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Abstract

Genes in the same organism vary in the time since their evolutionary origin. Without horizontal gene transfer, young genes are

necessarily restricted to a few closely related species, whereas old genes can be broadly distributed across the phylogeny. It has

been shown that young genes evolve faster than old genes; however, the evolutionary forces responsible for this pattern

remain obscure. Here, we classify human–chimp protein-coding genes into different age classes, according to the breath of

their phylogenetic distribution. We estimate the strength of purifying selection and the rate of adaptive selection for genes in
different age classes. We find that older genes carry fewer and less frequent nonsynonymous single-nucleotide polymorphisms

than younger genes suggesting that older genes experience a stronger purifying selection at the protein-coding level. We infer

the distribution of fitness effects of new deleterious mutations and find that older genes have proportionally more slightly

deleterious mutations and fewer nearly neutral mutations than younger genes. To investigate the role of adaptive selection of

genes in different age classes, we determine the selection coefficient (c 5 2Nes) of genes using the MKPRF approach and

estimate the ratio of the rate of adaptive nonsynonymous substitution to synonymous substitution (xA) using the DoFE

method. Although the proportion of positively selected genes (c . 0) is significantly higher in younger genes, we find no

correlation between xA and gene age. Collectively, these results provide strong evidence that younger genes are subject to
weaker purifying selection and more tenuous evidence that they also undergo adaptive evolution more frequently.
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Introduction

Fully sequenced genomes from a wide range of species al-

low us to determine the phylogenetic distribution of pro-

tein-coding genes in the genomes of these species. The

phylogenetic distribution of a gene contains information
about the gene’s evolutionary age (i.e., the time when

the gene first appeared in some ancestral genomes) and

the gene’s propensity to persist in genomes. Without hori-

zontal gene transfer, genes with broader and deeper phylo-

genetic distributions are necessarily older and more

persistent than genes that are originated recently or do

not tend to persist for long periods. Young genes, also

termed lineage-specific genes, tend to have either restricted
or patchy phylogenetic distributions.

Young or lineage-specific genes appear to evolve faster at

the protein level than ancient or broadly distributed genes

(Domazet-Loso and Tautz 2003; Krylov et al. 2003; Daubin

and Ochman 2004; Alba and Castresana 2005; Wang et al.

2005; Cai, Woo, et al. 2006; Kuo and Kissinger 2008; Toll-

Riera et al. 2009; Toll-Riera, Castelo, et al. 2009, Castresana

and Alba 2008; Kasuga et al. 2009; Wolf et al. 2009). For

instance, Alba and Castresana (2005) found the inverse

relationship between the evolutionary age and protein-

divergence rate of human genes. Cai, Woo, et al. (2006)

found that genes restricted to two independent fungal lin-

eages evolve at faster rates than more widely distributed

genes. Similar findings have also been reported in rodents

(Wang et al. 2005), Drosophila (Domazet-Loso and Tautz

2003), parasitic protozoa (Kuo and Kissinger 2008), and

bacteria (Daubin and Ochman 2004).

Despite the same pattern repeatedly found in various or-

ganisms, the underlying evolutionary forces responsible for

such a phenomenon remain obscure. Specifically, it is not

clear whether the anticorrelation between evolutionary

age and protein-divergence rate are due to the variation

in the strength of purifying selection or due to the variation

in the rate of adaptive evolution. Distinguishing these two

causes is of fundamental importance and provides clues
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about the role of newly created genes. Weaker purifying se-
lection in young or lineage-specific genes would imply that

these genes are less ‘‘important’’ in the sense that defects in

these genes have less effect on fitness. The alternative,

although not a mutually exclusive, possibility is that genes

recently added to the genome participate more in the

lineage-specific adaptive evolution.

Here, we study the molecular evolution of genes in hu-

mans and chimps through the window of phylogenetic pro-
file of these genes. We investigate all human–chimp genes

over the same evolutionary distance in way that is both con-

sistent and avoids problems with saturation. Particularly,

comparing sequences of human and chimp orthologs in

conjunction with interrogating sequence polymorphisms

in humans, we estimate the rates of evolution at synony-

mous and nonsynonymous sites and the levels of selective

constraint for all human–chimp protein-coding genes.
To estimate relative prevalence of positive selection of dif-

ferent age classes, we calculate the ratio of adaptive

nonsynonymous-to-synonymous substitution rates (Eyre-

Walker and Keightley 2009) and the scaled selection coef-

ficient (Bustamante et al. 2002, 2005).

To classify genes, we use three phylogenetic measures:

lineage specificity (LS), phylostratum level (PL), and the num-

ber of gene losses (GLs). Each measure represents a different
age-classifying system, capturing a unique feature of phylo-

genetic profiles of genes. LS measures the breadth and

depth of the phylogenetic profiles but focuses only on genes

that have nonpatchy phylogenetic distributions (Cai, Woo,

et al. 2006). PL focuses on homologs and determines the

age of the gene family by strict parsimony that assumes

that a gene family can be lost but cannot reevolve indepen-

dently in different lineages or be horizontally transferred
(Domazet-Loso et al. 2007). GL captures the patchiness

of phylogenetic profiles for genes that have the same age

measured using strict parsimony. We obtain qualitatively

identical results using all three measures of gene age.

We confirm that younger and less broadly distributed

genes evolve faster at the protein level. We determine that

these genes are subject to weaker purifying selection in hu-

mans and provide some evidence that positive selection does
playarole inthefasterevolutionofyoungergenes.Wediscuss

implications of these results for the understanding of human

evolution and human health. We also put these results in the

context of classical models of molecular evolution.

Materials and Methods

LS of Genes
LS describes how specifically a gene and orthologs of the

gene are distributed on a given phylogeny (Cai, Woo, et al.

2006). If a gene and its orthologs are present in the species

all belong to a single lineage, the gene is considered specific

to this particular lineage. On the other hand, if a gene and its

orthologs are present in all the species of all lineages on the
phylogeny, the gene is a ‘‘common’’ gene not specific to any

lineages. Most of genes, however, have a certain level of LS

laying between those of two ‘‘extremes’’ scenario—they are

present in some but not all species.

To calculate LS for human genes in regard to the primate

lineage, we used the phylogeny of 11 eukaryotic species, in-

cluding Homo sapiens, Pan troglodytes, Mus musculus, Bos
Taurus, Gallus gallus, Xenopus tropicalis, Danio rerio, Ciona
intestinalis, Drosophila melanogaster, Caenorhabditis ele-
gans, and Saccharomyces cerevisiae (fig. 1A). The topology

of the phylogeny, supported by a range of molecular and

morphological data (Blair et al. 2002; Bourlat et al. 2006;

Nikolaev et al. 2007; Dunn et al. 2008), was retrieved from

the National Center for Biotechnology Information (NCBI)

Taxonomy database (Wheeler et al. 2000). The distribution

of each human gene (i.e., the presence–absence pattern
of its orthologs) on the tree forms the phylogenetic profile

of the gene. We obtained phylogenetic profiles of genes

from PhyloPat v41 (Hulsen et al. 2006) (http://www.cmbi

.ru.nl/pw/phylopat/). Phylopat uses information of orthologs

predicted in Ensembl compara database (Birney et al. 2006)

to construct phylogenetic profile for each gene according to

the presence or absence of orthologs of the gene in other

species. The software pipeline of Ensembl compara database
collected gene pairs of the best reciprocal hits and best score

ratio values from a WUBlastp or Smith–Waterman whole-

genome comparisons and then created a graph of gene re-

lations, followed by a clustering step. The clusters were then

applied to build a multiple alignment and a phylogenetic

tree, which is reconciled with the species tree. From each

reconciled gene tree, the orthologous relationships were in-

ferred (for details, see [Vilella et al. 2009] and http://www
.ensembl.org/info/docs/compara/homology_method.html).

In figure 1A, we represented the phylogenetic profiles of

human genes with a string of 11 symbols: and indi-

cate the presence and absence of ortholog in the corre-

sponding species, respectively. In our data analysis, we

only included genes whose string representation of phylo-

genetic profile belongs to one of ten ‘‘regular’’ given pat-

terns, in which and are constitutively arranged, so
that LS level can be unambiguously assigned to these

regular patterns and hence to genes whose phylogenetic

profiles match these patterns. We discarded 10,032 (out

of 20,150) genes that showed ‘‘irregular’’ phylogenetic

profiles.

PL of Genes
Phylostratum is a set of genes from an organism that coalesce

to founder genes having common phylogenetic origin
(Domazet-Loso et al. 2007). Using a phylostratigraphic

approach, Domazet-Loso and Tautz (2008) assigned all

human protein-coding genes into 19 phylostrata. Here, we

describe the procedure they used to determine gene’s PL.
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Briefly, BlastP algorithm (E value cutoff 0.001) was used to
search human proteins against the NCBI nonredundant

(NR) database to determine the presence/absence of homo-

logs. The 0.001 cutoff value presents a good compromise be-

tween specificity and sensitivity of sequence similarity search

(Domazet-Loso and Tautz 2003). Before the sequence search,

the NR database was cleaned up with respect to sequences of

uncertain or missing taxonomic status, unreliable phyloge-

netic positions, and filled up with complete genomes that
were absent in the database but otherwise were publicly

available. In addition, TBlastN search was conducted against

substantial trace and expressed sequence tags archives of

Porifera, Cyclostomata, and Chondrichtyes as for these

internodes complete annotated genomes were lacking.

We obtained PL of all human genes from the supplemen-

tary data of Domazet-Loso and Tautz (2008). The numbers

of genes in different PL groups vary (supplementary fig. S1,
Supplementary Material online). To facilitate data analysis,

we merged 19 PL groups into nine bins (fig. 2A). Empirically,

neighboring phylostrata (e.g., phylostrata 9–11) with few

genes were merged into one bin. Phylostrata with more

genes (e.g., phylostrata 8 and 6) were assigned as two sep-

arate bins. The ‘‘empirically populated binning’’ procedure

ensured the difference of gene number between bins

was less substantial (supplementary fig. S1, Supplementary
Material online). We also binned genes using an alternative

procedure—‘‘equally populated binning.’’ We added a ran-

dom variable, e; norm(0, 0.001), to PL value of each gene,

making PL a continuous variable. The value of e was small

such as to not change the original rank of PL of genes sub-

stantially, but, by adding an e, each gene obtained a distinct

rank. To generate equally populated bins, we adjusted the

width of bins so that the same number of genes would fall
into each bin. Two binning procedures produce similar

results in subsequent data analyses. We only report results

obtained using the first procedure. Note that this analysis

was performed with genes in Ensembl database v45, for

which the PL values were originally estimated (Domazet-

Loso and Tautz 2008).

Gene Sets and Divergence Rate
To estimate the divergence rate of human protein-coding

genes, we retrieved coding sequences of 20,150 human

genes and their corresponding orthologs in chimpanzee ge-

nome from Ensembl database (Birney et al. 2006; Hubbard

et al. 2007). Nonsynonymous substitution rate (Ka) and

synonymous substitution rate (KS) for human–chimpanzee

orthologous pairs were calculated using the counting

method of Nei and Gojobori (1986) implemented in MBE-
Toolbox (Cai et al. 2005; Cai, Smith, et al. 2006). Before com-

paring median values of Ka and Ks between different groups

of genes, we removed data points of 70 ribosomal genes

(that are extremely slow-evolving genes that lack divergence

information), 228 sex-chromosomal genes (that are under

different strength of selection compared with autosomal
genes), and 1,997 pseudogenes listed in http://Pseudogene

.org/ (Karro et al. 2007). We further removed data points

with Ka � 0.05 and/or KS � 0.05 from 523 human–

chimpanzee gene pairs to reduce the problem introduced

by misalignment of coding sequences. Similar overall results

were obtained when Ka and KS (or denoted as dN and dS)

were calculated using the maximum-likelihood method

(Goldman and Yang 1994) implemented in PAML (Yang
1997). Given the fact that chimpanzees are the most closely

related species to humans and divergence between human–

chimp ortholog pairs may be extremely low, it is possible that

the low values of Ka and KS for some genes may just be an

artifact of the choice of species to do the comparison. To

eliminate the concern, we recomputed Ka and KS with

human–macaque ortholog pairs. The sequences of the cor-

responding macaque orthologs were again obtained from
Ensembl database (Birney et al. 2006; Hubbard et al.

2007). We obtained similar result as above (supplementary

fig. S2, Supplementary Material online). In addition, instead

of computing Ka and KS for individual genes, we summed

divergence sites of genes in the same age classes and calcu-

lated pooled Ka and KS for each age class (same procedure as

described below). We obtained qualitatively unchanged

results (data not shown).
We also obtained the numbers of nonsynonymous and

synonymous sites (N and S) and the numbers of nonsynon-

ymous (Dn) and synonymous (Ds) differences in coding se-

quences of human–chimpanzee genes resequenced in the

study of Bustamante et al. (2005), who applied exon-specific

polymerase chain reaction amplification to 20,362 loci in 39

humans and one chimpanzee to obtain sequence variants in

these regions. We summed up Dn (and Ds) and N (and S) for
genes in the same group to calculate pooled Ka and KS (i.e.,

Ka and KS for groups, in which sequences of genes are

essentially concatenated). To obtain the 95% confidence in-

terval (CI) of pooled Ka and KS, we used the bootstrapping

approach. For each group of genes, we constructed 10,000

resamples of the observed gene sets (and of equal size to the

observed gene sets), each of which was obtained by ran-

domly sampling with replacement from the original genes
in the group. The CIs of pooled Ka and KS were then ob-

tained using percentile method from values of pooled Ka

and KS for resamples.

SNPs and Polymorphic Consequences
We computed A* (the number of nonsynonymous single-

nucleotide polymorphism [nSNP] per nonsynonymous site)

as the ratio between total nSNPs and total number of non-
synonymous sites of genes in the same class, and S* (the

number of synonymous SNPs [sSNPs] per synonymous site)

as the ratio between total sSNPs and total number of syn-

onymous sites of genes in the same class. To determine the

nonsynonymous and synonymous status of SNPs, we
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mapped SNPs (from dbSNP or Perlegen) onto the coding re-
gions of the longest transcripts of human genes using func-

tions in PGEToolbox (Cai 2008). For Applera SNPs, we used

the nonsynonymous and synonymous classification from the

original study (Bustamante et al. 2005). We systematically

repeated SNP-related analyses using three SNP data sets: 1)

Applera SNPs in the 11,624 resequenced genes from the

study of Bustamante et al. (2005), 2) SNPs in dbSNP build

126, and 3) Perlegen SNPs (Hinds et al. 2005). Applera SNPs
were identified by resequencing and thus suffer from less

severe ascertainment biases. For dbSNP data, we removed

SNPs that are not validated (dbSNP category 0) and retained

NCBI designated ‘‘double hit’’ or ‘‘submitter validated’’

SNPs, which are more likely to beveal. For Perlegen data,

we used all SNPs ascertained in all populations. We obtained

allele frequencies of Applera SNPs and Perlegen SNPs to

perform allele frequency spectrum analysis.

Robustness Tests for SNP Analyses
To conduct robustness tests against several confounding

factors, we identified singleton genes, masked CpG-related

SNPs, grouped genes according to functional categories,

and classified genes according to their local genomic

guanine-cytosine (GC) content. To identify singleton genes,

we retrieved the data set of predicted human paralogous
genes from Ensembl database (Birney et al. 2006; Hubbard

et al. 2007). Singleton genes are those that do not have any

paralogs.

Single-nucleotide mutations at CpG sites are much more

frequent than at other sites (Cooper and Krawczak 1989; Sved

and Bird 1990). To control for the effect of CpG-related SNPs,

we generated the subset of SNPs excluding all CpG-related

SNPs. To do so, we downloaded neighboring nucleotides of
each SNP from human genome sequence from Ensembl

v41 (Birney et al. 2006). SNPs were considered potentially

CpG related in cases when: 1) A/G SNPs proceeded by a C

or 2) C/T SNPs followed by G (Webster and Smith 2004).

The association between Gene Ontology (GO) terms and

individual genes was obtained from FatiGO (Al-Shahrour

et al. 2004). We used genes whose functional annotation

contains the same GO term and tested whether the pattern
between Ka/KS (or A*/S*) and LS remains the same as that

obtained from all genes. We obtained the result for GO

terms: ‘‘cellular physiological process,’’ ‘‘metabolism,’’ ‘‘reg-

ulation of cellular process,’’ ‘‘regulation of physiological pro-

cess,’’ and ‘‘cell communication,’’ which were associated

with at least 25 genes in all of LS groups.

To test the effect of regional nucleotide composition

of genes, we obtained the isochore map of human ge-
nome from the supplementary table of Costantini et al.

(2006). Genes within isochore family L1 and L2 were

considered in the GC-poor regions; genes within isochore

families H1, H2, and H3 were considered in the GC-rich

regions.

We obtained global mRNA expression data from Gene
Expression Atlas (http://wombat.gnf.org) (Su et al. 2004).

We included normal adult samples from 54 NR tissue types

in the analysis. The expression level of each probe set in

a given tissue was calculated as the mean of log (base 2)

signal intensities of all samples after GC-robust multi-array

average normalization (Wu et al. 2004). When multiple

probes were mapped onto the same gene, the probe with

the highest expression level was used as the report probe for
this gene. We calculated the mean expression level of a gene

(aveExp) as the mean of log signal intensities of probe sets

across all tissues. We also calculated the maximum expres-

sion level among all tissues (maxExp) and the heterogeneity

of expression level across all tissues (hetExp) for all genes

with expression data available according to our previous

study (Cai et al. 2009).

Estimation of the Ratio of the Rate of Adaptive
Nonsynonymous Substitution to Synonymous Sub-
stitution (vA)
The distribution of fitness effects (DFEs) of new deleterious

mutations and xA were estimated by using the method of

Eyre-Walker and Keightley (2009) implemented in the pro-

gram DoFE v2.1 (http://www.lifesci.susx.ac.uk/home/Ada-

m_Eyre-Walker/Website/Software.html). To make the input
file, we compiled Applera data obtained from Bustamante

et al. (2005) and Lohmueller et al. (2008), which contain

the numbers of nucleotides divergent between human

and chimp and the site frequency spectra (SFS) for sSNPs

and nSNPs, respectively. Genes of different LS groups were

separated into different sets. Each set comprises the num-

bers of selected and neutral divergence polymorphism sites,

as well as SFS vectors. DoFE provides an option for excluding
singletons in SFS. Our result was unaffected qualitatively us-

ing the analysis with this option, thus only the result ob-

tained without excluding singletons is reported below.

Estimation of Selection Coefficient (g) using MKPRF
We used the program MKPRF (http://cbsuapps.tc.cornell

.edu/mkprf.aspx) to estimate the selection coefficient

c (52Nes) of genes. The program MKPRF samples from
the posterior distribution of parameters in the MKPRF mod-

els of (Bustamante et al. 2002) and (Barrier et al. 2003) using

a Markov Chain Monte Carlo algorithm based on Poisson

random field (PRF) theory (Sawyer and Hartl 1992). We used

a subset of genes with at least two variable nonsynonymous

sites in the alignment (i.e., Pn þ Dn � 2). Using exactly the

same approach as implemented in Bustamante et al. (2005),

we applied the nonhierarchical model by specifying the flag
FIXED_VARIANCE 5 1, such that a single Gaussian prior of c
with a mean of 0 and the standard deviation (SD) (r) of 8 is

set for all loci (Bustamante CD, personal communication).

Slightly deleterious SNPs can lead to an underestimate of

the rate of adaptive evolution because they contribute to
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polymorphism but rarely become fixed. The effects of these
slightly deleterious mutations can be partially controlled by

removing mutations segregating at low frequencies (Fay

et al. 2001). To circumvent the problem of unequal levels

of slightly deleterious polymorphisms present in genes of

different LS groups, we used two related procedures: 1) re-

moving all SNPs whose derived alleles are at low frequencies

(derived allele frequency [DAF] , 0.15) and 2) subsampling

nSNPs at low frequencies (DAF , 0.15), such that SFS
distributions across all LS classes match each other. Before

subsampling, we calculated the fractions of these

low-frequency nSNPs (lfnSNPs) in all nSNPs for genes in

ten LS groups. The nSNPs in LS 10 group genes have

the lowest fraction of lfnSNPs. We thus kept lfnSNPs in

LS 10 group unchanged and subsampled lfnSNPs in the

rest of the LS groups. For each LS group 1–9, we computed

how many lfnSNPs (/%) should be removed in order to
make the final fraction of lfnSNPs equal to that of LS

10. Then we randomly purged /% of lfnSNPs from each

of LS groups 1–9. As a result, allele frequency spectra of
the subsampled nSNPs in all ten LS groups became similar

to each other (supplementary fig. S3, Supplementary Ma-

terial online). We also used two different DAF cutoffs

(,0.05 and ,0.20) to define lfnSNPs. The effect of sub-

sampling on final MKPRF results does not change depend-

ing on the exact values of the DAF cutoffs.

Li et al. (2008) found that results of MKPRF are sensitive

to the model, and the value of r used to estimate c values.
To get a sense of the robustness of c estimation, we reran

our analyses using hierarchical model (FIXED_VARIANCE 5

0) with all default parameters and also using nonhierarchical

model with the values of r set at 1, 4, and 16.

Results

Classifications of Human–Chimp Genes
We first classified human genes into ten groups based on

their LS (Cai, Woo, et al. 2006). Here, we considered the

FIG. 1.—Protein divergence rates (Ka and Ka/KS) as a function of LS. (A) Phylogenetic profiles of human protein-coding genes in ten LS groups.

Solid circles and open circles indicate the presence and absence of human genes in the corresponding species, respectively. Genes that are

present in all 11 species (i.e., LS 1 genes) show the profile like (vertically arranged); genes that are present in human

and chimpanzee and absent in the rest species (i.e., LS 10 genes) have the profile like (vertically arranged). LS levels are

labeled with circled numbers. Genes whose phylogenetic profiles do not match any of the ten given profiles were excluded from the analysis; otherwise,

they (such as, those with a profile like ) were excluded from the analysis. The numbers of genes in LS groups are given

in the parentheses. (B) Medians of divergence rates (pooled Ka, KS, and Ka/KS derived from the Applera divergence data [Bustamante et al. 2005]) for

ten LS groups. Error bars indicate 95% CIs calculated from the 10,000 bootstrap replications. For individual genes, the Ka and Ka/KS values vary widely

and significantly among different LS groups (v2 5 2024.91 and 1926.15, respectively, degrees of freedom [df] 5 9, P,, 0.001 in both cases, KW test).

The difference in KS is much less substantial albeit significant among LS groups (v2 5 39.17, df 5 9, P 5 1.07 � 10�5, KW test). Ka and Ka/KS are

positively correlated with the LS values (Spearman’s q 5 0.507 and 0.503, respectively, P ,, 0.001 in both cases), whereas Ks shows no such

correlation (Spearman’s q 5 0.016, P 5 0.182).
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primate lineage containing human and chimpanzee in the

phylogeny of total 11 eukaryotic species (fig. 1A). We used

LS to quantify the extent to which orthologs of a human
gene are distributed in the species close to the primate lin-

eage. Human genes whose orthologs are present in few spe-

cies closely related to human and chimp are more primate

lineage-specific than those genes whose orthologs are pres-

ent in more distantly distributed species. We only assessed

genes of ten LS categories that have nonpatchy distributions

(fig. 1A). The numbers of genes in the LS categories 1–10 are

737, 848, 355, 458, 1,377, 294, 361, 834, 219, and 1,817,
respectively.

We then classified human genes based on their PL, which

quantifies evolutionary age of genes in terms of the most

diverged lineage in which the homologs of those genes

can be detected using Blast (see Materials and Methods

and [Domazet-Loso et al. 2007]). As noted in Domazet-Loso

and Tautz (2008), genes that share a particular protein do-

main will have the same PL based on when this domain

emerged first, even though a particular gene may have

evolved later (e.g., due to gene duplication or exon shuf-
fling). Because a protein domain is usually linked to a certain

function, PL is used to trace the origin of this function, irre-

spectively of the further origin of paralogs. We classified

human genes into nine PL groups (Materials and Methods)

(fig. 2A). LS and PL measures two proprieties of phyloge-

netic distribution of genes—breadth and depth, which

are related to each other. Lineage-specific genes with high

LS levels necessarily have high PL levels and vice versa. In-
deed, the Spearman’s correlation coefficient between LS

and PL is 0.65, and it is highly significant (P ,, 0.001).

Finally, we identified genes that were present in human,

chimp, and yeast but that varied in their presence and ab-

sence in the ‘‘intermediate’’ lineages between human/chimp

and yeast (fig. 3A). We classified these genes into four

groups according to the number of GLs: (0) genes that have

FIG. 2.—Protein divergence rates (Ka and Ka/KS) as a function of PL. (A) Assignment of original phylostrata (obtained from [Domazet-Loso and

Tautz 2008]) into nine PL groups. (B) Median values of divergence rates (pooled Ka, KS, and Ka/KS derived from the Applera divergence data [Bustamante

et al. 2005]) for nine PL groups. Error bars indicate 95% CIs calculated from the 10,000 bootstrap replications. For individual genes, the Ka and Ka/KS

values vary widely and significantly among different PL groups (v2 5 1177.36 and 1120.65, respectively, degrees of freedom [df] 5 8, P ,, 0.001 in

both cases, KW test). The difference in KS is much less substantial albeit significant among PL groups (v2 5 126.23, df 5 8, P ,, 0.001, KW test). Both

Ka and Ka/KS are positively correlated with PL (Spearman’s q 5 0.215 and 0.206, respectively, P ,, 0.001 in both cases), whereas KS shows much

weaker correlation (Spearman’s q 5 0.064, P 5 1.19 � 10�13).
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never been lost, (1) genes that have been lost once, (2)

twice, and (3) three times or more (fig. 3A). These genes

belong to the same PL group but vary in the propensity

for loss. In such a setting, all human/chimp genes are suc-
cessfully detected in the distantly related species (i.e., yeast),

so it is much less likely that the patterns of presence or ab-

sence of genes among less divergent intermediate species

are due to the failure of detecting genes by Blast.

Note that in every case, we retained only those human

genes that have clear orthologs present in the chimpanzee

genome. In this way, for all genes in the study, the rates of

molecular evolution are estimated through human–chimp
comparison in a consistent and reliable manner.

Higher Rates of Protein Evolution in Lineage-Specific
Genes
We use the nonsynonymous substitution rate (Ka) and the

ratio of nonsynonymous to synonymous substitution rate
(Ka/KS) between the human and chimpanzee orthologs to

measure the rate of protein evolution. Ka and KS values

for the genes in each group (LS, PL, or GL) were calculated

in two ways. First, we calculated Ka and KS values for the

individual genes and estimated the median value within

each group. Second, we concatenated the sequences of

all genes in the same group and calculated pooled Ka

and KS values for each group in this manner. Two ap-

proaches gave essentially identical values. For brevity, we re-
port the results of the pooled Ka and KS, which are based on

the divergence data from the study of Bustamante et al.

(2005), unless stated otherwise.

The Ka and Ka/KS values vary significantly among different

LS, PL, and GL groups (Kruskal–Wallis [KW] test, P� 0.001 in

all cases) (figs. 1B, 2B, and 3B). Ka and Ka/KS are positively

correlated with the LS and PL and negatively with GL values

(Spearman’s r 5 0.503 and 0.507 [LS] and r 5 0.215 and
0.206 [PL] for Ka and KS, respectively, P , 0.001), whereas

Ks shows either no correlation (LS and GL, Spearman’s P .

0.05) or significant but very weak correlation (PL, Spearman’s

q5 0.064, P5 1.19 � 10�13). Given the fact that chimpan-

zees are the most closely related species to humans and di-

vergence between human–chimp ortholog pairs may be

extremely low, it is possible that the low values of Ka and

KS for some genes may just be an artifact of the choice
of species to do the comparison. To eliminate the concern,

we recomputed Ka and KS with human–macaque ortholog

pairs. The sequences of the corresponding macaque

FIG. 3.—Protein divergence rates (Ka and Ka/KS) as a function of number of GL. (A) Phylogenetic profiles of human genes that are present in

human, chimpanzee, and yeast but vary in their presence and absence intermediate species (such as, mouse, cow, and chicken). Same notation is used

as in figure 1. The number of GLs is counted in species between human and yeast. (B) Median values of divergence rates (pooled Ka, KS, and Ka/KS

derived from the Applera divergence data [Bustamante et al. 2005]) for groups of genes whose loss counts are 0, 1, 2, and �3. Error bars indicate 95%

CIs calculated from the 10,000 bootstrap replications. For individual genes, the Ka and Ka/KS values vary marginally significantly among different GL

groups (v2 5 16.04 and 15.85, respectively, degrees of freedom [df] 5 3, P 5 0.001 in both cases, KW test). The difference in KS is not significant

among GL groups (v2 5 0.55, df 5 3, P 5 0.908, KW test). Both Ka and Ka/KS are positively correlated with GL (Spearman’s q 5 0.068 and 0.067,

respectively, P , 0.001 in both cases), whereas KS shows no correlation (Spearman’s q 5 0.001, P 5 0.939).
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orthologs were again obtained from Ensembl database
(Birney et al. 2006; Hubbard et al. 2007). We obtained sim-

ilar result as above (supplementary fig. S2, Supplementary

Material online). These results are consistent with previous

reports in humans or species in other domains (Krylov

et al. 2003; Alba and Castresana 2005; Cai, Woo, et al.

2006).

Robustness to Potential Inability to Detect Fast-
Evolving Genes in Distant Lineages
Inability of Blast to detect orthologs of fast-evolving genes

in distant lineages can in principle contribute to the inverse

relationship between the protein-divergence rate and LS (or

PL) (Elhaik et al. 2006). This problem is unlikely to be severe,

as simulations of the evolution of protein sequences with

the same rates and among-site heterogeneity as those es-

timated from real mammalian protein-coding genes dem-
onstrated that most functional genes could be detected

by Blast in comparisons of even very distantly related

genomes (e.g., fungi or plants vs. mammals) (Alba and

Castresana 2007). The simulated procedure is exactly the

same as the one used for the determination of PL values

and should have as much sensitivity as the one employed

in the LS statistic. Furthermore, the GL statistic, which

measures the rate of GL, should be the least susceptible
to this problem. This is because in the case of GL, proteins

are first detected between the most distant lineages (hu-

mans and yeast) and thus are unlikely to be missed in

the comparisons of more closely related species. Finally,

in our analyses, the strongest signal comes from the com-

parisons of fairly young genes (e.g., high LS groups, fig. 1)

and thus should be more robust to this problem.

We also conducted an additional test. We divided all
genes into two groups: the slower evolving group (Ka �
0.007) and the faster evolving half (Ka . 0.007). The cutoff

Ka 5 0.007 is the 72th percentile of ordered Ka values,

which was chosen to split genes into two groups in such

a way that each group contains enough (.30) genes in each

of 10 LS or 9 PL classes. The positive correlation between Ka/

KS and LS and PL values is evident in both data sets (P ,

0.001 in both cases, fig. 4). This demonstrates that the de-
tected pattern is not due to the unusual behavior of the fast-

est evolving genes, which are the likeliest genes to go

undetected in distant comparisons.

Overall, we believe it is highly unlikely that the problem

of detecting proteins in distantly related lineages is suffi-

ciently severe to invalidate the described analyses. Note

that the slow rate of protein evolution is evident in the

older and more broadly distributed genes independently
of whether we classify genes using the LS, PL, or GL statis-

tics. All the analyses described below can be reproduced us-

ing any of the statistics. In the rest of the manuscript, for

brevity, we only report the results derived using the LS

classification.

Robustness to the Variation in the Levels of Gene
Expression
The level of gene expression is strongly anticorrelated with

the protein divergence rate (Drummond et al. 2006; Pal

et al. 2006). It is therefore important to determine whether

the correlation between Ka or Ka/KS and LS categories is due

to the variation in expression levels of genes of different LS

categories.

We consider three expression-related measures across all
tissues: average expression (aveExp), the maximum expression

(maxExp), and the heterogeneity of expression (hetExp) (see

Materials and Methods). As expected, aveExp is anticorrelated

with Ka/KS (Spearman’s q 5 �0.256, P ,, 0.001) and Ka

(Spearman’s q 5 �0.241, P ,, 0.001). The genes in higher

LS categories have lower levels of expression (Spearman’s q5

�0.230, P ,, 0.001). After controlling for expression level,

the correlations between LS and Ka/KS (or Ka) remain positive
and highly significant [corr(Ka/KS,LSjaveExp) 5 0.238 and

corr(Ka,LSjaveExp)5 0.222, both P,, 0.001, Spearman par-

tial correlation test]. Thus, correlation between LS and the rate

of protein evolution is not entirely driven by lower expression

levels of high LS genes. The other two variables, maxExp and

hetExp, have similar relationships with LS and Ka/KS as aveExp

does, which is not unexpected given the strong correlations

between both maxExp and hetExp with aveExp (Spearman’s
q 5 0.772 and 0.294, respectively [both P ,, 0.001]).

We conducted a linear multiple regression in the forward

stepwise manner to examine the contributions of LS,

aveExp, maxExp, and hetExp on the variation in log(Ka).

The regression model defines log(Ka) as a function of all cor-

responding variables (XLS, XaveE, XmaxE, and XhetE):

LogðKaÞ5 b0 þ bLSXLS þ baveEXaveE

þ bmaxEXmaxE þ bhetEXhetE:

Table 1 gives the result of the modeling procedure. The

final model gives a global R2 of 0.131 (P , 0.001), that is,

more than 13% of the variation in log(Ka) is explained by this

model. During the construction of the final model, two
predictors most highly correlated with log(Ka)—LS and

aveExp—were kept. The remaining variables, which have

minor roles in overall regression, were excluded. The stan-

dardized coefficients were examined to determine the rela-

tive importance of the significant predictors. LS contributes

more to the model than does aveExp, as shown by its larger

absolute standardized coefficient 0.350 and t statistic of

20.712, compared with values of 0.041 and 2.414 for
aveExp. This analysis suggests that LS is the most relevant

predictor of the rate of protein divergence.

Weaker Purifying Selection in Lineage-Specific
Genes
The slower protein evolution of older and more broadly dis-

tributed genes is most likely due to stronger purifying
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selection acting on these genes. Indications for this should

include a lower density of nSNPs and lower frequencies of

derived alleles of these nSNPs. We use human SNP data and

human/chimp divergence to investigate this prediction.
We analyze three SNP data sets: 1) SNPs in genes rese-

quenced by Applera (Bustamante et al. 2005), 2) SNPs in

NCBI dbSNP build 126, and 3) Perlegen SNPs (Hinds et al.

2005). Coding SNPs were split into sSNPs and nSNPs. For

each LS category, we computed A* (the number of nSNP

per nonsynonymous site) and S* (the number of sSNP per

synonymous site) (see Materials and Methods). Figure 5

shows the results derived from all three data sets. None

of the conclusions related to the assessment of the strength

of purifying selection (measured by using the ratio A*/S*)

change qualitatively depending on the investigated SNP

data sets. Below we only describe Applera results.
First, we test whether older genes are subject to stronger

purifying selection in humans. Values of A* and A*/S* cor-

relate strongly and positively with the value of LS (Spear-

man’s q 5 0.881 and 0.874, P , 0.005 and 0.001,

respectively). The values of A*/S* increase almost 2-fold

(0.31–0.57) from the lowest to the highest values of LS

(fig. 5A). In addition, DAFs of SNPs in the genes from the

lower LS groups are skewed toward rare alleles relative to

FIG. 4.—Median Ka/KS as a function of LS and PL for slowly and fast-evolving genes. (A) Median Ka/KS for ten LS groups; (B) Median Ka/KS for nine

PL groups. Genes are grouped into the slowly (Ka � 0.007) and fast (Ka . 0.007)-evolving ones.

Table 1

Result of the Linear Regression to Model the Value of log(Ka) Based on Its Relationship to LS and Gene Expression

Included

variables

Overall Contribution

of Variable (R2)a

Incremental

Contribution

of Variable (DR2)

Order of

Entryb

Unstandardized

coefficient (B) 6

standard error

Standardized

Coefficient (b) tc P

Constant — — �5.929 ± 0.097 — �61.293 ,0.0001

LS 0.129 0.129 1 0.132 ± 0.006 0.350 20.712 ,0.0001

aveExp 0.006 0.002 2 �0.301 ± 0.125 �0.041 �2.414 0.016

Excluded variables

hetExp 0.005 3 �0.015 �0.858 .0.1

maxExp 0.006 4 �0.008 �0.306 .0.1

a R2 is the proportion of variation in the dependent variable (log(Ka)) explained by the regression model constructed from the individual variable, indicating the independent

contribution of each variable to explain the global variance of log(Ka).
b

Order of variables entered into the model at each step.
c

The t statistic indicates the relative importance of each variable in the model.
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that of higher LS genes (fig. 6). Specifically, the proportion of

rare nSNPs (DAF , 0.15) is negatively correlated with LS val-
ues (Spearman’s q 5 �0.794, P , 0.01), whereas, in con-

trast, the proportion of rare sSNPs are not correlated with

the LS values (P5 0.45, fig. 6). The proportion of rare nSNPs

is significantly greater than the proportion of rare sSNPs for

the LS groups 1 through 5 (P, 0.01 for all tests, G-test with

Bonferroni correction) but not for the LS groups 6 through

10 (P. 0.05 for all tests, G-test). We also tried different DAF

cutoffs (0.05, 0.1, and 0.2) as well as investigated the pat-
tern derived from minor allele frequencies (MAFs). Regard-

less of the different cutoffs of DAF and the use of derived or

MAF, results are similar (supplementary figs. S4 and S5,

Supplementary Material online). Thus, compared with youn-

ger genes, older genes contain fewer nSNPs per site, and the

frequencies of derived or minor alleles of these SNPs are
lower. These results indicate that younger genes are subject

to weaker purifying selection at the protein-coding level.

Robustness Tests for Polymorphism Patterns
We conducted several tests to demonstrate that the rela-

tionship between the proportion of A*/S* and LS cannot

be explained entirely by a number of confounding factors.

Specifically, we demonstrated that stronger purifying selec-

tion acting on older genes can be detected within subsets of
the data defined by 1) whether a gene belongs to a particular

functional (GO) gene group (supplementary table S1, Sup-

plementary Material online), 2) whether a gene has

FIG. 5.—Polymorphism rates (A*, S*, and A*/S*) as a function of LS. Results are derived from three data sets. (A) Applera SNPs (Bustamante et al.

2005). Spearman’s q 5 0.964 and 0.952 (both P , 0.001), for the correlation of LS levels with A* and A*/S*, respectively. (B) Validated SNPs in dbSNP

126. Spearman’s q5 0.803 and 0.891 (P, 0.001 and 0.005), for the correlation of LS values with A* and A*/S*, respectively. (C ) Perlegen SNPs (Hinds

et al. 2005). Spearman’s q 5 0.952 and 0.830 (P , 0.001 and P 5 0.006), for the correlation of LS values with A* and A*/S*, respectively. Error bars

indicate 95% CIs calculated from the 10,000 bootstrap replications.
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a duplicate elsewhere in the human genome (supplemen-
tary table S2, Supplementary Material online), 3) whether

SNPs are due to C to T transitions at CpG sites (supplemen-

tary table S3, Supplementary Material online), and 4)

whether a gene resides in a genomic region of high or

low GC content (supplementary table S4, Supplementary

Material online) (for details, see Materials and Methods).

The correlation between A*/S* and LS is unlikely due to dif-

ferent LS groups containing peculiar assemblages of genes
defined by function, presence of a duplicate, number of

CpG sites, or GC content.

We also verified that variation in levels of purifying selec-

tion in genes of different LS categories is not due to the

variation in the level of gene expression, although A*/S*

is strongly influenced by the expression pattern and breadth

(Osada 2007). The partial correlation between A*/S* and LS

is positive and significant after controlling for the different
average expression levels of genes in different LS categories

(i.e., corr(A*/S*,LSjaveExp) 5 0.830, P , 0.001, partial

Spearman correlation test with Applera data).

Rate of Adaptive Evolution in Lineage-Specific
Genes
The restricted phylogenetic distribution of young genes im-

plies that many of them are probably involved in lineage-

specific adaptive processes. So, in addition to experiencing
weaker purifying selection, young genes might be expected

to experience higher rates of positive selection. To test this

conjecture, we first used the method of Eyre-Walker and

Keightley (2009) implemented in DoFE v2.1 to estimate

xA for each LS categories. The method of Eyre-Walker

and Keightley (2009) attempts to correct for to the problem

existing in previous methods (e.g., those of Fay et al. [2001];

Smith and Eyre-Walker [2002]; Welch [2006]) that may give
downwardly biased estimation if there are slightly deleteri-

ous mutations that inflate polymorphism relative to diver-

gence (Crow and Kimura 1970; McDonald and Kreitman

1991; Eyre-Walker and Keightley 1999; Eyre-Walker
2002; Eyre-Walker et al. 2002). This method also estimates

the DFEs of new deleterious mutations from the polymor-

phisms data and then uses the inferred DFE to predict

the numbers of substitutions originating from neutral and

slightly deleterious mutations between two species.

Using Applera polymorphism data and average allele

frequencies across all African American and European

American individuals, we estimated values of xA for ten
LS categories, 0.0397, 0.0756, �0.0485, 0.0093, 0.0833,

�0.0471, �0.031, 0.0155, �0.0756, and 0.1372. Because

xA values and the LS values do not correlated with each

other (P 5 0.865, Spearman correlation test), these results

provide no evidence that young genes experience a higher

rate of adaptive nucleotide substitutions.

The DFEs of new neutral and deleterious mutations are

simultaneously inferred by DoFE. We compared the esti-
mated fractions of mutations in different Nes ranges among

LS categories (fig. 7). There is a wide range of fractions of

amino acid-changing mutations that behave as effectively

neutral (0 , Nes , 1) among LS categories, ranging from

15.7% for LS 2 to 52.3% for LS 9. The fraction of effec-

tively neutral mutations is correlated with LS significantly

(Kendall’s s 5 0.73, P , 0.005), that is, the younger the

genes the more effectively neutral mutations they have pro-
portionally. The combined fractions of mutations with Nes
ranges 1–10 and 10–100 are for slightly deleterious muta-

tions. The fraction is negatively correlated with LS (r 5 �
0.76, P 5 0.017, Pearson correlation test after excluding

outlier data point at LS 5) (fig. 7 and supplementary fig.

S6, Supplementary Material online). This is consistent with

previous results that old genes have proportionally more

slightly deleterious mutations.
We also use the MKPRF analysis (Sawyer and Hartl 1992;

Bustamante et al. 2002, 2005) to assess the proportion of

genes showing evidence of positive selection in each LS cat-

egories. First, we ran MKPRF with a nonhierarchical model

FIG. 6.—Portions of SNPs with low-frequency derived allele (DAF , 0.15) in genes of ten LS groups. Results derived from Applera data for both

nSNPs and sSNPs are shown here.
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and a SD (r 5 8) of Gaussian prior, using exactly the same

settings as in Bustamante et al. (2005). For each gene, we

estimated the value of population-effective selection coeffi-

cient, c (52Nes, where Ne is the effective population size and

s is the selection coefficient in a Wright–Fisher genic selection

model). The values of c vary significantly among genes of dif-

ferent LS groups (P, 0.001, KW test) and are positively cor-

related with LS values (Spearman’s q 5 0.706, P , 0.001).
We also obtained the 95% CIs of c. If a gene has its 95%

CIs of c completely above 0, the gene appears to have been

evolving under positive selection. On the other hand, if the

95% CIs of c are completely below 0, the gene appears to be

under negative selection and have a high proportion of

weakly deleterious nonsynonymous polymorphisms. We

found that the proportion of positively selected genes

(fc.0) increases with the increment of LS values (Spearman’s
q 5 0.927, P , 0.001; Kendall’s s 5 0.778, P , 0.001)

(fig. 8A, left panel), and the proportion of negatively selected

genes (fc,0) decreases with the increment of LS

values (Spearman’s q 5 �0.924, P , 0.001; Kendall’s

s 5 �0.778, P , 0.001) (fig. 8A, right panel). We also cal-

culated the ratios of the numbers of positively selected and

negatively selected genes to the numbers of neutrally evolv-

ing genes (�f c.0 and �f c,0, respectively). Similar to fc.0 and
fc,0, �f c.0 correlates positively with the LS values (Spearman’s

q 5 0.927; P , 0.001; Kendall’s s 5 �0.778, P , 0.001)

(fig. 8A, left panel), and �f c,0 correlates negatively with

the LS values (Spearman’s q 5 �0.915; Kendall’s

s 5 �0.778, P , 0.001) (fig. 8A, right panel). Note that,

as in Bustamante et al. (2005), we focused our analysis only

on the potentially informative loci that contain enough poly-

morphism and/or divergence events to have a chance of

showing signals of selection. Specifically, we included infor-

mative loci with Pn þ Dn � 2 (Bustamante et al. 2005). We

also carried out MKPRF analysis in two ways: either analyzing

all genes together or analyzing genes from each LS group

separately. The results remain virtually unchanged. Therefore,

MKPRF analysis with full Applera SNPs suggested that youn-

ger genes experience a higher rate of adaptive evolution.

Slightly deleterious SNPs lead to an underestimation of
the rate of adaptive evolution because they make a substan-

tial contribution to polymorphism but fix at a much lower

rate compared with neutral polymorphisms (Crow and

Kimura 1970; Eyre-Walker and Keightley 1999; Eyre-Walker

2002; Eyre-Walker et al. 2002). From allele frequency anal-

ysis of nSNPs and the MKPRF analysis, we know that genes

from lower LS groups have more slightly deleterious poly-

morphisms on average. This is indicated both by the higher
proportion of rare nSNPs (fig. 6) and by the higher propor-

tion of genes for which the MKPRF estimate of c is negative

for the low LS genes. Unlike the DoFE method of Eyre-

Walker and Keightley (2009), in which the effect of slightly

deleterious mutations are attempted to be controlled,

MKPRF analysis per se does not control for this effect. Thus,

the finding of a smaller proportion of genes experiencing

positive selection in low LS group genes might be an artifact
of the larger proportion of slightly deleterious polymor-

phisms in these genes.

We try to rule out this possibility using two approaches: 1)

removing SNPs of low frequencies (Fay et al. 2001) prior to

the analysis and 2) subsampling nSNPs to ensure that nSNPs

in different LS groups have same frequency distribution and

thus have the same bias (see Materials and Methods). The

first procedure attempts to limit the effect of slightly

FIG. 7.—Fractions of mutations in Nes range for genes in different LS classes.
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deleterious SNPs by focusing on more frequent SNPs under

the assumption that slightly deleterious SNPs are unlikely to

reach intermediate frequencies (Fay et al. 2001). After re-

moving the SNPs at less than 15% frequency and rerunning

the MKPRF procedure, the positive correlation between LS

and portion of genes under positive selection remains virtu-

ally unchanged (fig. 8B, Spearman corr(LS, fc.0) 5 0.93, P,
0.0001, and corr(LS, �f c.0) 5 0.94, P, 0.0001). The second,

FIG. 8.—Portions of genes under positive selection and negative selection as a function of LS level. A gene is considered to be under positive (or

negative) selection if the mean posterior probability of c is positive (or negative) and the 95% Bayesian credibility intervals do not overlap 0. The value of

c is estimated using MKPRF method with nonhierarchical model and a single Gaussian prior of c with a mean of 0 and the SD of 8 (see Materials and

Methods). Each row contains two panels: Left panel shows fc.0 (red bars) and �f c.0 (gray bars), fractions of genes with 95% CI of c completely above

0 and right panel shows fc,0 (red bars) and �f c,0 (gray bars), fractions of genes with 95% CI of c completely below 0. The MKPRF analysis was run with

the nonhierarchical model and a SD (r 5 8) of Gaussian prior of c, replicating the settings used by Bustamante et al. (2005). The results were derived

from (A) all Applera SNPs (Spearman corr(LS, fc.0) 5 0.88, P 5 0.0007; corr(LS, �f c.0) 5 0.89, P 5 0.001; and corr(LS, fc,0) 5 �0.91, P 5 0.0005;

corr(LS, �f c,0) 5 �0.92, P 5 0.005). (B) Applera SNPs with DAF � 0.15 (Spearman corr(LS, fc.0) 5 0.93, P , 0.0001; corr(LS, �f c.0) 5 0.94, P , 0.0001;

and corr(LS, fc,0) 5 �0.66, P 5 0.04; corr(LS, �f c,0) 5 �0.85, P 5 0.004). (C) Applera SNPs subsampled to ensure an equal portion of slightly

deleterious polymorphism in all LS groups (Spearman corr(LS, fc.0) 5 0.94, P , 0.0001; corr(LS, �f c.0) 5 0.95, P , 0.0001; and corr(LS, fc,0) 5 0.56,

P 5 0.09; corr(LS, �f c,0) 5 0.37, P 5 0.30).

Relaxed Purifying Selection in Lineage-Specific Genes GBE

Genome Biol. Evol. 2:393–409. doi:10.1093/gbe/evq019 Advance Access publication May 7, 2010 405



subsampling procedure attempts to subsample the nSNPs
such that the DFE of all of them is similar and is affected

by the slightly deleterious SNPs both as little as possible,

but more importantly, to the same extent across all the

LS groups. We subsampled the nSNPs in all groups using

the distribution in the LS 10 group. After subsampling, all

LS groups have indistinguishably similar proportions of

slightly deleterious polymorphisms (P ; 1, v2 test, supple-

mentary fig. S1, Supplementary Material online). Note also
that the proportions of rare SNPs are not different in the syn-

onymous and nonsynonymous classes in the LS 10 group

genes (P 5 0.517, G-test) suggesting that the proportion

of the slightly deleterious nSNPs in the LS 10 group genes

is negligible. Therefore, subsampling should sharply reduce

the influence of slightly deleterious nSNPs on the analysis

overall. The proportion of genes containing a detectable

number of slightly deleterious nSNPs no longer decreases
with the increment of LS when MKPRF is carried out with

the subsampled SNPs (fig. 8C). Importantly, the proportion

of genes under positive selection remains higher in the high-

er LS groups (fig. 8C, Spearman corr(LS, fc.0) 5 0.94, P ,

0.0001, and corr(LS, �f c.0) 5 0.95, P , 0.0001).

Results of the MKPRF analysis might change depending

on the prior and the model used in the analysis (Li et al.

2008). To explore these effects, we reran the MKPRF analysis
using the nonhierarchical model with three additional r val-

ues (1, 4, and 16). We found that although the absolute val-

ues of portion of genes in each age groups change, the

positive correlation between LS and fc.0 (or �f c.0) remains,

especially in the cases of high r values (e.g., r5 16, Spear-

man corr(LS, fc.0) 5 0.93, P5 0.0001, and corr(LS, �f c.0) 5

0.88, P 5 0.008) (supplementary fig. S7, Supplementary

Material online). We also ran MKPRF analysis using the hi-
erarchical model (see Materials and Methods). The positive

correlation between LS and fc.0 (or �f c.0) is weaker in this

case but remains significant after removing rare frequent

SNPs (P 5 0.004, Spearman correlation test) and after

the subsampling (P 5 0.003, Spearman correlation test)

(supplementary fig. S8, Supplementary Material online).

Overall, the MKPRF results do suggest that younger genes

tend to experience positive selection more frequently, al-
though to a modest degree. The faster evolution of younger

genes appears to be attributable almost entirely to the

weaker purifying selection acting on these genes.

Discussion

Genes in the human genome vary in their evolutionary age.

A considerable proportion of human genes (e.g., ;10%,
even only considering ‘‘strict orthologs’’ with unambiguous

one-to-one relationships [Berglund et al. 2008]) can be de-

tected in the yeast genome, implying that they originated

before the common ancestor of human and yeast diverged

more than 1.5 billion years ago. On the other hand, human

genome contains a small fraction of genes found in only one
or a few closely related species, such as, mammals- or pri-

mates-specific genes (e.g., morpheus [Johnson et al. 2001]

and SPANX [Kouprina et al. 2004]). Recent bioinformatics

analysis revealed 270 primate-specific and 364 mammal-

specific genes; some of them may have originated de novo

(Toll-Riera et al. 2009; Toll-Riera, Castelo, et al. 2009). In-

deed, there is increasing experimental evidence for emer-

gence of new genes from noncoding mammalian
genomic regions (Heinen et al. 2009; Knowles and McLy-

saght 2009).

We have classified human/chimp genes based on the

breadth and the depth of their phylogenetic distributions

in 11 eukaryotic genomes using three related but distinct

metrics that quantify the breadth (LS), the depth (PL), and

the rate of GL (Krylov et al. 2003; Alba and Castresana

2005; Cai, Woo, et al. 2006). We confirmed that younger
and less broadly distributed proteins evolved at distinctly

higher divergence rates than older and broadly distributed

genes (Domazet-Loso and Tautz 2003; Daubin and Ochman

2004; Alba and Castresana 2005; Wang et al. 2005; Cai,

Woo, et al. 2006; Kuo and Kissinger 2008). This pattern

is very pronounced: for instance, the correlation coefficient

between one of the measures of the phylogenetic breadth

and depth (LS) and the rate of protein evolution between
humans and chimps (Ka or Ka/KS) is higher than 0.5. Another

illustration of the strength of this signal is that human/chimp

genes that cannot be detected in the mouse genome and

beyond have been evolving approximately 4 times faster be-

tween humans and chimps than the human/chimp genes

whose presence can be detected all the way to yeast. In ad-

dition, this effect is robust to the variation in levels of gene

expression, existence of paralogs, relative abundance of
CpG sites, GC content of genomic regions, and classes of

gene functions (i.e., GO annotations). The age of a gene

or the breadth of its phylogenetic distribution is thus one

of the best predictors of its rate of evolution (Alba and

Castresana 2005; Cai, Woo, et al. 2006).

The fast evolution of genes that have a restricted phylo-

genetic distribution raises a possibility that even old and

broadly distributed but fast-evolving genes might be mis-
classified as young and lineage specific due to our inability

to detect their orthologs in distant species (Elhaik et al.

2006). Fortunately, this entirely reasonable concern appears

not to generate severe ascertainment problems in practice.

Alba and Castresana (2007) simulated the evolution of pro-

tein genes using the same overall evolutionary rates and the

same among-site rate heterogeneity as observed in mam-

malian genes. They found that Blast could detect practically
all genes in this analysis all the way to the level of divergence

between yeast and mammals. This is probably because even

fast-evolving proteins tend to contain some conserved seg-

ments. These conserved segments, even if they are fairly

short, can still be detected by the local alignment algorithm
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of Blast. One of our phylogenetic measures, PL, exclusively
dependents on Blast to determine gene age and should be

reliable based on the simulations of Alba and Castresana

(2007). One of the other measures, LS, should be at least

as sensitive as PL and thus should not be affected severely

either. We provided two additional lines of evidence that our

results are not artifactual. First, we split the genes into two

groups based on their rate of evolution between humans

and chimps. We were able to detect faster evolution of
younger and more narrowly distributed genes within each

group and most importantly within the group of slowly

evolving genes. The second line of evidence is based on

the use of the number of GL measure. This measure classifies

genes based on the detected number of losses in the phy-

logeny for genes that can be detected in the most distant

taxa, in our case human/chimp and yeast. In the case of

GL, all human/chimp genes can be detected in yeast making
it very unlikely that the apparent absence of these genes in

much closer related lineages was due to the failure of

detection and not due to their true absence.

The faster protein evolution of younger or more narrowly

distributed genes must be due to changes in the way natural

selection operates on mutations in these genes. It is not due

to the difference of mutation rates because the patterns of

evolution at synonymous sites in younger genes are indistin-
guishable from those in older genes. In addition, these pat-

terns are robust to the variation in GC content across the

human/chimp genomes, which in principle could generate

spurious signals. But what are these changes in the natural

selection? There are two nonmutually exclusive possibilities:

1) younger genes can be subject to weaker selective con-

straint (weaker purifying selection) and/or 2) younger genes

are subject to positive selection more frequently.
We have used genome-wide SNP data in humans and the

divergence data between human and chimp to demonstrate

that at least the first possibility is true. Younger and less

broadly distributed genes are subject to substantially less se-

lective constraint. The weaker constraint is evident in the

higher density and higher population frequencies of nSNPs

in younger genes. In fact, nSNPs in the youngest genes

segregate at the same frequencies as sSNPs, whereas the
frequency of nSNPs is substantially reduced in the older

genes. These results are robust to the use of any of the three

SNP data sets that we used, namely Applera, dbSNP, and

Perlegen data sets. In addition, we observed the clear anti-

correlation between the fraction of nearly neutral mutations

and gene age, that is, the younger genes are, the higher pro-

portion of new mutations in genes are nearly neutral. The

pattern is strong as the increase of the proportions from
old genes to youngest genes can be as high as 4-fold (see

Results). One reason for the weaker selective constraint in

younger and less broadly distributed genes is that these

genes might be less functionally important or at least less

consistently important than older and more broadly distrib-

uted genes. Consider a gene that can be found in the ge-
nomes of yeast and humans and in every taxon in

between. It is clear that such a gene is not only old but also

has a very low probability of loss due to inactivating muta-

tions. This implies that inactivating mutations in such genes

are consistently strongly deleterious most likely because such

genes perform important or even essential functions. In such

genes, as surmised by Wilson et al. (1977), even subtle amino

acid mutations would tend to lead to sufficiently strong del-
eterious effects to be noticed by natural selection. In con-

trast, a substantial proportion of younger genes and

especially genes with patchy phylogenetic distributions either

have been lost in some lineages or at least we have no ev-

idence that they cannot be lost. Indeed, given that genes are

formed all the time by a variety of mechanisms while the

number of genes within genomes do not continuously in-

crease, we can surmise that a substantial proportion of youn-
ger genes are destined to be lost over relatively short periods

of time (see also Wolf et al. 2009). This means that for many

of the younger genes even null mutations are not always

strongly deleterious. It is not surprising then that such genes

show weaker selective constraint against more subtle amino

acid-changing mutations. We emphasize that the gene age

effect should be taken as a prior in studying the fitness effect

of mutations of genes. Our analysis has been restricted to
human genes; however, the patterns we found should be

applicable to other species, especially, given that a general

birth-and-death model has been found applicable to genes

in multiple lineages (Wolf et al. 2009).

We used two approaches (DoFE [Eyre-Walker and

Keightley 2009] and MKPRF [Sawyer and Hartl 1992;

Bustamante et al. 2002, 2005]) to test the second possibility,

namely that younger genes experience a higher rate of pos-
itive selection. Using DoFE, we estimated xA for each LS

class of genes. We detected no correlation between LS

and corresponding xA for genes in LS classes, providing

no evidence of higher prevalence positive selection in youn-

ger genes. However, using MKPRF, we did find some

evidence that there were proportionally more genes show-

ing signs of positive selection (c. 0) in younger age classes.

The proportion of genes with a positive c goes from;1–2%
in the oldest genes to ;6–12% in the more lineage-specific

genes (LS groups 7 through 10). Because this result can be

biased by the higher prevalence of slightly deleterious nSNPs

in the older genes, we reran the analysis either after elim-

inating rare (,15%) SNPs (Fay et al. 2001) or after subsam-

pling nSNPs in different LS categories to match that in the

youngest and the least biased gene category. Furthermore,

MKPRF results might be affected by the choice of a different
prior and the use of different models (hierarchical vs. non-

hierarchical) (Li et al. 2008). In all these additional analyses,

MKPRF results continue to suggest that a higher proportion

of younger genes exhibit signs of positive selection. The in-

consistent results produced by two methods emphasize that
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the evidence for higher rate of adaptive evolution among
younger genes is tentative. Among other things, the diffi-

culty of detecting the difference could be due to a weak ge-

nome-wide signal of positive selection associated with

human protein-coding genes in general.

Nevertheless the higher rate of adaptation in the young

genes might be consistent with the ideas that lineage-

specific genes may drive morphological specification, en-

abling organisms to adapt to changing conditions (Khalturin
et al. 2009) and also with the observation that young genes

tend to be less functionally important. Fisher’s geometric

models of adaptation predicts that small phenotypic

changes should have a higher probability of being advanta-

geous (Fisher 1939) (but see [Kimura 1983; Orr 2002]). If

mutations in younger genes tend to have more subtle phe-

notypic effects, then such effects would be both less likely to

be deleterious and more likely to be adaptive. In this way,
older, indispensable proteins would form the conserved, an-

cient, unchanging core of functionality of the cell and the

organism, whereas the newly added and patchily distributed

genes would not only contribute to genic and functional

diversity among lineages directly but also disproportionately

underlie their continuous adaptation to environmental

changes. Furthermore, if adaptation preferentially takes

place in young and lineage-specific genes while deleterious
mutations preferentially land in ancient and shared genes,

then the ways organisms fail would bear more resemblance

with each other than the ways in which they adapt. The case

in point is that most human genes with known disease-

causing mutations do tend to be old (Domazet-Loso and

Tautz 2008; Cai et al. 2009). This is good news for the in-

vestigation of human disease through the investigation of

even distantly related animal models.

Supplementary Material

Supplementary figures S1–S8 and tables S1–S4 are available

at Genome Biology and Evolution online (http://www
.oxfordjournals.org/our_journals/gbe/).
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