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Abstract

Monitoring, recording, and predicting livestock body weight (BW) allows for timely intervention in diets and health,
greater efficiency in genetic selection, and identification of optimal times to market animals because animals that have
already reached the point of slaughter represent a burden for the feedlot. There are currently two main approaches (direct
and indirect) to measure the BW in livestock. Direct approaches include partial-weight or full-weight industrial scales
placed in designated locations on large farms that measure passively or dynamically the weight of livestock. While these
devices are very accurate, their acquisition, intended purpose and operation size, repeated calibration and maintenance
costs associated with their placement in high-temperature variability, and corrosive environments are significant and
beyond the affordability and sustainability limits of small and medium size farms and even of commercial operators. As

a more affordable alternative to direct weighing approaches, indirect approaches have been developed based on observed
or inferred relationships between biometric and morphometric measurements of livestock and their BW. Initial indirect
approaches involved manual measurements of animals using measuring tapes and tubes and the use of regression
equations able to correlate such measurements with BW. While such approaches have good BW prediction accuracies,
they are time consuming, require trained and skilled farm laborers, and can be stressful for both animals and handlers
especially when repeated daily. With the concomitant advancement of contactless electro-optical sensors (e.g., 2D, 3D,
infrared cameras), computer vision (CV) technologies, and artificial intelligence fields such as machine learning (ML) and
deep learning (DL), 2D and 3D images have started to be used as biometric and morphometric proxies for BW estimations.
This manuscript provides a review of CV-based and ML/DL-based BW prediction methods and discusses their strengths,
weaknesses, and industry applicability potential.
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Abbreviations

Al artificial intelligence

ANN artificial neutral network

CNN convolutional neural network

cv computer vision

DL deep learning

ENR elastic network regression

1A image analysis

LASSO least absolute shrinkage and
selection operator

BW body weight

LR linear regression

MAE mean average error

ML machine learning

MLP multilayer perceptron

MLR multiple linear regression

PLS partial least square

RAM recurrent attention model

RCNN recurrent convolutional neural
network

RF random forest

RMSE root mean squared error

RNN recurrent neural network

SVM support vector machine

Introduction

In animal production, livestock body weight (BW) is a very
important and widely used feature that has a significant impact
on feed consumption (Putnam et al., 1964), breeding potential
(Buckley et al., 2003; Ghotbaldini et al., 2019), social behavior
(Bouissou, 1972; Hong et al., 2017), energy balance (Thorup et al.,
2012), and overall farm management (Halachmi et al., 2019). It
may be used indirectly in the assessment of health and welfare
status (Dikmen et al,, 2012), and in the determination of time-
to-market for animals (Mc Hugh et al., 2011). Large or abrupt
changes in BW might indicate the presence of a disease (Frigo
et al.,, 2010; Yin and Konig, 2018), improper housing conditions
(Heins et al., 2019), welfare problems (Neveux et al., 2006),
feeding errors (Meyer et al., 1960) or inefficient genetic selection
(Freetly et al., 2020). There are currently two main approaches to
measure the BW in livestock: 1) direct approaches using scales,
and 2) indirect approaches based on relationships between body
part measurements and BW.

Direct weighing methods rely on weighing technologies
such as partial-weight or full-weight industrial scales capable
to support small, medium, or large livestock. These devices
are typically placed in a designated location on a farm such as
passageways or next to feeders and drinkers, and animals are
physically moved to that location and placed on the weighing
scale one at a time. Some companies provide passive-weighing
solutions that integrate sensor-rich scaling systems such as
GrowSafe (Canada), the Bosch Precision Livestock Platform
(Germany), Rice Lake Weighing Systems (USA), and Diverseco
Industrial Scales and Weighing Systems (Australia) capable
to measure, log results and transmit information over wired
or wireless networks. Other companies such as Arvet CIMA
Control Pig and CIMA Control Cow Scaling Systems (Spain) and
the GEA INTELIWEIGH Walk Over Weigh System (Germany) as
well as research groups that developed custom-made scales
(Cveticanin, 2003; Pastell et al., 2006) provide dynamic-weighing
systems where animals are weighed while in motion using walk-
through or step-over weighers (Rousing et al., 2004). While these

devices are very accurate, their acquisition, intended purpose
and operation size, repeated calibration and maintenance costs
associated with their placement in high-temperature variability,
and corrosive environments are significant and beyond the
affordability and sustainability limits of small and medium
size farms and even of commercial operators (Banhazi et al.,
2012; Dickinson et al., 2013). Removing animals from paddocks
and holding areas and leading them to weighing stations is a
costly, stressful and potentially harmful activity for animals
and handlers alike and could also inadvertently lead to animal
weight loss or even death (Augspurger and Ellis, 2002; Grandin
and Shivley, 2015; Faucitano and Goumon, 2018). Moreover,
since the weighing process is very laborious, the frequency
of measurements is not sufficiently high to permit the use of
BW as indicator for other traits. However, since affordability
of direct weighing methods may be an impediment for small
producers (Dickinson et al., 2013), researchers have developed
indirect weighing methods represented by regression models
that relate morphometric measurements and image features
to BW in livestock. The direct acquisition of morphometric
measurements can be accomplished with the aid of technologies
with various degrees of complexity, from measuring tapes and
tubes to specialized software or manual, semi-automatic or
automatic measurements extrapolated from images obtained
with electro-optical devices such as mono-2D (Li et al., 2014),
stereo-2D (Rudenko, 2020), 3D (Miller et al., 2019), ultrasound,
and infrared sensors. A review and comparison of five different
low-level indirect weighing techniques (Rondo tape, Weigh
tape, Weighbridge equation, Schaeffer’s formula, and Agarwal’s
formula) to estimate BW is provided in Wangchuk et al. (2018).
Nevertheless, these low-level technologies are affected by animal
breed, feeding method, animal satiety level, and the elasticity or
plasticity of the measuring tapes or tubes (Joo, 2010). A paradigm
shift in morphometric estimations via advanced systems can
be observed in recent years, when computer vision (CV) and
deep learning (DL) techniques are increasingly applied to this
problem and more abstract image features, such as body area
and texture patterns (Gjergji et al., 2020) that are not directly
connected to previously applied morphometric measurements
are used to predict BW with increasing success.

From a modeling standpoint, we can distinguish four
modeling approaches for BW prediction with different
complexity levels (Figure 1). For all models we can identify three
major components/mechanisms such as feature extraction/
acquisition, feature selection (for modeling), and the regression/
learning model that could be automated.

The first one is a Traditional Approach, where preliminary
models for BW prediction are based on the manual collection
of morphometric measurements. Some of the most popular
morphometric measurements include heart girth circumference,
wither height, hip width/height, and body length. These
measurements are manually selected and used as features
for traditional regression models, which result in predictive
equations with one or more variables based on the number
of selected measurements in various species, such as cattle
(Heinrichs et al., 1992; Franco et al., 2017; Goopy et al., 2018), pigs
(Groesbeck et al., 2002; Mutua et al., 2011; Sungirai et al., 2014,
Al Ard Khanji et al., 2018), sheep (Sowande and Sobola, 2008;
Kunene et al., 2009; Chay-Canul et al., 2019; Canul-Solis et al.,
2020), goats (Sebolai et al., 2012), camels (Fadlelmoula et al.,
2020; Meghelli et al., 2020), and yaks (Yan et al., 2019).

To decrease the animals stress levels and the significant costs
and labor associated with the traditional approach, the second
approach (CV approach) employs CV systems and uses images
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Figure 1. A schematic representation of 4 generic and increasingly complex BW prediction approaches.

acquired with 2D (e.g., RGB and thermal cameras) or 3D (e.g,,
depth and Microsoft Kinect sensors, stereo systems) electro-
optical sensors as an alternative way to capture morphometric
measurements. These approaches include an additional step
consisting in the manual or automatic preprocessing of the
acquired images and manual selection of animal biometric and
morphometric measurements, which are then used as predictor
variables in statistical models for BW prediction. When 2D
images are acquired for pre-processing from single cameras,
the third dimension is absent and limits what morphometric
measurements can be captured and selected for modeling. For
example, the HG circumference is reduced to an HG diameter
or replaced with chest depth measurements when extrapolated
from either lateral or top images (Ozkaya, 2013). This limitation
can be addressed by using 3D cameras, but their excessive cost
and more complex data processing steps represent a current
bottleneck for a larger scale adoption. Alternatively, the use
of 2D images as sources for morphometric measurements
supports the use of perimeter- and area-based measurements
that can serve as model features and cannot be easily estimated
with manual measurements.

Since feature selection can be a tedious task particularly
when the number of morphometric measurements is large, it is
preferable to automate the process. Therefore, the third approach
(CV+ML approach) includes systems that use CV techniques
as described in the CV approach and machine learning (ML)
methods for feature selection automation (Tasdemir and Ozkan,
2019; de Moraes Weber et al., 2020; Rudenko, 2020). Both, the
CV approach and the CV+ML approach, enlist some level of
manual operations, such as image and feature selection, image
segmentation, and morphometric measurement extractions.

Since the manual steps will impede the integration of such
approaches in high-throughput applications capable to process
thousands of animals, full automation is the key factor for
commercial solutions.

The fourth approach based on CV and DL (CV+DL approach)
represents a first step toward the full automation of the BW
prediction process using digital images. The DL modeling
component typically includes image selection, morphometric
feature extraction, and feature selection as part of complex
neural network architectures such as convolutional neural
networks—CNNs (Fukushima, 1980), recurrent convolutional
neural networks—RCNNs/RNNs (Spoerer et al., 2017), recurrent
attention models—RAMs (Mnih et al., 2014),and RAMs with CNNs
(Ba et al., 2014). Preliminary livestock studies implementing this
approach reported significant improvements for BW prediction
when compared with more traditional approaches (Fernandes
et al., 2019, 2020a; Gjergji et al., 2020), nevertheless there is
plenty of space for improvements particularly on the precise
automatic segmentation of animals from images with complex
backgrounds, confounding backgrounds (similar colour as the
subjects) or multiple subjects. This task can be addressed using
various approaches such as the active shape model proposed
by (Cootes et al., 1993) and successfully applied by (Wirthgen
et al.,, 2011) using infrared thermography or a texture-based
segmentation approach using a semi-supervised learning
method proposed by (Shukla and Anand, 2016).

The remaining of this review is structured as follows. First
typical biometric and morphometric measurements used for
livestock BW estimation is provided. The next section discusses
CV methods that are typically used for digital image processing
and feature extraction, whereas the latter section will review
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work related to ML methods applied to the BW prediction
problem. The Conclusions section summarizes the reviewed
work and identifies new avenues of research in the area.

Biometric and Morphometric
Measurements for BW Prediction

While animal biometrics is an emerging field focused on
quantification and detection of the phenotypic appearance of
species, individuals, behaviors, and morphological traits (Kiihl
and Burghardt, 2013), animal morphometrics (Rohlf, 1990;
Adams et al., 2004; Doyle et al., 2018) is almost exclusively
focused on landmark-based methods (and less on outline-
based methods) using quantitative analysis of form relying
on measuring the size and shape of animals, and the relation
between size and shape (allometry). Estimation of livestock BW
using biometric and morphometric measurements has been
studied in detail for various species, such as cattle (Tasdemir
et al., 2011a,b; Miller et al., 2019; Tasdemir and Ozkan, 2019;
Gjergji et al., 2020; de Moraes Weber et al.,, 2020; Rudenko,
2020), pigs (Brandl and Jgrgensen, 1996; O’Connell et al., 2007,
Mutua et al., 2011; Sungirai et al., 2014; Al Ard Khanji et al.,
2018), sheep (Eyduran et al,, 2015; Huma and Igbal, 2019), goats
(Sebolai et al., 2012; Eyduran et al., 2017; Temoso et al., 2017),
camels (Fadlelmoula et al., 2020; de Moraes Weber et al., 2020),
yaks (Yan et al., 2019), poultry (Mendes and Akkartal, 2009), and
fish (Fernandes et al., 2020b). This process is typically applied to
avoid drawbacks associated with manually performed individual
animal weighing such as: 1) the animal and manual laborer
stress associated with animal relocation, 2) the costs associated
with this labor-intensive process, and 3) the significant cost
associated with acquiring and maintaining industrial scales.
Biometric and morphometric measurements capture a plethora
of body dimensions and body characteristics that can be used as
parameters in BW predictive models. A summary of biometric
and morphometric measurements for six species is included in
Table 1. Some of these measurements are species-specific and
have been used for BW predictive purposes only in one species
such as paunch girth, face length, length between ears, ear
length, tail length, and tail width in sheep. Other measurements
such as heart-girth circumference, body length, shoulder width,
shoulder height, and wither height are more generic and can be
used for BW prediction in more than one species. It is important
to note that the manual acquisition of such measurements is by
no means less laborious than using a scale and the “easiness” of
the operation depends on the age and the ability to restrain the
animals because larger and older animals are typically harder to
isolate, restrain, and handle.

CV Methods for Morphometric
Measurements Extraction

An alternative way to acquire morphometric and behavior-based
biometric measurements of livestock animals consists in using
contactless optical systems, which overcome difficulties arising
from direct measurements. Different types of 2D and 3D optical
sensors have been successfully used mostly for morphometric
measurements and in a limited way for biometric identification
of animal behaviors (Porto et al., 2013; Banhazi and Tscharke,
2016; Nasirahmadi et al., 2017; Li et al., 2019). The 2D sensors
include regular 2D digital cameras, thermal cameras (Stajnko
et al.,, 2008), and systems of cameras capable to extrapolate

3D models from a series of 2D images. Such systems include
multiple calibrated 2D cameras (Tagdemir et al, 201la,b),
Structure-from-motion systems or hybrid systems that include
a combination of 2D cameras and laser projectors such as the
Morpho 3D system (Le Cozler et al., 2019). The 3D sensors use
a wide variety of technologies, such as time-of-flight cameras,
consumer triangulation sensors, and infrared sensors such as
Microsoft Kinect (Kongsro, 2014; Gomes et al., 2016; Nir et al.,
2018; Pezzuolo et al., 2018a; Fernandes et al., 2019; Cominotte
et al., 2020; Martins et al., 2020).

Animal subjects are typically imaged from the top or the
side and the acquired images are processed by specialized
(and sometimes custom-made) CV software that extracts a
predefined set of features such as lengths, areas, volumes (for
3D images), colors, and textures.

The position, orientation and motility of the animals captured
in images vary with each species. Some species, such as sheep
have more joints, are more flexible, exhibit a more variable
posture, and have more complex behaviors when compared
with larger livestock such as cattle (Zhang et al., 2018b). These
can cause various artifacts such as tilted or incomplete views of
body parts and blurs and directly affect the subsequent image
processing and segmentation steps. Two other factors that affect
the quality of the BW prediction results are the presence of more
than one animal in a camera’s field of view and the background.
These problems become more prominent in automatic systems
that select images from continuous or motion sensor-triggered
video feeds (Fernandes et al., 2020a) and can be addressed by
carefully choosing, limiting, and customizing the space available
for animals’ movement in the proximity of the camera system.

One of the most important aspects of applying CV for BW
prediction in livestock animals is the image segmentation
and processing stage, which consists of three main steps:
1) the detection stage, where a decision is made if an animal
is present or absent from an image, 2) the segmentation stage,
where the boundaries of an animal’s body or the body parts
are identified and extracted from the image, and 3) the feature
extraction stage, where prespecified body parts dimensions and
characteristics (e.g., lengths, areas, shapes, colors, textures) are
calculated.

Step 1

The detection stage typically relies on weaker or stronger
assumptions related to what is expected to be in front of the
cameras, depending on the position of the cameras. For example,
a camera placed on top of a feeding station in a dairy, beef or
pig farm would rely on the assumption that only the desired
target animals can be present in the frame and the object with
the largest area represents the animal. Alternative approaches
for animal detection include a wide variety of technologies.
Low-level technologies consist of tagging individual animals
with unique markers, such as chalk, paint, markers, or wax
markings (de Moraes Weber et al., 2020). More advanced
technologies include face detection (Yao et al., 2019), muzzle
detection (Noviyanto and Arymurthy, 2013; Tharwat et al,
2014), automatic detection via ML, and DL approaches applied
to surveillance videos (Zhang et al,, 2018a) or hybrid systems
that combine radio-frequency identification sensors and CV
technologies (Velez et al., 2013). A review of cattle detection
methods is presented by Awad (2016). When 3D cameras are
used, the distance between the sensor and the subject (depth)
is proportional to the intensity of the pixels in the image and
serves as a great classifier for foreground or background image
components. Moreover, 3D images include depth information
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on the body surface of the subject, whereas 2D and thermal
images are limited to information related to body contours
and cross-sectional areas. A postprocessing step consisting of
a number of quality control criteria is needed to select valid
frames with correctly positioned animals that are completely
included in the frame, not touching boundary walls and having
a straight posture. Failing to control the quality of an image
can lead to inaccurate image-based biometric morphometric
measurements in the feature extraction stage.

Step 2

The segmentation stage can include a large number of methods
that can be classified as manual and automatic. Manual methods
are focused on application of software tools such as Image]
(Schneider et al., 2012) and VIA Annotation Software (Dutta
and Zisserman, 2019) to preprocess and select areas of interest
from an image that can be used to directly infer morphometric
measurements or to prepare training datasets for ML methods
meant to build segmentation models capable to detect similar
animals in new images.

Automatic methods are typically focused on specific body
parts identification and span a wide complexity spectrum,
from simple background subtraction approaches (Yang and
Teng, 2007), edge detection (Senthilkumaran and Rajesh, 2009)
via operators such as Prewitt (Prewitt, 1970), Canny (Canny,
1986), Sobel, Laplacian (Kimmel and Bruckstein, 2003), and
masking (e.g. Kirsch, Robinson) to complex operations for
shape recognition such as the use of Hough transform (Hough,
1962) for identification of round objects (Fernandes et al., 2019)
and super-pixel methods such as the Simple Linear Iterative
Clustering (Achanta et al., 2012). Postprocessing steps could
include black and white or color-based masking, rotation,
scaling and coordinate transformations (e.g., conversions to
polar coordinates).

Step 3

The third stage is focused on morphometric and biometric
measurements extraction and can be grouped into two categories
as suggested by Fernandes et al. (2019): body measurements and
shape descriptors. The body measurements include lengths,
widths, areas, and volumes and can be calculated either manually
as described in the segmentation stage or automatically via
superposing a grid on top of the segmented animal and extracting
equidistant measurements along a line, curve, contour, or an
area. The volumetric measurements are rough approximations
given the limited camera views of either the top or the side of an
animal. The shape descriptors reported in the literature include
generic ones such as Fourier descriptors (Fernandes et al., 2019)
and fast point feature histograms (Huang et al., 2019).

Many factors related to environment, animal positioning,
animal characteristics, and location affect the ability of CV
methods to be efficiently applied for morphometric and
biometric measurements extraction from digital images. For
example, large group sizes, high stocking densities, unmarked
individuals, variable lighting, different backgrounds, animals
covered in dirt or feces, and the presence of dust, insects,
ammonia, and water particles (from cleaning systems) in the air
are typical challenges associated with operating CV equipment
in commercial farming environments (Kim et al., 2017; D’Eath
etal., 2018; Wurtz et al., 2019). Animal characteristics such as the
presence of thick coat, wool, or long hairs; various colours; and
textures and variable intrabreed anatomical landmarks (e.g.,
bone protuberances) pose further challenges for CV systems
(Song et al., 2018). A summary of CV methods for processing
images used in the prediction of BW in four livestock species
(cattle, pigs, sheep, goats) is presented in Table 2. Moreover, a
detailed species-specific review of CV methods for pigs’ BW
estimations is available in the literature (Li et al., 2014).

ML and CV Methods for BW Prediction

While predicting BW of farm animals from biometric and
morphometric measurements observed at different growth
periods in cattle, pigs, sheep, and goats has been the focus of
many past research studies, which applied traditional statistical
regression techniques such as linear, multiple, and ridge
regression, their success was limited by the multicollinearity
and complex relationships among measurements (variables). To
capture and explain such complex inter-variable relationships,
a limited number of recent studies have reported the successful
application of various ML and DL methods for predicting BW
using features extracted from 2D and 3D digital images (Table 3).

Successful applications of ML approaches on morphometric
measurements extracted from 2D images via CV techniques
have been reported in the literature for cattle. An early study
carried out by Tasdemir et al. (2011b) employed a fuzzy rule-
based model to estimate the BW of 115 Holstein cows using
the body measurements obtained through Image Analysis (IA).
2D digital images of each animal were synchronously acquired
from various directions and wither height, hip height, body
length, and hip width were measured with a laser meter and
a measuring stick for validation purposes. A platform weighing
scale was used to measure the BW of the cows and the data were
automatically stored on a computer. The photos were analyzed
in the second stage by the IA software developed in Delphi and
body measurements were calculated. They noticed that values
measured manually were very similar to IA outcomes. Finally,
the MATLAB software was used to develop a fuzzy system using
the acquired body measurements and the predicted BW values

Table 2. Summary of CV methods and corresponding references used in the literature for BW estimation in four livestock species

CV method Cattle Goat Pig Sheep
Single camera 3D imagery: TFNIR ~ Miller et al., 2019; Negretti Fernandes et al., 2020a,b;
Cominotte et al., 2020 etal., 2011 Pezzuolo et al., 2018;
White et al., 2004
3D Structure-from-Motion (SfM) Wirthgen et al. 2011
Multi-camera 2D imagery Gjergji et al., 2020; de Moraes Lerch et al., Dickinson et al. 2013;
Weber et al., 2020; Tasdemir 2020 Menesatti et al., 2014

etal.,, 2011a,b

Multi-camera 3D imagery Rudenko et al., 2020;

Tasdemir et al., 2019
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were compared to those acquired with the platform scale.
The authors obtained high correlation coefficients (R = 0.97)
between predicted and measured BW values and concluded
that the digital IA method and fuzzy rule-based system is
a feasible, quick, and very realistic approach, which may be
effectively used as a directly computerized and more reliable
recording system.

Eight years later, Tasdemir and Ozkan (2019) used an artificial
neural network (ANN) to estimate Holstein cows’ BW using the
same type of measurements obtained from digital images as in
their previous work. Different ANN model architectures were
generated, and the best performing model improved on their
previous results leading to a correlation coefficient R equal
to 0.99.

More recently, de Moraes Weber et al. (2020) investigated
the BW prediction ability of three ML algorithms on a rather
small number of Girolando cattle (34) using dorsal and lateral
measurements extracted from digital images and their
corresponding BW was measured with a scale. A set of 34
dorsal images and 34 lateral images was selected and manually
processed with the Image] software (version 1.52, National
Institutes of Health) and 10 measurements were extracted: hip
width, body length, tail distance to the neck, dorsum area, dorsum
perimeter, wither height, hip height, area of the body lateral area,
the perimeter of the lateral area, and rib height. The data were
divided into a training set (66%) and a testing set (34%) and three
ML methods were applied: linear regression (LR), support vector
machines (SVM), and random forests (RF). The highest correlation
coefficient between measured and predicted BW for the test set
was obtained with the LR method (0.71), followed by SVM (0.68)
and RF (0.62). While the study is very interesting and shows how
three ML methods can be successfully used to predict BW in cattle
using manually extracted measurements from images, larger data
sets would be necessary for the development of better models,
especially when boosting/ensemble such as RF are considered.
It is expected that models built on subsamples extracted from
already small data sets would lead to lower performance, which
could explain the poor performance of the RF models.

Since feature selection in previous work has been typically
done manually and is prone to human error during the image
processing stage, Gjergji et al. (2020) employed DL—a novel
approach capable to automatically extract relevant features from
digitalimages and known to outperform traditional ML models for
both classification and regression problems for a large number of
CV problems. The authors explored the prediction performance
of CNN, RCNNs, RAMs, and RAMs with CNN to predict beef cattle
weight using CV techniques. The images were collected from
10 male Nellore and 10 male Angus cattle using 2D cameras
with a 720p standard High-Definition image quality (1,280 x 720
pixels resolution, 16:9 aspect ratio). Two cameras were fixed in
the structure of the water trough to collect the dorsal image of
the animal when drinking and two other cameras were installed
in the trough cover structure to acquire the profile images of
the animals going into the trough. The data set was divided
into training (60%), validation (20%), and testing (20%) sets. The
authors reported that CNNs achieved the highest performance
with a top model mean average error (MAE) of 23.19 + 1.46 kg,
which was nearly half the error of the top LR models proposed
by de Moraes Weber et al. (2020) with an MAE value of 38.46 kg.
While it is not clear if the camera resolution influenced in any
way the quality of the obtained results, the authors report that
only models such as RNN/CNN that use partial parts of an
image are capable to estimate correctly the BW, whereas the
segmentation step of the other models is significantly influenced
by the presence of stray subjects in an image.

Recent advances in imaging technologies combined with
increasingly reduced costs for sensors (Wolfert et al.,, 2017,
Benjamin and Yik, 2019) have enabled the use of 3D imaging
technologies within CV systems in the livestock sector with
direct applications in BW estimation in cattle (Fukuda et al.,
2019), pigs (Wang et al., 2008), and chicken (Mortensen et al., 2016).
Nevertheless, only a handful of studies have applied ML and
DL methods on data acquired with 3D imaging systems. Miller
et al. (2019) applied 3D imaging technology and ML algorithms
to predict BW and carcass characteristics of live animals. Three-
dimensional images and BWs were passively obtained from
finishing steer and heifer beef cattle of a variety of preslaughter
breeds either on-farm or after entering the abattoir. The sixty
potential predictor variables obtained by an automated camera
system and the bespoke algorithm were used to construct stepwise
LR and ANN predictive models for BW and carcass characteristics.
The predictor variables comprised various measurements (5
widths, 6 lengths, 5 heights, 2 diagonals, 20 ratios, 11 areas, and
11 volumes). The prediction performance of the ANN model for
BW using 4,443 subjects was R? = 0.7 and RMSE = 42, whereas the
performance of the stepwise LR model was lower with R? = 0.54
and RMSE = 51. They concluded that 3D imaging coupled with
ML analytics can be used to predict LW and traditional carcass
characteristics of live animals. This can provide an opportunity to
reduce a considerable inefficiency in beef production enterprises
through autonomous monitoring of finishing cattle on the farm
and marketing of animals at the optimal time.

Rudenko et al. (2020) applied ANNs and CV to identify the cow’s
breed and estimate their BW. Cow images taken at different angles
by synchronized cameras were fed to a Mask RCNN to determine
the breed and position of each subject. Then, withers height, hip
height, body length, and width of a cow were determined using the
stereopsis method from 3D images acquired with an Intel RealSense
D435i camera using the position of the cow detected by Mask RCNN
in the previous step. Finally, the obtained data about the species and
its size were fed to a multilayer perceptron (MLP) to estimate the live
weight of the animals. Using an initial collection of 250 representative
images for each of the three breeds and an augmentation system to
increase the size of the training and testing sets, the ANN system
predicted BW with an accuracy of 0.92, 0.88, 0.85, and 0.84, for
Ayrshire, Red Steppe, Jersey, and Holstein, respectively. The authors
concluded that the proposed method enables modern farmers to
assess the animal’s BW easily and accurately, as well as identify
its breed, save time, and minimize effort without damaging the
animals’ welfare and disrupting the growth of livestock. The method
can be applied in both corrals and pastures without interfering with
animals’ normal behavior. The authors also noted that the use of a
3D camera alone leads to poor results due to its low resolution and
it is recommended to complement the technology with additional
photogrammetric technologies.

Fernandes et al. (2020a) employed CV systems to predict the
BW, muscle depth, and back fat in pigs from 3D images using
multiple linear regression (MLR), partial least squares (PLS), elastic
network regression (ENR), MLPs, and a DL image encoder model.
The BW was measured with an electronic scale for 557 finishing
pigs. The MD and BF were measured using an ultrasound device.
The pig top view video records were acquired using a Microsoft
Kinect V2 sensor and automatically processed in MATLAB for
feature extraction, using the methodology described in Fernandes
et al. (2019). The features extracted were: 1) body measurements,
including apparent volume, surface area, length, height and
width, and eccentricity; 2) 360 equidistant measurements
of the polar shape contour of the top view image; and 3) the
corresponding 360 Fourier descriptor features of the same polar
shape contour. The body measurements were extracted from



the 3D images and converted to metric scale values using the
intrinsic focal length of the Kinect depth camera. The pig volume
was calculated as the sum of pixels’ volumes. The pig eccentricity
was estimated as the ratio between the foci and the major axis of
the ellipsis, which has the same major and minor axis as the pig
area. The polar shape descriptors were measured as the distance
from the centroid of the pig to points on its boundary contour.
The obtained data were split into training and testing sets using
a 5-fold cross-validation approach. The authors reported that the
DL image encoder model with raw 3D images as direct inputs
achieved the best BW prediction performance (R? = 0.86).
Cominotte et al. (2020) assessed the predictive quality of an
automated CV system used to predict BW and average daily gain
in beef cattle. The authors compared four different predictive
approaches, including MLR, least absolute shrinkage and selection
operator (LASSO), PLSs, and ANN using 3D images captured with
a Kinect model 1473 sensor (Microsoft Corporation, Redmond,
WA). The BW was measured using an electronic scale. The collect
234 3D images at four time points (weaning, stocker, beginning
of feedlot, and end of feedlot) during the animal’s life cycle. They
collected 3D images from 62 animals for the first three time points
and from 48 animals for the last time point. They preprocessed
and segmented the animals from images using a combination
of acceptance criteria based on the position of the cow in the
image and removal of non-important parts such as head and tail.
One final image was manually selected for each animal at each
time point and further subjected to feature extraction, which
resulted in a significant number of automatically determined
body measurements, such as area, volume, maximum length, 11
widths (W1 to W11), and 11 heights (H1 to H11) at equidistant
locations in the dorsal part of the animal from the shoulders
to the hip. The ANN approach produced the best results for BW
prediction with R? values between 0.79 (stocker phase) and 0.92
(beginning of feedlot phase) and RMSE values between 7.78
(beginning of feedlot phase) and 18.14 kg (end of feedlot phase).

Conclusions

When considering the global farming focus to increase animal
density, productivity, and welfare and reduce feeding costs and
greenhouse gas emissions, the prospect of replacing manual
biometric and morphometric measurements with automatic
noncontact measurements and integrating the outcomes into
intelligent ML and DL systems is of great interest and aimed
at optimizing livestock management and allowing individual
animal health, welfare, and real-time growth monitoring.

While there is a large body of research literature describing
BW prediction systems belonging to one of the generic
approaches described in Figure 1, there are obvious limitations
that must be overcome to be able to evaluate the true potential
of each solution and make a fair comparison among them. These
limitations include: 1) relatively small numbers of animals
per study, 2) different species and breeds, 3) inconsistent use
of result measures and metrics across studies (e.g., RMSE,
MAE, 1, 12, R, R?, accuracy, correlation coefficients), 4) different
experimental settings, 5) different 2D and 3D sensors, 6) various
calibration approaches, and 7) the factors impacting technology
acceptance by producers.

Solutions that combine the uncanny ability of 2D and 3D
CV technologies to capture livestock body dimensions and
characteristics and intelligent ML and DL algorithms able to
model the extracted information and create predictive systems
for livestock BW have started to emerge in the past few years.
Nevertheless, there is still a long way until such systems will

Wangetal. | 11

reach industry-ready stages, both in terms of practical accuracy
and affordability. While current research shows promising results
predominantly in cattle and pigs, there are still many avenues to be
explored for better automation of the whole BW estimation process,
such as 1) the ability of CV and ML/DL hybrid BW predictive systems
to cope with missing information possibly via imputation and data
enhancement approaches as suggested by (Khan et al., 2019), 2) the
generalization power and the breed-agnostic prediction for any
given species, 3) the automatic detection and identification of an
animal remotely, and 4) the automatic recognition and adaptability
based on an animal’s development stage, posture, and position
within a sensor’s field of view.

Current results are also limited by reduced dataset sizes,
datasets of lower quality, reduced variability and lack of
annotated information (ground truth), and most importantly
by limited availability of shareable information. Therefore,
the creation of publicly available repositories and databases
that store 2D and 3D images and corresponding biometric/
morphometric (and other complementary) measurements of
livestock breeds are quintessential for the development and
enhancement of current CV, ML and DL approaches that have a
clear potential to improve contactless BW estimations.

Someone may easily envision a future where a new stage of
technological development will include handheld or airborne
mobile devices equipped with advanced and yet affordable
vision systems and complex pretrained predictive models able
to remotely detect, identify, estimate, and record an animal’s BW
and make current weighing technologies obsolete.
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