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In recent years, DNA adeninemethyltransferase identification (DamID) has emerged as a powerful tool to profile
protein-DNA interaction on a genome-wide scale. While DamID has been primarily combined with microarray
analyses, which limits the spatial resolution and full potential of this technique, our group was the first to com-
bine DamID with sequencing (DamID-Seq) for characterizing the binding loci and properties of a transcription
factor (Tox) (sequencing data available at NCBI's Gene Expression Omnibus under the accession number
GSE64240). Our approach was based on the combination and optimization of several bioinformatics tools that
are here described in detail. Analysis of Tox proximity to transcriptional start sites, profiling on enhancers and
binding motif has allowed us to identify this transcription factor as an important new regulator of neural stem
cells differentiation and newborn neurons maturation during mouse cortical development. Here we provide a
valuable resource to study the role of Tox as a novel key determinant of mammalian somatic stem cells during
development of the nervous and lymphatic system, inwhich this factor is known to be active, and describe a use-
ful pipeline to perform DamID-Seq analyses for any other transcription factor.

© 2016 Published by Elsevier Inc. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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2. Experimental design

During embryonic development of the mammalian cortex,
neuroepithelial stem cells expand and generate neurogenic progenitors
that in turn divide to give rise to neurons [18]. In an attempt to identify
genes involved in controlling this process, our group has generated a
double reporter mouse line to isolate the three cell populations present
in the developing mouse brain and, by transcriptome analyses, deter-
mined their molecular signature [3,4]. The transcription factor Tox
was identified among those transcripts that were named “off-switches”
since, during corticogenesis, revealed to be highly expressed in neural
stem cells, transiently downregulated in neurogenic progenitors, and
reinduced in neurons. Many genes essential during neural development
are indeed switch genes, showing differential expression between neu-
rogenic progenitors as compared to both neural stem cells and neurons
[3]. Interestingly, Tox shared a similar pattern of expressionwith several
such master regulators of corticogenesis. In addition, Tox has been
previously associated with differentiation of T-cells in the lymphatic
system [1]. Yet, no function was ever reported for this transcription
factor during corticogenesis, which leads us to further investigate its
role(s) during mammalian brain development.

Acute manipulations of Tox expression in the mouse developing
cortex revealed its multiple functions during corticogenesis in different
cell types. In fact, Tox negatively regulated neurogenesis by inhibiting
differentiation of neural stem cells while, at the same time, controlled
-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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neuronal specification and neurites outgrowth of newborn neurons [6].
In order to gain insight into the possible molecular mechanisms by
which Tox performs its functions, we then sought to identify its down-
stream targets by determining binding sites on the genome.

The main experimental approaches to investigate chromatin binding
profiles on large scale are chromatin immunoprecipitation (ChIP) and
DNA adenine methyltransferase identification (DamID). ChIP has been
for many years the gold standard for protein–chromatin interaction pro-
filing [15]. Briefly, ChIP relies on the crosslinking of DNA-protein com-
plexes followed by immunoprecipitation using an antibody recognizing
the protein of interest and identification of the co-precipitated DNA se-
quences. As main drawback, the key determinant for a good ChIP experi-
ment is therefore the availability of an antibody with high affinity and
specificity. As alternative antibody-independent method, DamID exploits
methylation to label sequences of the genome that are bound by a specific
protein. In such a case, the protein of interest is fused to the prokaryotic
Dammethylase and expressed in eukaryotic cells at extremely low levels
as not to saturate methylation and increase specificity. Dam methylates
adenines, modification normally not occurring in eukaryotes, that can
therefore be recognized by a restriction enzyme, DpnI, cutting its specific
recognition sequence GATC only when the adenine is methylated [16,20,
22,23].

Commercially available Tox antibodies were not validated for ChIP
and we could not achieve immunoprecipitation with any of the antibod-
ies tested. Therefore, we decided to employ DamID to profile Tox genome
binding sites.

Detailed reviews on the advantages and disadvantages of DamID ver-
sus ChIP have been reported elsewhere (e.g. [8]). It is however important
to point out that DamID typically provided a lower spatial resolution than
ChIP-Seq in defining binding domains [14]. Inspired by a report on nucle-
ar envelop proteins combining DamID with high-throughput sequencing
[24], we explored the use of DamID-Seq to detect narrow regions of chro-
matin binding by a transcription factor [6]. Our approach allowed the fine
characterization of the binding sites, including binding motif prediction,
whose pipeline is provided below.

Experiments were performed according to the standard DamID
protocol [23] and using HIV lentiviruses that trigger the expression of
Tox-Dam or Dam alone at very low concentrations. Ensuring a low ex-
pression level of the ectopic genes is particularly critical to obtain a high
signal/background ratio by avoiding saturation of methylation by Dam.
In order to achieve this, expression of Tox-Dam fusion gene, and Dam as
negative control, was put under the regulation of two inducible pro-
moters neither of which was induced, resulting only in minimal “dou-
ble-leakyness” of transgene expression. As such, ectopic proteins were
undetectable by both immunofluorescence and Western blot (data not
shown).

DamID was followed by Illumina next-generation sequencing and
bionformatic comparison of Tox-Dam versus Dam alone to identify Tox
binding targets. This was performed on both HEK-293T (human embry-
onic kidney cell line) and Neuro-2a (mouse neuroblastoma cell line).
The rationale behind using both cell lines was that in the former case
we wanted to use a brain-unbiased system to assess all possible Tox tar-
gets while the latter provided a cell line recapitulating the physiology of
neural stem cells in which Tox may have additional properties.

Biological duplicates performed on HEK-293T cells revealed to be suc-
cessful aswe could observe substantial differences betweenDam-Tox and
Dam control samples. This allowed us to identify ca. 13,000 chromatin re-
gions bound by Tox. Conversely, by using the Neuro-2a cell line we did
not observe any substantial enrichment of Tox binding as compared to
the Dam background. Although we did not perform experiments to ex-
plain this discrepancy between cell lines, we find it reasonable that in
Neuro-2a the ectopic Tox-Dam fusion protein would compete with the
endogenous Tox for its binding to chromatin and since the former is
expressed at minimal levels it would be outcompeted by the latter
resulting in no differential methylation pattern relative to Dam control
[6]. In support to this hypothesis, in HEK-293T cells endogenous Tox
expression was undetectable by transcriptome analysis [17] and, hence,
ectopic Tox-Dam would be free to bind its targets. These may be impor-
tant considerations to keep inmindwhile choosing the cell system toper-
form DamID, as it could influence the final outcome of the experiments.
Tox binding loci, including proximity to transcriptional start sites, profil-
ing on enhancers and binding motif were subsequently analyzed by sev-
eral bioinformatic tools with some of these predictions being later
validated in vivo [6].

3. Materials and methods

3.1. Lentiviral transfection of DamID construct

Total RNAwas extracted fromE13.5mouse lateral cortices andused as
template for RT-PCR amplification of Tox cDNA that was cloned in the
pLgwV5EcoDam (Dam construct) [23] to generate the Tox-Dam con-
struct. To ensure that the fusion protein (Tox-Dam)would not display ab-
errant expression pattern or localization as compared to the native Tox,
plasmid coding for the Tox-Dam or the Tox wt protein were transfected
in HEK-293T cells and their subcellular localization determined byWest-
ern blot and immunocytochemistry [6].

3.2. DamID-Seq

pLgwV5Eco-ToxDam and pLgxV5Dam were used to produce Tox-
Dam and Dam control lentiviruses, respectively, as described in [5,7].
HEK-293T and Neuro-2a cells were infected with Tox-Dam or Dam
viral supernatant diluted 1:2 or 1:10 andDamIDperformed as described
[23]. Briefly, 48 h after infection genomic DNA was extracted, digested
with DpnI, ligated to adaptors and PCR amplified. Experiments were
performed in duplicates for each cell line and condition. Sequencing li-
braries were prepared according to a standard Illumina protocol and
subjected to 75 bp single read sequencing on a HiSeq 2000 machine,
resulting in ca. 20 million reads per sample (DNA libraries of replicates
were sequenced separately).

3.3. Primary processing of sequencing data

Raw read quality was evaluated using FastQC (http://www.
bioinformatics.babraham.ac.uk/projects/fastqc/). Read alignment to the
genome (Homo sapiens ensembl67 orMusmusculus ensembl61)was per-
formed with bowtie v0.12.7 [10] using the default parameters with the
options “–best” and “-m 1” to retain only uniquely mapped reads. Repli-
cate reproducibilitywas tested using bamCorrelate from theNGS analysis
suite deepTools [13], with the custom options bamCorrelate bins –
fragmentLength 200 –corMethod pearson. Pair of replicates displayed
Pearson correlation coefficientsN0.80 and therefore the alignments corre-
sponding to 2 replicates of the same condition were merged before peak
calling. Since experiments performed in Neuro-2a cells did not show any
significant difference between conditions (Tox-Damvs. Dam), our further
analyses were based only on data obtained from HEK-293T cells.

3.4. Identification of Tox binding sites

To identify genomic regions of Tox-Damenrichmentweused the peak
caller SICER [27] version 1.1,which has beenpreviously used to detect en-
richment in DamID experiments [24]. SICER has been initially developed
to detect enrichment (ChIP over input) of diffuse histone modifications.
Differently from transcription factors, which usually bind at very localized
genomic loci and therefore lead to strong and localized signals, histone
modification signals are more diffused and lack well defined peaks.
SICER is therefore an algorithm designed to deal with more diffused en-
richment spreads over extended genomic regions, rather than strong
local enrichment [27]. Since DamID-methylation could spread for some
distance from the actual binding site (ca. 2 kb) [20], we thought that
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SICERwould bemore appropriate than othermethods for the detection of
Tox enriched regions.

Briefly, SICER first models the distribution of random reads in a geno-
mic background to determine read spatial clusters that are unlikely to ap-
pear by chance. Based on this “randommodel”, clusters of enrichment in a
given experimental condition can be identified and scored, and compari-
son with the control used to determine the statistical significance of such
enrichments. To do this, SICER first divides the genome into non-
overlapping, contiguouswindows of a defined size (w). Then, it identifies
“eligible” windows, as those showing reads enrichment, determining
“islands” as clusters of eligible windows separated by a gap of a certain
size (g) of ineligible windows. SICER finally retains candidate islands,
which represent clusters of eligible windows unlikely to appear by
chance, and further filters them against the control sample. The result of
the analysis is then highly influenced by the two key setting parameters:
the window sizew and the gap size g. Since SICER has not been originally
developed for analysis of DamID-Seq data, these two settings, window
and gap size, had to be determined empirically and further optimized
for our data.

In general, by selecting large window sizes, regions of lower
enrichment are also included in an island (peak) with consequent
reduction in resolution. On the other hand, by choosing too narrow
window size, the same island risks to be fragmented into many
intervals of windows and gaps. Bearing this in mind, we tested two
window sizes, 50 and 200 bp. These sizes are often suitable for
transcription factors and histone modifications, respectively, as
suggested by the authors of SICER [25].

Gap size must be equal or higher than the windows size. In order to
determine the optimal gap size, it is possible to plot the aggregate score
of all the significant islands (with island score representing the negative
logarithm of the probability of finding reads in the island if the reads
should be randomly distributed in the genome with equal probability)
as a function of the gap size (Fig. 1A). The gap size forwhich the aggregate
score is higher, or closer to saturation, should obviously be selected [25].
We tested increasing gap sizes (Fig. 1A) with maximal scores being ob-
tained at 250 bp and 200 bp, for window size 50 bp and 200 bp,
respectively. Gap size influenced the peak size (w200-g200 versus
w200-g600) (Fig. 1B) with regions of enrichment beingmerged together
and extending to poorly enriched locations.

Using the software suite BEDTools [12] we have also determined how
many genes were associated with Tox in the two setting combinations
chosen (i.e. w50, g250 and w200, g200) by assigning each peak to a cer-
tain transcript if the peak was located within 15 kb upstream of the tran-
scription start site, or inside the transcript body (Fig. 1B). The intersection
was done with transcripts from the UCSC ensGene table (hg19), with the
command bedtools intersect -a islands-summary-FDR0.01 -b ensGenes
-wo, and the gene locations extendedwith slopBed -s -l 15000 -r 0 before
intersection. The number of identified genes in both settings was nearly
identical (10,981 and 10,941 forw50, g250 andw200, g200, respectively)
with 10,028 in common being identified by both settings (Fig. 1C). Since
peak width was generally narrower for w50 and this setting is
recommended for transcription factors [25], we decided to use peaks
identified with this window size and g250 for further analysis. The peak
width is of particular importance for motif analysis, where the region an-
alyzed should be as narrow as possible, ideally the size of the Tox binding
footprint, improving the accuracy of results. To remove poorly enriched
peaks from our dataset, only peaks supported by more than 50 reads
and with at least a two-fold enrichment of Tox reads over Dam control,
were retained for further analysis.

3.5. Peak characterization

To identify which genes are associated with Tox, the gene table
ensGene was retrieved from UCSC (hg19), each transcript extended
15 kb upstream with slopBed -i -s -l 15000 -r 0 (BEDTools) and
intersected with the significant peaks identified by SICER (intersectBed).
Thus, genes/transcripts that have Tox peak(s) within 15 kb upstream of
the transcription start site, or inside the transcript body, were matched.

The Bioconductor package ChIPseeker [26] was used to annotate the
genomic features (e.g. introns, exons, 5′UTR, and 3′UTR) of each peak.
Specifically, the function annotatePeak matches peaks with genomic
features extracted from hg19 (ensGene) and calculates the proportion
of peaks matching each feature. Gene ontology enrichment in genes
associated with Tox, was determined with the function getEnrichedGO
of the Bioconductor package ChIPpeakAnno [28].

3.6. Binding motif

Tox putative binding motif was predicted with gimmeMotifs v0.65
[19] that summarizes the results from motif prediction tools such as
GADEM, MEME, Improbizer and others, producing a metrics report to
evaluate the predicted motifs. Two common assumptions valid for
ChIP-Seq data may not apply to DamID-Seq data: (i) the binding site
may not be at the center of the SICER island and (ii) many enriched re-
gions can be relatively large (more than 1 Kb). For (i) most programs
run by gimmeMotifs do not take the peak location into consideration
and (ii) was taken into account by using only islands with a 2-fold en-
richment (Tox-Dam/Dam reads), width of less than 1 kb and changing
the program setting to include the option –width=1000 to prevent trun-
cation of input peaks to 200 bp (the default). The final command was
gimme_motifs.py –analysis = medium –genome=hg19 –fraction=
0.3 –width=1000 –localization_width=1000. Genomic sequences cor-
responding to input peaks were retrieved with bedtools getfasta.

3.7. Tox binding profile

The genomic location of telencephalic enhancers [21] were
downloaded from GEO (GSM1052710) and converted from hg18 to
hg19 using liftOver [9]. Locations of other cell specific enhancers [2]
were obtained from http://enhancer.binf.ku.dk/Pre-defined_tracks.
html. A set of random genomic locations to use as background, matched
to telencephalic enhancers, was created with bedtools shuffleBed with
the settings -i telencephalon_enhancers -seed 927442958 -chrom
-noOverlapping. The average size of enhancers was also previously
calculated with a custom AWK script. Using the tools from DeepTools
[13] we first normalized Tox-Dam read coverage to Dam by binning
the genome, counting the number of reads in each bin for either
condition and calculating the log2 of the ratio. This was accomplished
with bamCompare -bs -f 200 –missingDataAsZero no –ratio log2
–normalizeTo1x 2451960000 which generates a bigwig of normalized
read density. The normalized Tox read density over the enhancers was
summarized with computeMatrix scale-regions -a 3000 -b 3000 -m
3000 -bs 10, which scales each enhancer to the average size (3 kb).
Finally the profile of Tox binding in enhancers was generated using
profiler (DeepTools).

The Tox binding profile at transcription start sites was also generated
using the normalized Tox read density calculated with bamCompare.
Non-redundant transcription start siteswere obtained from the ensGene
table of UCSC (hg19) using a combination of AWK and bedtools merge.
The normalized Tox read density over such transcription start sites was
calculated with computeMatrix reference-point –referencePoint TSS -a
50000 -b 50000 –sortRegions descend –binSize 50 and plotted with
profiler.

3.8. Peak conservation

For conservation analysis of Tox peaks, conservation scores of 99
vertebrate genomes, including human, were obtained from the UCSC
genome browser (table phastCons100way http://hgdownload.cse.
ucsc.edu/goldenpath/hg19/phyloP100way/). Since exons aremore con-
served than introns [11] and Tox peaks are more likely to be present in
exons [6], we looked at the conservation of Tox peaks in a way that was

ncbieo:GSM1052710
http://enhancer.binf.ku.dk/Preefined_tracks.html
http://enhancer.binf.ku.dk/Preefined_tracks.html
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Fig. 1.Effect of SICER gap andwindowparameters in peak calling. (A) Effect of gap size on total island score. The gap sizewith thehighest total score, for a givenwindow size,was chosen as
the optimal gap size. (B) Choosing an optimal combination of gap/window size ensured that detected regionswerewell defined and narrow. The upper panel is a genomic view of Tox and
Dam coverage (read density). Below are represented peaks identified with different settings (blue boxes). (C) Overlap of genes identified as Tox targets by different SICER parameters.
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not biased by exonic conservation. To achieve this, exonic regions were
masked from the phastCons100way scores in a series of steps. The
bigwig was converted to BedGraph with bigWigToBedGraph [9],
intersected with the genomic locations of human exons (ensGene
table hg19) with intersectBed, conservation scores of overlapping
regions converted to zero and finally saved as bigwig with
bedGraphToBigWig [9]. As background,matched peak randomgenomic
locations were created with shuffleBed -seed 927442958 -chrom
-noOverlapping. The scores were summarized with computeMatrix
scale-regions -a 500 -b 500 -m 1500 -bs 10, scaling each peak to the
average size (~1.5 kb). The plot was generated with profiler –plotType
se, to include the standard deviation of conservation scores at each
position. It should be noted that masking the conservation scores of
exons did not affect the overall result (data not shown).
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