.7% to 9% among non-cancer cell
lines and different mouse organs and a range of 3 to 7% among the tumour cell lines [125].
If we take the general assumption that a given type of human cell expresses 1/3 of its
total 30,000 protein-coding genes, the percentage of the Hsp90 expression is at least several
hundred times higher than the rest of the 9999 cellular gene products. The question is why
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a particular gene product must be given such a spatial privilege. Evolution would not have
tolerated such an abundant storage of a protein if functioning as an intracellular chaperone
were its sole duty, as Csermely and colleagues have long argued [7]. We speculate that a
smaller portion of Hsp90α is required to work with Hsp90β for the intracellular duty of
chaperones, such as stabilization of HIF-1α [51], whereas the vast majority of eHsp90α is
stockpiled for supply to tolerate environmental insults, such as tissue injuries, that take
place all the time. The second possible answer is that eHsp90α provides unique properties
that are absent from conventional extracellular factors such as cytokines, growth factors,
or ECMs. Li’s group showed that topical recombinant eHsp90α protein promoted normal
wound healing far more effectively than the (only) FDA-approved growth factor therapy
(RaranexTM, PDGF-BB). Their study showed that eHsp90α overrides the inhibitory effect
of TGFβ family cytokines, which are abundantly present in fresh wounds. To the best
of our knowledge, eHsp90α is the first molecule with this unprecedented property [46].
Third, an effective wound-healing agent is one that must recruit all three types of skin
cells (epidermal, dermal, and endothelial) to close the wound. However, all growth factors
show selectively targeted cell type(s). This limitation has made any single growth factor
therapy less effective in the multi-cell process of wound healing. PDGF-BB only acts on
dermal fibroblasts, but not epidermal keratinocytes and dermal microvascular endothelial
cells, as the latter do not express either PDGFRα or PDGFRβ [46]. These findings may
explain why Raranex has shown limited efficacy in clinic, even with several thousand
times higher concentration of PDGF-BB (100 µg/g gel) than found in human circulation
(0–15 ng/mL). In contrast, eHsp90α acts as a common pro-motility factor for all three types
of skin cells involved in wound healing and shows a far stronger effect than PDGF-BB in
wound healing [46,65,78]. For similar reasons, eHsp90α may also have an advantage over
conventional extracellular factors in cancer invasion. For instance, Hanahan and Wein-
berg in their heavily cited review on cancer pointed out that one of the most recognized
tumour-suppressing effects comes from the anti-growth signal by TGFβ [127]. To sabotage
the inhibitory effect of TGFβ, only a small number of tumours choose to mutate either the
type II (TβRII) or type I (TβRI) TGFβ receptor or their downstream effector, Smad4, which
forms a complex with activated Smad2/3 to regulate gene expression. How the rest of
human tumours bypass the TGFβ’s inhibitory signals has never been discussed. We argue
that these tumours secrete eHsp90α to override TGFβ inhibition.

11. Conclusions and Perspective

It has been the second decade since the official recognition of eHsp90α as a new
research branch of Hsp90 in 2008. Since then, all-round progress, including mechanisms of
secretion and action, biological function, therapeutic epitope identification, preclinical eval-
uation, and clinical relevance of eHsp90α, has been reported around the globe. If we have
to provide a single outstanding take-home message to the readers, it would undoubtably
be the exciting consensus that eHsp90α is not required for homeostasis but remains an es-
sential player under pathological conditions and crisis. Therapeutically targeting eHsp90α
in blood circulation represents a particularly exciting modality due to its ease-of-access,
safety, and likely increased efficacy compared to targeting intracellular or nuclear Hsp90.
For the next decade, the central challenge is to prove the clinical relevance of eHsp90α, such
as in tissue injury, fibrosis, and tumorigenesis, and to concurrently establish the druggable
window for targeting eHsp90α in human disorders for therapeutic development.
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