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Abstract: The use of viruses for tumour treatment has been imagined more than one hundred years
ago, when it was reported that viral diseases were occasionally leading to a decrease in neoplastic
lesions. Oncolytic viruses (OVs) seem to have a specific tropism for tumour cells. Previously,
it was hypothesised that OVs’ antineoplastic actions were mainly due to their ability to contaminate,
proliferate and destroy tumour cells and the immediate destructive effect on cells was believed to be
the single mechanism of action of OVs’ action. Instead, it has been established that oncolytic viruses
operate via a multiplicity of systems, including mutation of tumour milieu and a composite change
of the activity of immune effectors. Oncolytic viruses redesign the tumour environment towards an
antitumour milieu. The aim of our work is to evaluate the findings present in the literature about the
use of OVs in the cure of haematological neoplastic pathologies such as multiple myeloma, acute and
chronic myeloid leukaemia, and lymphoproliferative diseases. Further experimentations are essential
to recognize the most efficient virus or treatment combinations for specific haematological diseases,
and the combinations able to induce the strongest immune response.
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1. Introduction

1.1. General Considerations on Oncolytic Viruses

The use of viruses for tumour treatment has been imagined in the early years of the last century,
when it was reported that virus-related diseases were occasionally leading to a decrease in neoplastic
lesions, increasing patients’ survival [1].

Since then, an enormous number of oncolytic viruses (OVs) has been used and several viruses
have been examined for tumour treatment [2].

Oncolytic viruses seem to have a specific tropism for tumour cells. In fact, in non-tumour cells
viral infection causes the liberation of local interferons (IFNs), generated ensuing the identification of
virus components (DNA, RNA, or proteins) by specific intracellular receptors. IFN and correlated
cytokines are extensively involved in the stimulation of the acquired immune system and the beginning
of programmed cell death, causing inhibition of tumour cells growth. This activation provokes the
stimulation of several genes which raise the reduction of the viral load. Viral components also stimulate
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toll-like receptors (TLR) that themselves provoke antiviral reaction through the stimulation of host cell
agents as retinoic acid-inducible gene that influence the rise of IFNs. Moreover, other viral components
stimulate the synthesis of other substances such as protein kinase R which hinder protein production
and impede viral proliferation. Instead, tumour cells show several genetic modifications that viruses
can use for proliferation while an alteration is habitually detected in neoplastic cells’ reaction to
IFN [3–5].

In the past, these findings were not adequate to start a new type of cancer therapy, due to serious
collateral effects and to the absence of knowhows for genetic mutations. In fact, cell selectivity is an
intrinsic characteristic of specific viruses, such as reovirus and parvoviruses [6], while for different
viruses, such as herpes simplex virus, this characteristic can be genetically obtained [7–9].

1.2. Families of Oncolytic Viruses

Mathematical models proposed that the perfect OV should have prompt but tumour-specific
spread and hold immune escaping tactics [10].

Several families of viruses have been used in the quest for successful vectors or effectors in
antitumour treatment. In fact, each of the viruses used has specific traits which can be utilized to
enhance oncolytic effectiveness or decrease the side effects of this particular therapeutic approach.

Here are some of the viruses used in the experiments listed below.
There are several features of the adenovirus (Ad) which make it an advantageous viral carrier.

Primarily, the genetic material of the virus is constant, and has a great replicating ability. Ads retain a
high in vivo transduction effectiveness and collateral effects are very slight with respect to conventional
drug treatments and immunotherapies. Although Ad’s receptor is not present in several tumour cells,
the fibre/knob domain of the capsid can be altered to readdress Ad connecting to several receptors
present on the cell surface [11–13]. Moreover, Ad is a nonenveloped virus with a proliferation cycle
concluding in destruction of cells of the host organism. This destructive proliferation activity is
advantageous for oncolysis [14] with respect to enveloped viruses which conclude proliferation by
growing from vital, undamaged host cells.

The influenza virus is a little virus of the Orthomyxoviridae family, known for provoking the
influenza [15]. It includes four types, influenza A, B, C, and D viruses [16]. Although the influenza virus
can cause durable stimulation of the immune system in humans, it never leads to chronic pathology
and mitigated shapes have been reported [17,18].

Myxoma virus (MYXV) is substantially confined to European rabbits, and it is not harmful for
other animals, including humans. Notwithstanding its host specificity, it has been demonstrated that
MYXV is able to infect and carry out a multiplicity of human tumour cells while saving non cancer
cells, including hematopoietic stem cells [19].

The Vesicular Stomatitis Virus (VSV) is an enveloped RNA virus belonging to the Rhabdvovirus
family that has been used as a lytic element to treat human tumours. VSV is extremely appealing for
virotherapy as its specific tropism allows contamination of a large multiplicity of tumour cells, and its
quick proliferation cycle gives a powerful oncolytic strength [20]. Moreover, proliferation of VSV is
restricted to tumour cells as these cells generally show alterations in nonspecific immunity components
during neoplastic occurrence. In the case of VSV, an inefficient IFN response causing a decreased
stimulation of IFN-inducible genes represents the key factor in cell selectivity. Moreover, tumour
cells with alterations different signalling pathways such as Ras or Myc or tumour suppressor p53
were observed to be vulnerable to VSV-caused cell destruction [21]. Additionally, tumour-exclusive
modifications concerning the cofactor eIF2B have been reported to allow efficient proliferation in
tumour cells [22–24]. The matrix protein of VSV (VSV-M) is involved in dislocating the cytoskeleton
and damages antigen recognition [25]. To elude the strategies implemented by host cells to defend
themselves from viral infection, VSV inhibits the synthesis of proteins in several aspects. VSV-M
blocks RNA polymerases I–III and inhibits the transfer from the nucleus to the cytoplasm of host cell
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mRNAs by interface with export proteins such as Rae1 and Nup98 [26–32]. Furthermore, the action on
translation initiation component, eIF4E, prevents the translation of host mRNAs [33].

Reovirus is a RNA virus that is found in the gastrointestinal and upper respiratory tract. Clinically,
this virus is not believed to be significant as infections are usually asymptomatic.

Measles virus (MV) has been documented to target several tumour types. Chen et al. reported
that local administration of MV augments antitumour effect of adoptive CD8+NKG2D+ cells in hepatic
carcinoma. They also clarified the mechanisms underlying the increased innate immune stimulation
and the possible improvement of viro-immunotherapy [34].

In a study, Wang et al. employed an oncolytic measles virus encoding interleukin 12 (IL-12) to
treat colon cancer in vivo and ex vivo to evaluate its actions on the survival and apoptosis of colon
cancer cells. A rat model was created to study the immunostimulatory activities and therapeutic
effectiveness of vectors encoding an IL-12 fusion protein (MeVac FmIL-12 vectors). MeVac FmIL-12
increased the therapeutic efficiency of tumor therapy [35].

Human cytomegalovirus (HCMV) is a ubiquitous opportunistic species-specific herpesvirus
that infects a great part of the population worldwide. Even though HCMV infection often provokes
an asymptomatic infection in healthy subjects, it causes significant mortality and morbidity in
immunosuppressed subjects [36]. Preliminary findings sustain the employ of CMV in viral oncolytic
treatment a viable option [37].

Coxsackievirus is a component of the family Picornaviridae, genus Enterovirus. Coxsackievirus,
has entered into clinical trials and their effectiveness and security have been reported with minor side
effects. Finding reported from numerous clinical trials in subjects with tumors have been reported
in detail. Some preclinical experimentations of these oncolytic viruses have confirmed encouraging
results, principally when administered in combination with chemotherapeutic drugs [38].

Newcastle disease virus (NDV) is an RNA virus belonging to the Paramyxoviridae family.
In nature, NDV mainly infects animals, but causes no threat to human health. Preclinical and clinical
reports have established that NDV has oncolytic capacities and can powerfully activate antitumor
immune responses. NDV selectively infects, and lyses tumor cells by exploiting defective antiviral
defenses in cancer cells. Inflammation within the tumor microenvironment in response to NDV leads
to the recruitment of innate and adaptive immune effector cells, presentation of tumor antigens, and
induction of immune checkpoints [39].

Finally, mumps virus is an enveloped, non-segmented, negative-sense, single stranded RNA virus
that has a spherical or a pleiomorphic shape of ~200 nm. Mumps virus is responsible for an acute viral
infection, spread by respiratory droplets [40]. Recently, recombinant Mumps virus was shown to have
oncolytic activity and may act a cancer therapeutic agent [41].

2. Antitumoral Action of Oncolytic Viruses

Previously, it was hypothesised that OVs’ antineoplastic action was mainly owed to their ability
to contaminate, proliferate and destroy tumour cells and the immediate destructive effect was believed
to be the unique action of OVs. It is now recognized that OVs operate via a multiplicity of effects,
including mutation of the tumour milieu and a composite change of the action of immune effectors
(Figure 1). OVs redesigns the pro-tumour milieu to an inflammatory and antitumor milieu by affecting
tumour correlated cells such as fibroblasts, macrophages, endothelial cells, and neutrophils [42].

Discharged tumoral antigens activate non-infected neoplastic cells’ immune lysis, boosting
its curative action. Moreover, it has been reported that OVs stimulates peril indicators and
immune-mediated cell death mechanisms, activating the activity of immune effectors versus tumour
cells [43]. For this reason, OVs are recognized as immunotherapeutic factors.

However, OVs’ mechanism of action is more complex, and a central function is carried out by
oxidative stress, the importance of which in the genesis of treatment of oncological diseases in general
and of onco-haematological pathologies in particular is well known [44–49].
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Figure 1. Some mechanisms of action of Oncolytic viruses. 
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Figure 1. Some mechanisms of action of Oncolytic viruses.

Influenza A virus cause the production of radical oxidative species (ROS). Cells detect ROS via
Kelch-like ECH-associated protein 1 (KEAP1) which provokes an effect reliant on dosage. At small
percentages of ROS the transcription factor nuclear factor erythroid 2-related factor 2 (NRF2) is
stimulated by KEAP1 and supports cell survival. Moreover, KEAP1 connects to the mitochondrial
phosphatase PGAM5 and deactivates it. At higher percentages, KEAP1 disconnects from the
phosphatase, causing the initiation of oxeiptosis, a type of programmed cell death independent
from caspases [50].

Furthermore, the contact of cells to viruses generates structural modifications of the endoplasmic
reticulum (ER), causing the liberation of molecules called damage associate molecular pattern (DAMPs)
and starting a protective immunologic activity against the tumour [51]. DAMPs involve and stimulate
immune cells with presentation of new antigens to T lymphocytes to eradicate tumours. Antigen
presenting cells (APCs), such as dendritic cells (DCs), stimulate the delivery of α and β IFNs modulating
macrophages to a different phenotype (M1-phenotype) and stimulating the production of IL-1 α and
tumour necrosis factor-α (TNF-α). Factors discharged by stimulated DCs contribute to the stimulation
of natural killer (NK) cells to eliminate tumour elements via necroptosis [52–54]. A recent article
involves necroptosis signalling through Receptor Interacting Protein Kinase 3 (RIPK3) in provoking
powerful anti-tumour immune responses separate from the phenotype provoked by DAMP discharge
and mixed lineage kinase domain-like pseudokinase release [55]. Influenza A virus presence can
be detected by the host via Z-DNA binding protein 1(ZBP1). This can cause cellular death through
necroptosis or programmed cell death [56]. Contrariwise, the cellular inhibitor of apoptosis protein 2
(cIAP2) has been demonstrated to defend against necroptosis caused by influenza A virus [57].

Other possible mechanisms include the regulation of proliferation by transcriptional aiming or
substitution of viral promoters with tumour promoters [58].

In any case, genetic alteration and the resulting decrease in toxicity and the increase in effectiveness
is closely correlated to the type of virus used. For instance, to enhance the therapeutic efficacy of
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conditionally proliferating Adenoviruses (CRAds), two main techniques are presently being used.
It is possible to create chimeric vectors, where the entire fibre or the knob portion is replaced with
that of a different type of Ad, causing a reduced liver damage ascribed to minor hepatic tropism,
and augmented infection of the cancer cells by coxsackie adenovirus receptor (CAR)-independent
transduction [59–61].

A diverse approach is based on the addition of beneficial genes into the genetic material of a
changed CRAd. This method can not only immediately destroy tumour cells by lysis but also increase
the number of therapeutic genes, provoking a longer transgene expression within tumours [62,63].
Then, the incorporation of therapeutic genes into the viral genome is used to create “reinforced” OVs,
which have genes with anti-angiogenic properties, as well as the ability to produce cytokines provoking
an immune activity against tumour cells [64]. For instance, this result can be attained by transforming
a virus with a proapoptotic factor such as interleukin-24 (IL-24). It was reported that this cytokine
makes tumour cells sensitive to programmed cell death after an infection due to influenza A virus [65].
However, IL-24′s apoptotic action is based on a second signal, specifically the stimulation of the TLR3
by viral RNA. However, the in vitro effects of an influenza virus armed with this cytokine might be
problematic to transmute to clinical evaluations, as IL-24 inhibits viral proliferation [66].

Finally, it is possible to act on OVs to generate suicide genes which ease the transformation of
inoperative prodrugs into active elements [67].

Studies on oncolytic viruses allowed the Food and Drug Administration and European Medicines
Agency authorization for the clinical employ of an OV, Talimogene laherparepvec (T-VEC) [68].
Currently, several OVs have been authorised for tumour therapy. An ECHO virus type 7 (ECHO-7) for
the therapy of melanoma, an engineered HSV-1 presenting GM-CSF, for metastatic melanoma, and
H101 a mitigated adenovirus for the therapy of head and neck carcinoma [58,69,70].

The aim of our work is to evaluate the results present in the literature on the use of OVs in the
therapy of haematological neoplastic pathologies such as multiple myeloma, acute and chronic myeloid
leukaemia, and lymphoproliferative diseases (Table 1).

2.1. Oncolytic Viruses and Haematological Malignancies

Oncolytic Viruses and Multiple Myeloma

Despite the progress made in the field of GM-CSF treatment [71–74], the disease remains an
uncurable pathology which requires new types of approach.

MM is an essentially immunosuppressive neoplastic disease, which forces the tumour milieu to
threaten tumour-associated dendritic cells and macrophages to a pro-tumoral, immune-suppressive
setting [75]. Immune reactions are further reduced in MM subjects by the same drug treatment,
particularly with corticosteroids, alkylators, and proteasome inhibitors [76].

In contrast to traditional methods of tumour vaccination, virotherapy supports a self-tuning
incitement to the immune response against MM cells. After viro-treatment, virus-caused tumour cell
destroying endures till immune reactions have augmented appropriately to eradicate the infection.

Numerous investigations have evaluated the possibility to use measles virus (MV), an RNA
virus of the Paramyxoviridae family, as a treatment for MM [77]. MVNIS is a recombinant MV
(Edmonston strain) modified to present the human thyroidal sodium iodide symporter (NIS) to
ease imagining of virus infected cells in vivo using single-photon emission computed tomography.
This modified virus uses CD46 receptors to pass in cells and to cause intercellular union of infected cells
with uncontaminated cells, causing the creation of not vital multinucleated syncytia [78]. Myeloma
cells present an increased expression of CD46 and are consequently extremely vulnerable to MVNIS
destroying [78]. Recently, a phase 1 experimentation assessing the security and evaluating maximal
tolerated dose (MTD) of intravenous (i.v.) dispensation of MV-NIS in subjects with MM relapsed or
refractory (RRMM) was performed [79]. RRMM subjects received the treatment as a monotherapy
without having severe toxicities, and the MTD was not achieved. One RRMM subject obtained a
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complete remission (CR), while a smaller reduction in myeloma-specific IgG was reported in other
subjects. Afterward, other RRMM subjects were included in an extension cohort [80].

As MM plasma cells lines and primary MM plasma cells present the carcinoma-selective protein
DF3/MUC1 and some integrins are needed for the entrance of the viruses into the cells; it was reasonable
to use Ads that transport genes under the influence of DF3 promoter. Different experimentations
reported the effectiveness of Adenovirus to transport the thymidine kinase (TK) gene into MM
plasma cells like RPMI 8226 and OCI-My5, and into primary patient plasma cells [81]. It was
established that transduction of Ad carrying the TK gene under the influence of the DF3 promoter
(Ad.DF3-NK) and the administration of ganciclovir, an anti-viral drug removed an enormous amount
of infected RPMI 8226 and OCI-My5cells. Notably, not tumoral human hematopoietic cells were not
touched by this therapeutical approach [82]. In a different experimental model performed employing
a CRAd containing a CD40 ligand transgene (AdEHCD40L), it was demonstrated an increased
block of MM cells proliferation [83], and an AdEHCD40L provoked programmed cell death was
highlighted in MM cells. Experimentations carried out by the same group employing a severe combined
immunodeficiency disease (SCID) mouse model pre-implanted with RPMI 8226 and treated with
AdEHCD40L, demonstrated a 50% reduction in MM cells in comparison to controls (28% MM cells
decrease) [83].

Notwithstanding the encouraging results obtained employing Ad as a possible treatment against
MM cells, the main problem for its use in clinical practice is its great immunogenicity with the
stimulation of high concentrations of anti-Ad sero-reactivity in human populations [84]. For this
reason, other viruses have been tested for their anti-myeloma activity.

Several experimentations performed in vitro, in vivo, and ex vivo have demonstrated that reovirus
displays lytic effects against MM cells [85]. Remarkably, investigations have reported that this virus
does not damage normal hematopoietic stem cells. Numerous analyses have assessed reovirus’ ability
to eradicate infected MM plasma cells [86,87].

It is important to point out that the combined treatment OVs-chemotherapeutics could increase
therapy effectiveness and also reduce the appearance of treatment-resistant escaping variants.

For instance, myeloma plasma cells are extremely susceptible to VSV’s lytic actions and are
responsive to bortezomib’s cytotoxic actions Nevertheless, Bortezomib blocked VSV-caused NF-κB
stimulation, which is essential to spread efficiently. In MM experimental models in vivo, the combined
treatment considerably decreased tumour load in comparison to single elements [88].

Furthermore, several vaccination methodologies are being assessed in experimentations to increase
the immune response to tumour-associated antigens (TAAs) [89], and oncolytic viruses are also being
assessed [90]. OVs offer a platform to pursue TAAs increasing the cross presentation of discharged
cellular proteins by cancer-resident APCs.

This result was validated by several experimentations. Packiriswamy et al. evaluated T-cell
activities against a group of MM TAAs employing PBMC derived from MM subjects before and
after utilization of a MV-NIS [91]. MV-NIS treatment remarkably increased T-cell activities against
MAGE-C1 and MAGE-A3. Remarkably, one MM subject who obtained CR after MV-NIS treatment had
intense T-cell reactions to MS proteins and to most of the examined TAAs. These findings confirmed
that OVs can operate as an antigen vaccine, rising the activity of T-lymphocyte against TAAs in MM
subjects [91].

2.2. Oncolytic Viruses and Acute Myeloid Leukemia

More than a third of subjects with acute myeloid leukemia (AML) may be resistant to treatment, and
a greater part of subjects who obtain a CR will undergo relapse. These AML patients present a disease
resistant to chemotherapy for which novel therapeutical approaches are indispensably necessitated.

Oncolytic virotherapy is attractive in a pathology such as AML, where the proliferating leukemic
elements are distributed intravascularly and in different tissues. The capability of OVs to continuously
contaminate tumour cells also contains the capacity for eliminating minimal residual disease [92].
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In an experimental model, AML cells were infected with measles vaccine virus either presenting
green fluorescent protein (GFP) or reinforced with super cytosine deaminase, which transforms the
prodrug, 5-fluorocytosine, into 5-fluorouracil [93]. Findings determined that measles vaccine virus
contaminated the leukemic cells and decreased the amount and survival of leukemic blasts through
the stimulation of programmed cell death. The transformation of 5-fluorocytosine to 5-fluorouracil
exercised a powerful additional action against tumour cells. This method generates the functional
drug in specific sites and may overwhelm several limits and allows to use 5-fluorouracil in the therapy
of AML [93].

Unlike the traditional chemotherapies, virotherapy does not influence non-malignant cells,
especially those of the bone marrow (BM), and allows formation of normal blood components to be
maintained after the therapy. Furthermore, while the direct destruction of leukemic cells was less
marked in the ex vivo set, in comparison to AML cell lines, the metabolic function of primary cells was
intensely altered [94].

Reovirus is an OV that has demonstrated preclinical effectiveness in the therapy of several tumours
and has been verified in phase III trials. In a report, researchers evaluated reovirus’ direct action on
AML. Reovirus was demonstrated to proliferate in AML cell lines and to destroy them, and to decrease
cell vitality in primary AML cells [95].

As far as the mechanisms by which reoviruses carry out their action are concerned, they provoke
an activation of NK cells with augmented NK degranulation and IFN delivery. Stimulation of NK
cells is due to a stimulation of DCs and successive relation with NK cells, as lonely NK cells are not
stimulated by the virus [96,97].

A different oncolytic virus used for AML therapy is MYXV, a member of the Poxviridae family.
Notably, there are no described anti-MYXV antibodies in humans. Madlambayan et al. assessed
how MYXV affects AML cells. MYXV inhibited myeloid sarcoma development and bone marrow
engraftment of two human AML cell lines [98]. The decrease in engraftment after ex vivo MYXV therapy
was dependent from the dosage and necessitated a minimum multiplicity of infection (MOI) of 3.

Moreover, MYXV presents activity against AML tumor xenografts, and is able to aim leukaemia
cells while saving normal hematopoietic stem cells [99,100].

A direct pro-apoptotic action of Cytomegalovirus (CMV) on AML cell lines has also been
demonstrated [101]. This anti-leukemic action is due to an effect caspase-dependent and could justify
the reduced relapse percentages in AML subjects with CMV recurrence [101].

The Kuykendall strain of coxsackievirus A21 (CVA21), is an enterovirus that uses Decay
Accelerating Factor (DAF) to connect to cells and Intercellular Adhesion Molecule 1 (ICAM-1) for
entrance. An increased expression of ICAM-1, reported on numerous neoplastic cells, can be used as
a prognosticator of tumour cell responsiveness to CVA21-caused lysis [102–104]. CVA21 provoked
a powerful immune response against tumour via several mechanisms such as a cytokine-provoked
bystander death, an increased NK -mediated cytotoxicity through the action of tumour-specific T
lymphocytes. Relevantly, immune-mediated death of AML cells was detected, notwithstanding
AML cells being resilient to CVA21 lysis. Furthermore, the role of IFN for NK cell stimulation was
established, and it was determined that ICAM-1 and plasmacytoid DCs were essential modulators of
this phenomenon [105].

If good results in oncolytic AML therapy have been achieved with the OVs mentioned so far,
adenoviruses are undoubtedly among the most commonly used oncolytic viruses. SG235-TRAIL,
an adenovirus holding an Ad5/F35 chimeric fibre and engineered with an antitumor gene TRAIL,
operated with homoharringtonine in leukemia cell lines with a synergistic effect [106].

Lately, Wang et al. built the adenovirus rAd5pz-zTRAIL-RFP-S∆24E1a (A4), which has the capsid
protein IX connected to TNF-related apoptosis-inducing ligand (TRAIL) and causes a higher infection
of tumour cells and an enhanced tumour aiming [107]. To increase the beneficial activity of A4,
they produced a different form of A4, zA4, by covering A4 with further TRAIL that is combined with
a leucine zipper-like dimerization domain (ZA4). ZA4 provoked a significant block of the growth
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of AML cells that showed adequate concentrations of TRAIL-related receptors. ZA4 also caused
an increased anti-AML action in vivo in comparison to A4. Moreover, they demonstrated that the
ginsenoside Rh2 increased the presence of TRAIL receptors and therefore increased the antineoplastic
action of zA4 [107].

Rhabdoviruses (RVs), such as VSV and Maraba virus, are presently being also investigated
as antitumor agents. Via cell destruction and stimulation of anticancer immune reaction, RVs are
self-intensifying lytic mediators. However, although RVs are being employed to cure several types
of tumours, their use in hematopoietic malignancies is made difficult by numerous elements such
as reduced virion proliferation and decreased spread between leukemic cells [108]. Batenchuk et al.
hypothesised that the obstacles to virotherapy in haematological diseases may be overcome by
dispensation of high doses of non-proliferating Rhabdovirus [109]. They have built a technique
to generate non-proliferating rhabdovirus-originated particles (NRRPs). The relevance of NRRPs
was established in AML subjects with great-load chemo-resistant disease. NRRP treatment induced
programmed cell death in myeloblasts from subjects with CML in acute blast crisis. Normal cells
from healthy BM were not altered [109]. This finding implies that notwithstanding NRRPs’ powerful
tumoricidal action, the reduction of leukocytes generally detected after induction and consolidation
chemo-treatment could be prevented by employing NRRP-based protocols, with a relevant reduction
in adverse events.

A further opportunity may arise from VSV–interferon β (IFNβ)– NIS, a VSV coding IFNβ and the
NIS reporter. Syngeneic AML C1498 cells reacted to treatment with VSV-murine IFNβ (mIFNβ)-NIS
according to the dosage employed. Imaging for NIS expression demonstrated strong virus presence
within the cells. Infection did not augment programmed death ligand 1 (PD-L1) on leukemic cells. When
VSV-mIFNβ-NIS was combined with anti-PD-L1 antibody (Ab) treatment increased antineoplastic
activity with respect to therapy with virus alone or Ab alone. Moreover, the combined treatment
remarkably increased the survival of animals with no sign of side effects, in comparison to anti-PD-L1,
or virus alone. A rise in the number of CD4 and CD8 cells in tumours was reported. Reduction of NK
or CD8 cells, but not CD4 cells, provoked a decrease in antileukemic action in the VSV/anti-PD-L1
group [110]. Cells from chronic myelomonocytic leukemia and acute myelomonocytic leukemia seem
to be particularly vulnerable to VSV.

The use of rhabdoviruses could also have other implications in AML treatment, such as overcoming
a chemoresistance. An increased expression of myeloid cell leukemia 1 protein (Mcl-1), a member
of B-cell lymphoma 2 (Bcl-2) family member, participates to treatment resistance. VSV has been
recognized as an lytic virus that powerfully disturbs the production of new proteins of infected cells.
It was reported that after infection, Mcl-1 protein concentrations quickly dropped. Mcl-1 reduction
was an effect of proteasomal degradation. Mcl-1 rescue blocked programmed cell death. A combined
treatment with VSV virotherapy and demonstrated a synergic action in comparison to virus alone
or chemotherapy alone, which could be regressed by RNA interference of Bax and Bak proteins
(pro-apoptotic elements) [111]. Furthermore, in an animal experimental model, combined treatments
of doxorubicin and VSV demonstrated an increased efficiency in comparison to VSV or doxorubicin
alone [111].

A completely different attempt implicates the employ of oncolytic vaccinia virus (OVV).
Beclin-1 is a protein that has been correlated to tumour suppression. Inhibition of Beclin-1 provokes

an increased tumorigenesis [112], while an increased expression of Beclin-1 reduces the development
of cancers in animal experimentations [113]. Beclin-1 alteration was reported in several forms of
tumour cells. A report has stated that in AML and acute lymphoblastic leukemia, Beclin-1 expression
was considerably reduced in comparison to controls and that reduced Beclin-1 gene expression was
correlated with minor survival [114].

A novel OVV showing Beclin-1 (OVV-BECN1) was examined for its oncolytic effect in leukemia.
Findings demonstrated that the OVV presented greater contagion for leukemic cells. OVV-BECN1
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provoked relevant autophagic cell death in wild-type leukaemia cell lines in vitro and in vivo
models [115].

In an U937 AML animal model, MV demonstrated higher tumour reduction and extended survival.
Moreover, MV destroyed leukemic cells from 16 out of 20 AML subjects and produced more effective
action on 11 AML subjects when dispensed with Aracytin-C [116].

Finally, particular conditions can determine a different effectiveness of viruses’ oncolytic activity.
Telomeres are the nucleoprotein formations at the extremity of chromosomes, which diminish after
every cell division. Several neoplastic cells carry out a telomere elongating system to decrease telomere
reduction and so to allow limitless cellular growth [117]. Tumours using the alternative lengthening
of telomeres (ALT) system for telomere preservation are often problematic to cure and have a bad
outcome. They are also generally lacking for presence of ATRX protein, a repressor of ALT activity, and
an element of promyelocytic leukemia nuclear bodies (PML NBs) which are essential for immunity
to several viruses. Han et al. demonstrated that an HSV-1 missing Infected cell protein 0 (ICP0), a
protein that destroys PML NB elements comprising ATRX, was much more effectual in eradicating
ATRX-lacking cells. The ability to be sensitive to mutant HSV-1 related inversely with PML protein
concentrations [118]. These results offer a base for predicting, based on PML or ATRX concentrations,
which haematological diseases will react to an oncolytic herpesvirus.

Selecting the right virus remains an ongoing challenge to treat leukemia. Moreover, as an immune
response is essential in the antileukemia action, how this treatment is carried out in treated leukemic
subjects who have been submitted to chemo treatment and may have an exhausted immune system
remains to be evaluated.

2.3. Oncolytic Viruses, Chronic Myeloid Leukemia, and Chronic Lymphocytic Leukemia

An investigation has assessed if a treatment joining the oncolytic action of an adenoviral vector
with the concomitant presence of the gene Beclin-1 presented an improvement for chronic myeloid
leukaemia (CML) cells resistant to chemotherapy. In the same work, authors have assessed the
synergistic actions of SG511-BECN and doxorubicin (Dox) in CML cells [119]. Oncolytic virus
SG511-BECN was generated via inserting Beclin-1 gene into the adenoviral structure. This compound
has demonstrated considerably enhanced antitumoral effect on multidrug-resistant CML cell line
K562/A02, which was due to the stimulation of autophagic cell killing death. Moreover, Doxorubicin
could increase the effect of SG511-BECN by increasing the infectious efficacy of the oncolytic Ad
without provoking relevant injury to normal human mononuclear cells [119].

2.4. Oncolytic Viruses and Lymphomas

It may appear rather strange to use viruses in the therapy of tumour when approximately 15%
of all human tumours may be provoked by viruses [120]. Several studies reported the presence
of a correlation between lymphomas and viruses such as HIV, Epstein-Barr virus, human T-cell
lymphotropic virus, and human herpes virus 8 [121].

Nevertheless, favourable actions of viruses on lymphoma subjects have been acknowledged for
long time. It is presumed that fundamental systems of spontaneous disappearance in Hodgkin’s
disease and Burkitt’s lymphoma [122,123] after measles contagion are owed to viral oncolysis and
virus-caused immune response against the tumour. Moreover, the capacity of several neurotropic
viruses to provoke regression of the RPL-12 chicken lymphoma in the pectoral muscle has been reported
in old studies [124,125].

However, these findings have been then validated by recent studies. Numerous types of the
Newcastle disease virus (NDV) have been used as oncolytics in experimental models. Sanchez et al.
evaluated the actions of NDV-MLS, an attenuated type, on a large B-cell lymphoma cell line (SU-DHL-4)
and on healthy PBMC. The virus decreased cell vitality in lymphoma cells with respect to controls. No
relevant action on PBMC was demonstrated. Destruction of cells was due to programmed cell death as
supported by flow-cytometry [126]. Eaton et al. proved an oncolytic action of NDV in vivo. This effect
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was due to a direct oncolysis and an immune reaction against an ascites lymphoma developed in C3H
animals [127].

Several studies reported the proliferation of parainfluenza virus, MV, VSV, and mumps virus, in
Burkitt lymphoma (BL) cells in vitro, causing the destruction of 95% of cells [128].

Specific cytopathic actions caused by attenuated MV-Ed were reported against lymphoma cells by
other authors [129]. In addition, a completed suppression of BL cells after contamination with reovirus
type 3 was described [130].

Vulnerability of primary lymphoid diseases to reovirus was also described. Moreover, normal
PBLs and haematopoietic stem cells originated from not neoplastic BM did not support reovirus
proliferation, proposing that this virus targets only neoplastic lymphoid cells. However, the follicular
lymphoma seemed usually resistant while chronic lymphocytic leukemia (CLL) samples allowed
reovirus proliferation. The reason for diversity in tolerance between lymphoproliferative diseases is
uncertain and needs to be further investigated. Regarding CLL, a peculiar genetic alteration, probably
in the Ras pathway, may cause the perfect milieu for virus proliferation [131–133].

A report clarified the mechanism of oncolysis of reovirus in CLL cells. Virus might act via a
direct cytotoxic mechanism or an action on the immune system with a stimulation of patient NK cells
through a monocyte-derived interferon-α (IFNα)-dependent system. Moreover, reovirus increases cell
antibody-dependent cellular cytotoxicity (ADCC)-mediated eradication of CLL cells when administered
in combination with anti-CD20 antibodies. These results offer robust preclinical proof to support the
usage of reovirus and anti-CD20 drugs for CLL therapy [134].

Other experimentations have confirmed that CLL cells are vulnerable to the action of OVs [135,136],
while Medina et al. demonstrated this effect in CLL cells using attenuated Ads with particular mutations
in E1 or E2 region [137].

Nevertheless, other studies established that CLL cells were resilient to a diverse RNA OV, VSV,
due to an increased production of Bcl-2. However, block of Bcl-2 made cells vulnerable to VSV
lysis [138,139].

Mantle cell lymphoma (MCL) may also be an objective of OV treatment. MV-PNP H bind
antiCD20 is a CD20-targeted that regulates proliferation of lymphomas in SCID mice in association
with fludarabine phosphate. The proliferation of this virus was assessed in disease bulks and cells from
MCL subjects. It was demonstrated that the virus is specific for CD20-expressing cells [140]. Authors
also evaluated the efficiency of different protocols of dispensation of the virus in association with
cyclophosphamide (CPA) in an MCL model. They demonstrated that CPA dispensation before virus
increases lytic effectiveness, probably via immunosuppression. Lastly, three courses of consecutive
therapy with virus, CPA and fludarabine treatment caused an absolute disappearance of xenografts,
while median survival times have risen from 22 to 77 days [140].

Cutaneous T-cell lymphomas (CTCLs) are frequent extranodal lymphomas and are due to a clonal
growth of tumoral T-lymphocytes. Even though subjects with patch/plaque disease of less than 10%
of the body surface have a regular life expectation, subjects who experience conversion to large-cell
lymphoma have a bad outcome with a survival of 2–19 months [141].

In a study, MV vaccine provokes tumour reduction [142]. The action on cell growth was evident in
cells establishing aggregates, suggesting a cell-to-cell diffusion of MV and cytolysis due to virus infection.
Intra-tumoral (i.t.) administration of rMV, presenting increased GFP provoked total regression of CTCL
in mice, while lymphomas with control treatment developed progressively. These findings display the
possibility to use MV as a therapeutic approach against CTCL.

Alphaviruses are positive-sense, single-stranded RNA arboviruses that are able of provoking
grave disease. The transmission cycle of these viruses is between a mosquito vector and a mammalian
host, generally rodents or birds, although epizootic spillover events can happen that cause an infection
of humans. Alphaviruses are generally classified as either arthritogenic or encephalitic based on
disease symptomology [143].
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Sindbis virus (SV) is an alphavirus and SV vectors in combination with α4-1BB monoclonal
antibody entirely eradicated a B-cell lymphoma in a preclinical animal model, a result that could
not be attained with either treatment alone. Tumor elimination implicates a synergistic action of
the combination that significantly boosts T cell proliferation and cytotoxicity, and IFNγ production.
Moreover, all animals that survived after therapy acquired long lasting antitumor immunity [144].

Finally, as far influenza virus, it inhibited tumor growth after administration to tumor zone in
a dosage of 7-8 lg EID50, as was demonstrated for two different mouse tumor cell strains, Ehrlich’s
carcinoma and L-1210 lymphoma. Influenza virus types were different by their antitumor effect which
correlated with their interferonogenic action [145].

Moreover, using influenza A matrix protein 1 (MP1), Laurence et al. demonstrated that
ex vivo–expanded CD4+ and CD8+ T-APCs presenting a hygromycin phosphotransferase MP1
fusion protein (HyMP1) processed and presented MP1 to autologous human leukocyte antigen
(HLA)–restricted, MP1-specific CD4+ and CD8+ cytotoxic T lymphocytes (CTL) precursors. The MP1-
specific CTLs are amenable to subsequent genetic modification to express a CD19- specific CAR,
designated CD19R, and acquire HLA-unrestricted reactivity toward CD19+ lymphoma tumor targets
while maintaining HLA-restricted MP1 specificity. The restimulation of MP1CD19 dual-specific CTLs
in vivo by the adoptive transfer of irradiated HyMP1+ T-APCs resulted in the enhanced antilymphoma
activity of bispecific effector cells [146].

2.5. Oncolytic Viruses in Transplantation and Graft vs. Host

Haematologic stem cell rescue after high dose cytotoxic treatment is widely utilized for the therapy
of several hematologic tumours. Gene marking analysis propose that hidden neoplastic cells within
the autograft may participate to the recurrence of the disease. Removing of autografts polluted with
tumour cells has been ineffective. The specific oncolytic ability of reovirus against several types of
tumours in vitro, in vivo, and ex vivo experimental models has been beforehand verified. MYXV
particularly eradicated contaminating AML subjects-originated tumour stem cells in explants by ex
vivo viral purging prior to re-engraftment [99].

But treatment with oncolytic viruses also seems promising in the case of transplant procedures
other than those related to AML. In a study, authors have reported that reovirus can efficiently eliminate
tumour cells within autografts. Survival of the cell lines or purified ex vivo tumour cells of CLL,
Waldenstrom macroglobulinemia and diffuse large B-cell lymphoma was drastically decreased after
reovirus administration. Contrariwise, reovirus eradication of MM, BL, and follicular lymphoma cells
was inadequate [137].

Finally, Kim et al. stated the effectiveness of MYXV eradication of tumour cells as a preventive
treatment for inhibiting post-transplant EBV-transformed human lymphomas [147].

Oncovirus therapy could favourably take action at other times of transplantation therapy. In spite
of the relevant progress made in the last years to decrease the gravity graft-versus-host disease (GvHD)
after allo-HSCT, it is the main reason for nonrelapsing tumour mortality, being lethal for up to 20% of
patients [148].

Recently, numerous findings have proposed that virotherapy of HSCT samples with MYXV can
reduce the negative effects of GvHD, while retaining the favourable GvT actions in the setting of
allo-transplantation against MM. In vivo experimentations employing a xenograft model displayed
that BM cells treated ex vivo with MYXV and subsequently transplanted into NSG animals significantly
decreased mortality in comparison to BM samples that had not been deal with the virus [149]. In vivo
experimentations established that ex vivo MYXV therapy decreased the gravity of post-transplant
GvHD by taking action on the capability of the donor human T cells to cause aGvHD [150,151].

3. Oncolytic Viruses: Possible Combination Therapies

Set on a computational basis, Wodarz states that even if oncolytic virus treatment flops to eliminate
a tumour, it can have the possibility to eliminate the sub-group of drug-resistant tumour cells [152].
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The justification for this hypothesis originates from a population dynamics theory that is named
‘apparent competition’. Even if two groups do not exactly contend with each other, the fittest group can
force the least fit group dead if they are infected by the same pathogen. For instance, if the proliferation
percentage of the drug-sensitive tumour cells is higher than that of the resistant tumour cells, then the
resistant cells will be dead if a virus can infect both cell groups.

OVs is an encouraging treatment for a broad group of neoplastic diseases but keeps on being an
understudied therapy option for haematological malignancies, although tumour virotherapy offers a
new approach to treat tumours as agents that do not have cross-resistance with presently available
therapies [153,154].

However, only a small part of patients was completely responsive to OV monotherapy. Improved
prognosis was achieved using OVs together with other therapeutical approaches, such as immune
treatment or in combination with chemotherapy [155,156], indicating that the complete capacity of
OVs can be released in association with other therapies.

In any case it is certain that to amplify OV efficacy, the assessment of new associations should be
highlighted. An approach could be combining oncolytic CMV treatment with epigenetic treatment [157].
In defence of such assumption, histone deacetylase (HDAC) inhibitors arose as enhancers of virotherapy,
producing the concept of “epi-virotherapeutic therapy” [158,159].

A combined treatment with other HDACi, such as valproic acid (VPA), could be assessed to
increase the presence of NKG2D ligands on leukemic cells [160] and improve the cytotoxic action of NK
cells after OV treatment, or synergize with OVs to increase viral proliferation and cellular lysis [161].
Moreover, hypomethylating drugs, such as decitabine, can augment the presence of TAAs [162].
Consequently, association of viruses such as CVA21 with diverse epigenetic drugs may be useful to
stimulate anti-tumour immune responses.

A different approach might be the association of OVs with new oncolytic immune-treatments of
tumour, such as the immune checkpoint inhibitors aiming cytotoxic T lymphocyte antigen 4 (CTLA-4)
and the PD-1/PD-L1 pathway [163].

It is well known that OVs not only directly destroy tumour cells, but also modify the immune
response and the tumour milieu. Several reports have demonstrated that OVs can transform immune
cold tumour that were earlier unresponsive to PD-1/PD-L1 inhibitors into immune hot tumour [164]. So,
tumours are more vulnerable to immunotherapy, and PD-1/PD-L1 inhibitors may cause actions [165].
The association of the two treatments remarkably increases the amount of tumour-specific CD4+ and
CD8+ T cells and increases the immune reaction against the tumour [166]. This association seems to be
extremely beneficial in several preclinical models [167–170].

Finally, treatment with oncolytic viruses could also find a place in what appears to be the latest
frontier in the treatment of haematological diseases, the immunotherapy with Chimeric Antigen
Receptor (CAR) T Cells.

CAR-T cells are built to code receptors for certain tumour antigens and operate via an
MHC-dependent system [171]. However, this treatment has had partial success for several conditions,
including the immunosuppressive tumour milieu. One method of overcoming these difficulties of
CAR-T treatment is to use CAR-T cells in association with oncolytic viruses as part of a combined
procedure [172].

In an NOD/SCID/Il2rg null (NSG) xenograft animal model employing Human pancreas
adenocarcinoma ascites metastasis (AsPC-1) cells, Authors demonstrated that cancers treated
with the combination of the virus expressing TNF-α and IL-2 (Ad5/3-E2F-d24-TNF-α-IRES-IL-2
[OAd-TNFα-IL2]) along with CAR-T cells resulted in considerably greater accumulation of CAR-T
cells at the tumor site, as well as augmented cancer regression [173]. In a different approach, Watanabe
et al. increased the effectiveness of CAR-T cell treatment using a combinatorial adenovirus vector
(oncolytic adenovirus (Ad5∆24) and helper-dependent adenovirus expressing a mini anti-PD-L1
antibody (HDAdPD-L1) collectively called CAd-VECPDL1) in conjunction with human epidermal
growth factor receptor 2 (HER2)-specific CAR-T cells [174]. Employing this combination in an NSG
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animal model of prostate cancer xenograft they established that in the presence of HER2-CAR-T cells,
the CAd-VECPDL1 virus’s expression of anti-PD-L1 antibody at the cancer site was considerably more
efficacious at reducing cancer size [174].

4. Limitations of Oncolytic Virus Therapy

While the possibility of using oncolytic viruses for tumour immunotherapy is attractive, it also has
its inadequacies. As we have seen above, most OVs show modest antitumour results as a monotherapy.
This is probably due to neutralizing antibodies [175], and high incidence of pre-existing neutralizing
antibody against specific viruses is the biggest limitation for this treatment [176].

To elude pre-existing immunity, different approaches have been practiced, such as change of capsid
protein, using alternative serotypes, or physically protecting virus particles [177,178]. A new method
using molecular redirecting of anti-Ad antibodies to tumour cells demonstrated pre-existing antivirus
antibodies can also be employed as powerful antitumor instruments [179]. This approach involves the
use of a recombinant bifunctional adapter protein with the ability to catch anti-Ad antibodies but also
identifies tumour cells via a polysialic acid-specific single-chain variable fragment [180].

A different attempt to neutralize antibodies involves the use of viruses that are infrequent or
lacking in the population such as rare serotype Ad and Newcastle disease virus. However, this approach
could cause new biological risks to possible virus adaptation to humans [181,182].

Regardless of these considerations, it is in any case difficult to convert the results achieved in in vitro
experimentations into in vivo clinical protocols. Tumours such as lymphomas are three-dimensional
formations, contrasting to two-dimensional cell cultures. To integrate the three-dimensional aspect of
lymphomas in an experimental system, spheroid culture models can be employed. It appears easier
for a virus to contact all tumour cells in a monolayer than in the three-dimensional formation of real
tumours. Moreover, spheroids produce great quantity of cathepsins (as several tumours do), and these
substances can extracellularly transform the virus particles into a layout that can contaminate cells
regardless of canonical receptors. This system imitates the proteolytic stimulation of the virus particles
in endosomes.

However, it has been beforehand discovered that certain cancer cells avoid oncolytic infection in
monolayer, while the cells are infected as spheroids [183].

Table 1. Main in vitro and in vivo studies in Hematologic Malignancies.

Study Disease Virus Possible Disadvantages Ref.

In vitro Multiple Myeloma cell line Measles virus [78]

Multiple myeloma and breast
cancer cells Adenovirus [81–83]

Multiple myeloma cell lines Reovirus [85]

In vivo Multiple Myeloma Adenovirus

Induction of proinflammatory
cytokines.

Neutralization by serum factors
Sequestration in liver and spleen

[83,182]

Multiple myeloma Reovirus Unknown [85]

Multiple myeloma Measles virus Increased unwanted pathology [80,182]

In vitro Acute Myeloid Leukemia Measles virus [93]

Acute myeloid leukemia Reovirus [95]

Acute myeloid leukemia, FLT3
mutant acute myeloid leukemia

cells
Myxoma virus [98–100]

Kasumi-1 (AML), SD-1
(BCR-ABL-positive ALL) Cytomegalovirus [101]
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Table 1. Cont.

Study Disease Virus Possible Disadvantages Ref.

Acute myeloid leukemia cells Coxsackievirus [105]

Kasumi-1, KG-1, HL-60, U937
AML cell lines Adenovirus [106,107]

High-burden multidrug-resistant
AML cells

A549, HEPG2, Huh-7 cell lines

Non-replicating
rhabdovirus-derived
particles, Vesicular

Stomatitis Virus

[109,111]

Wild-type leukemia cells, Multiple
myeloma cell lines Vaccinia virus [115]

Baby hamster kidney-21 cells Herpes Simplex
Virus-1 [118]

In vivo Acute Myeloid Leukemia Adenovirus Sequestration in liver and spleen [107]

Acute myeloid leukemia Vesicular
Stomatitis Virus Neurotoxicity [111,182]

Acute myeloid leukemia cells Measles virus Increased unwanted pathology [116]

In vitro Chronic Myeloid Leukemia cells Adenovirus [119]

Human and canine lymphomas Newcastle disease
virus [126]

Burkitt lymphoma cells,
Cutaneous T-cell lymphoma Measles virus [128,142]

Burkitt’s tumor cells, Chronic
lymphocytic leukemia Reovirus type 3 [130,134]

Chronic lymphocytic leukemia Adenovirus [137]

In vivo Mantle cell lymphoma, Cutaneous
T-cell lymphoma Measles virus Increased unwanted pathology [140,142,182]

Non Hodgkin lymphoma- A20
lymphoma Sindbis virus Unknown [144]

5. Conclusions

Without a comprehensive environmental risk assessment, new treatments will not be admitted by
regulatory agencies like EMA and FDA. Particularly with oncolytic agents, the possibility that they
might become more virulent or the chance to express transgenes that modify the behaviour of the
virus, should be excluded.

Moreover, further experimentations are essential to recognize the most efficient virus or treatment
combinations for specific haematological diseases, and the associations able to induce the most vigorous
immune response. It is also essential to recognize the best administration schedules. Experimentations
have evidently revealed that sequencing and dosages for both OVs and drugs are decisive to achieve
an antitumoral action.

In the future, further studies on viruses’ oncolytic activity could possibly turn the threat into
a treatment.
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Abbreviations

OVs Oncolytic viruses
IFNs Interferons
TLR Toll-like receptors
Ad Adenovirus
MYXV Myxoma virus
VSV Vesicular Stomatitis Virus
MYC Myelocytomatosis
eIF2B Eukaryotic translation initiation factor 2B subunit alpha
Rae1 ribonucleic acid export 1
Nup98 Nucleoporin 98
eIF4E Eukaryotic translation initiation factor 4E
KEAP1 Kelch-like ECH-associated protein 1
ROS Reactive oxygen species
NRF2 nuclear factor erythroid 2-related factor 2
PGAM5 Phosphoglycerate mutase 5
ER Endoplasmic reticulum
DAMPs Damage associate molecular pattern
APCs Antigen presenting cells
DCs Dendritic cells
TNF-α Tumour necrosis factor-α
IL-1 Interleukin 1
NK Natural killer
RIPK3 Receptor Interacting Protein Kinase 3
ZBP1 Z-DNA binding protein 1
cIAP2 cellular inhibitor of apoptosis protein 2
CAR Coxsackie adenovirus receptor
CRAds Conditionally Replicative Adenoviruses
T-VEC Talimogene laherparepvec
ECHO 7 ECHO virus type 7
HSV-1 Herpes simplex virus 1
GM-CSF Granulocyte-macrophage colony-stimulating factor
MM multiple myeloma
MV Measles virus
MVNIS Measles virus encoding the human thyroidal sodium iodide symporter
MTD Maximal tolerated dose
RRMM Multiple myeloma relapsed or refractory
CR Complete remission
MUC1 Mucin 1
TK thymidine kinase
AdEHCD40L CD40 ligand transgene
SCID Severe combined immunodeficiency disease (SCID)
NF-κB nuclear factor kappa-light-chain-enhancer of activated B cells
TAAs Tumour-associated antigens
PBMC peripheral blood mononuclear cell
MAGE Melanoma-associated antigen
AML Acute myeloid leukemia
GFP Green fluorescent protein
BM Bone marrow
MOI Minimum multiplicity of infection
CMV Cytomegalovirus
CVA21 Coxsackievirus A21
DAF Decay Accelerating Factor
ICAM-1 Intercellular Adhesion Molecule 1
TRAIL TNF-related apoptosis-inducing ligand (TRAIL)
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A4 rAd5pz-zTRAIL-RFP-S∆24E1a
ZA4 Zipper-like dimerization domain
RVs Rhabdoviruses
NRRPs Non-proliferating rhabdovirus-originated particles
PD-L1 Programmed death ligand 1
Ab Antibody
Mcl-1 Myeloid cell leukemia 1 protein
Bcl-2 B-cell lymphoma 2
Bax Bcl-2-associated X protein
Bak Bcl-2 homologous antagonist killer
OVV Oncolytic vaccinia virus
ALT Alternative lengthening of telomeres
PML NBs Promyelocytic leukemia nuclear bodies
CML Chronic myeloid leukaemia
NDV Newcastle disease virus
CLL Chronic lymphocytic leukemia
ADCC Antibody-dependent cellular cytotoxicity
MCL Mantle cell lymphoma
CPA Cyclophosphamide
CTCLs Cutaneous T-cell lymphomas
EBV Epstein-Barr Virus
ICP0 Infected cell protein 0
GvHD Graft-versus-host disease
allo-HSCT Allogeneic Hematopoietic Cell Transplantation
HDAC Histone deacetylase HDAC
VPA Valproic acid
NKG2D Natural Killer-gene complex 2D
CTLA-4 Cytotoxic T lymphocyte antigen 4
CAR Chimeric Antigen Receptor
EMA European Medicines Agency
FDA Food and Drug Administration
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