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While the respiratory tract is the primary route of entry for SARS-CoV-2, evidence shows
that the virus also impacts the central nervous system. Intriguingly, case reports have
documented SARS-CoV-2 patients presenting with demyelinating lesions in the brain,
spinal cord, and optic nerve, suggesting possible implications in neuroimmune disorders
such as multiple sclerosis (MS) and other related neuroimmune disorders. However, the
cellular mechanisms underpinning these observations remain poorly defined. The goal of
this paper was to review the literature to date regarding possible links between SARS-
CoV-2 infection and neuroimmune demyelinating diseases such as MS and its related
disorders, with the aim of positing a hypothesis for disease exacerbation. The literature
suggests that SARS-CoV, SARS-CoV-2, and orthologous murine coronaviruses invade
the CNS via the olfactory bulb, spreading to connected structures via retrograde
transport. We hypothesize that a glial inflammatory response may contribute to
damaged oligodendrocytes and blood brain barrier (BBB) breakdown, allowing a
second route for CNS invasion and lymphocyte infiltration. Potential for molecular
mimicry and the stimulation of autoreactive T cells against myelin is also described. It is
imperative that further studies on SARS-CoV-2 neuroinvasion address the adverse effects
of the virus on myelin and exacerbation of MS symptoms, as nearly 3 million people suffer
from MS worldwide.

Keywords: COVID-19, SARS-CoV-2, multiple sclerosis, experimental autoimmune encephalomyelitis,
neuroinflammation, blood-brain barrier, adaptive immunity, cytokine storm
INTRODUCTION

Multiple sclerosis (MS) is a disease that affects over 2.8 million people worldwide, causing chronic
neuroinflammation and neurodegeneration of CNS myelin (1). Despite its high prevalence, the
etiology of MS is not fully understood. Epstein Barr Virus (EBV) seropositivity is strongly linked to
MS incidence (2, 3) and a recent study provided compelling evidence of a causative role for EBV in
MS development (4). This viral hypothesis, coupled with the current COVID-19 pandemic, poses
the question of whether SARS-CoV-2 infection might exacerbate MS.
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There have been case reports linking COVID-19 and
demyelination in mouse and man (5–7), as well as
retrospective studies showing a link between COVID-19
infection, MS symptom exacerbation, and relapse (8, 9).
However, the mechanisms of these processes have not been
elucidated. With the long-term consequences of SARS-CoV-2
infection still unclear, it is important that we examine its potential
impact on MS, including its ability to trigger demyelination and
stimulate an inflammatory microenvironment that can worsen
MS symptoms. Here we propose a model for SARS-CoV-2-
triggered MS exacerbation, tracing a possible route of
neuroinvasion and examining the role of glial cells, BBB, and
molecular mimicry in the process.
SARS-COV-2

Coronaviruses
Coronaviruses are enveloped RNA viruses belonging to the
family Coronaviridae. A handful of coronaviruses are
pathogenic to humans and cause respiratory complications
(10). Severe acute respiratory coronavirus (SARS-CoV) and
Middle East respiratory syndrome coronavirus (MERS-CoV)
are associated with severe pneumonia, and they triggered
epidemics in 2002/2003 and 2012, respectively. SARS-CoV
infections dwindled in 2004, leading researchers to speculate
that the virus was circulating among animals while raising the
possibility of another animal-human transmission of a related
virus in the future (10).

In December 2019, a novel betacoronavirus with 79.6%
sequence homology to SARS-CoV was reported in Wuhan,
China. Named severe acute respiratory coronavirus-2 (SARS-
CoV2), it quickly sparked the worldwide coronavirus disease 19
(COVID-19) pandemic (11–13). Symptoms of COVID-19
include fever, anosmia, headache, and dry cough, as well as
dyspnea, pneumonia, and respiratory failure due to damaged
alveoli (11, 12, 14). Similar lung pathology is recapitulated in
murine models of SARS-CoV-2, including viral presence in the
lungs, interstitial pneumonia, hyaline membrane formation,
edema, blocked terminal bronchioles, and monocyte and
macrophage infiltration into alveolar spaces (15, 16). Similar
to SARS-CoV, SARS-CoV2 utilizes Spike proteins to gain access
to cells (17). While the Spike1 (S1) protein binds to human
angiotensin converting enzyme 2 (ACE2), Spike2 (S2) is
responsible for membrane fusion, which is made possible
through protein cleavage by the protease TMPRSS2 (17, 18).
Pulmonary complications are not surprising, given the high
ACE2 expression in alveolar epithelial cells (19). However,
ACE2 expression has also been observed in enterocytes of the
small intestine, pericytes of the heart, and endothelial cells in
various organs, including the brain (19, 20). Interestingly, recent
studies show ACE2 expression in neurons of numerous brain
structures, as well as in glial cells such as astrocytes and
oligodendrocytes, suggesting possible implications of viral
infection on the central nervous system (CNS) (21).
Frontiers in Immunology | www.frontiersin.org 2
COVID-19 and Nervous System Pathology
Indeed, while respiratory complications are a hallmark of COVID-
19, evidence of viral neurotropism and neurological complications
have emerged. For example, many COVID-19 patients present
with symptoms such as anosmia, ageusia, brain fog, and cognitive
disturbances (22–24). A rising number of COVID-19 “long
haulers” with persistent neurocognitive and memory symptoms
also suggest neurological involvement (25). After the initial acute
phase of COVID-19 is resolved, some patients continue to develop
post infectious symptoms that cannot be attributed to another
disease. These patients have long COVID (if the symptoms last
from 4 weeks to 12 weeks after the initial acute phase) or post-
COVID-19 syndrome (if the symptoms persist after 12 weeks).
Symptoms of these affections range from persistent chest pain and
dyspnea to coagulopathy, fatigue, and cognitive changes (26). The
pathophysiology of long COVID is poorly understood, but the
increasing evidence of neurological symptoms poses the question
of whether SARS-CoV-2 infection can exacerbate underlying
neurological conditions, and whether this exacerbation is caused
by primary damage from the virus itself or by secondary damage
from an inflammatory cascade. As viral presence can trigger
increased expression of IL-6, TNF-a, and other proinflammatory
cytokines in a “cytokine storm,” understanding how this
inflammatory cascade damages nervous system structures during
SARS-CoV-2 infection is essential. This is especially true in the
context of neurological disorders with an autoimmune basis such
as multiple sclerosis (MS), as these individuals already have
elevated cytokine levels and are frequently prescribed disease
modifying therapies (DMTs) that can weaken their immune
systems (27). In fact, some researchers found that COVID-19
patients withMS taking the B-cell-depleting reagents rituximab or
ocrelizumab may be at an increased risk of hospitalization, ICU
admission, and artificial ventilation (28). With over 490 million
cases of COVID-19 and greater than 6million deathsworldwide as
of April 2022 (29), it is imperative to understand if those with MS
are at an increased risk.

Immune Responses in COVID-19
SARS-CoV-2 enters the body through the respiratory route and
gains access to epithelial cells in the nasal cavity where it
replicates (12, 30). At this stage, patients are already infectious,
despite being typically asymptomatic (31). As the virus
progresses through the respiratory tract, the innate immune
response becomes more potent, and patients become
symptomatic. This limited presentation, largely restricted to
the upper airways, is what most patients will develop. For the
remainder (~20%), however, the virus will continue its route to
reach the alveoli and subsequently infect alveolar type II cells,
leading to their apoptosis and loss of surfactant (31, 32).
Throughout this manuscript, we refer to the virus itself as
“SARS-CoV-2” and the resulting pathology as “COVID-19”.

Unsurprisingly, the immune response to COVID-19 mirrors
that of other viral infections. Some elements of its virology have
not been fully studied but can be extrapolated from findings on the
SARS-CoV and MERS-CoV viruses. Adaptive immunity to the
virus is triggered by viral antigen presentation by antigen-
April 2022 | Volume 13 | Article 871276
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presenting cells (APC) in the context of major histocompatibility
complex (MHC) molecules (33). Activated cytotoxic T
lymphocytes (CD8+) are able to directly kill infected viral cells.
In SARS-CoV infected patients, CD8+ T cells account for 80% of
total infiltrative inflammatory cells in the pulmonary interstitium,
where they clear infected cells and induce immune injury (34).
Activated helper T cells (CD4+) play a critical role in the humoral
response, as they activate T cell-dependent B cells to produce
specific IgG antibodies against the virus. They also help coordinate
the body’s response to the attack by secreting cytokines and
chemokines to recruit different immune effector cell populations
to the site of infection. An exaggerated immune response can
however lead to a deadly systemic inflammatory response called
“cytokine storm” (32–34).
MULTIPLE SCLEROSIS

Multiple sclerosis is a chronic autoimmune disease of the CNS that
is characterized by demyelination, multifocal inflammation, and
neuronal loss. MS leads to numerous motor and sensory deficits
such as decreased mobility, impaired dexterity, vision loss, and
bladder dysfunction (35). AsMSonset often occurs between 20 and
40 years of age (36), MS-affected individuals can face decades of
disability.MShas traditionally been considered a primarilyCD4+ T
cell mediated disorder; however, it is now clear that other adaptive
and innate immune cells play critical roles in its pathogenesis.

MS is defined by clinical episodes of neurological relapses
disseminated over time and by evidence of neuroanatomical
lesions disseminated in space (37). It is usually diagnosed in the
presence of typical clinical features, white-matter lesions on the
MRI, and oligoclonal bands in the cerebrospinal fluid (CSF).
Classic manifestations may include unilateral optic neuritis
(ON), partial transverse myelitis (TM), and focal brainstem
syndrome (37). The first clinical attack of MS is referred to as
a clinically isolated syndrome (CIS), unless multiple white-
matter lesions are found on the MRI. Up to half of patients
with a ON CIS will subsequently develop MS (38). Over the
course of the next two decades, 30-60% of patients with the
relapsing-remitting (RRMS) subtype will develop a secondary
progressive (SPMS) form associated with impaired cognition and
progressive impairment of ambulation (39). In some cases,
patients present with a primary progressive disease from the
onset (40). Over 2.8 million people suffer from MS worldwide,
yet treatment is limited to reducing inflammation and relapses,
and there is currently no cure for MS (1).
Other Neuroimmune Disorders
Neuromyelitis Optica Spectrum Disorder (NMOSD) is an
antibody-mediated demyelinating disease of the CNS that can
share similarities with RRMS at presentation. Like MS, it often
presents as ON or TM, albeit with myelitis that is usually more
extensive and severe than the partial myelitis seen in MS (41). A
progressive course is uncommon. Diagnosis is usually made in the
presence of a classical clinical syndrome when aquaporin (AQP)-4
antibodies are positive. AQP4 is abundant in the brain and the
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spinal cord, localizing to astrocytic membranes at the blood-brain
barrier (42). AQP4-positiveNMOSD represents two-thirds of cases
(43). Seronegative subtypes do exist, but whether they are caused by
an unknown antibody is a matter of debate.

Interleukin-6 (IL-6) has a key role in the pathophysiology of
NMOSD (44). IL-6 promotes the differentiation of naïve T cells
into pro-inflammatory Th17 and enhances the differentiation of
B cells into plasmablasts that produce AQP4 antibodies (45).
Further, it is a pro-inflammatory cytokine involved in the
COVID-19 cytokine storm (46). NMOSD therapies, directed at
IL-6 blockade, are shown to be effective (47).

Myelin oligodendrocyte glycoprotein (MOG) antibody
disease (MOG-AD) is another neuroinflammatory condition that
can mimic MS. It is also more prevalent in women, and typically
presents as anONin themajority of cases (48, 49).Other presenting
features includemyelitis and acute disseminated encephalomyelitis
(ADEM) or ADEM-like presentations. Unlike MS however,
oligoclonal bands are usually absent from CSF, and MOG
antibody IgG are detected in the serum. Interestingly, two cases of
MOG-AD following SARS-CoV-2 have been published. Both
patients presented with bilateral ON following COVID-19
infection and were AQP4 negative and MOG positive (50, 51).

Adaptive Immune Mechanisms in MS
Myelin reactive helper (CD4+) and cytotoxic (CD8+) T cells play
important roles in the pathophysiology of MS and are present in
MS lesions (40). In healthy individuals, CD4+ T cells help
coordinate the body’s immune response to specific microbes.
When presented with their cognate antigen in peripheral
lymphoid tissues such as the spleen or lymph nodes, naïve T
cells become activated and subsequently differentiate into subsets
that release specific cytokines to help recruit and activate other
leukocytes. In MS, it is postulated that peripherally activated
CNS antigen-specific CD4+ T cells are locally reactivated in the
CNS, leading to cytokine release and inflammatory lesions (52,
53). Intriguingly, Th1 and Th17 CD4+ T cell effector subsets have
both been linked to MS disease onset and progression and
described as potential cytokine storm drivers (54, 55).

In the past decade, evidence has accumulated that B cells are
also crucial players in MS pathogenesis, with the advent of anti-
CD20 depleting therapies such as ocrelizumab (56). Intriguingly,
CD20 is not expressed on antibody-secreting plasma B cells,
indicating that B cells may contribute to MS processes through
mechanisms that are independent of their ability to generate
antibodies. Of note, B cells may be involved in the pathogenesis
of cytokine storm in the context of viral infections (55).

Role of the BBB in MS
Given the central role of peripheral immune cells in eliciting CNS
damage, it is unsurprising that defects inBBB integrity are linked to
MS pathology. The BBB is a complex structure that regulates
molecular and cellular entry in the CNS. It is composed of
microvascular endothelial cells held together by tight junctions,
glial cell elements, astrocytes, microglia, and a basement
membrane (57, 58). Its purpose is to maintain hemostasis, allow
for proper neuronal function, and shield neural tissue from toxins,
microbes, and inflammation (59). In EAE models and in
April 2022 | Volume 13 | Article 871276
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perivenous MS lesions, BBB disruption and microglial activation
are the first pathological findings observed at disease onset within
the CNS (60). They appear prior to lymphocyte infiltration and
demyelination (61), though they are themselves preceded by an
increase in the frequency of Th1 and Th17 cells in the immune
periphery. An up-regulation of cell adhesion molecules on
endothelial cells and a redistribution of junction proteins is also
observed. This is associated with perivascular infiltration, as
immune cells are found between the basement membrane and
the endothelial cells, suggesting that these processes facilitate
leukocyte migration into the CNS. Astrogliosis is linked to BBB
leakage, and molecules produced by glial cells help increase BBB
permeability (57).
COVID-19 AND ITS POTENTIAL ROLE IN
MS EXACERBATION

Recent case studies have reported demyelinating lesions in the
brain, spinal cord, and optic nerve of COVID-19 patients. Acute
Frontiers in Immunology | www.frontiersin.org 4
TM, acute disseminated encephalomyelitis (ADEM), acute
hemorrhagic leukoencephalitis (AHLE), and cytotoxic lesion of
the corpus callosum (CLOCC) have been associated with SARS-
CoV-2 infection (62). In some cases, patients with demyelinating
lesions meet the diagnostic criteria for MS (Table 1), and
cytokines involved in MS are upregulated in COVID-19
patients, suggesting a possible link between the virus and
inflammatory CNS damage (5–7, 68, 69). A cohort study
utilizing a questionnaire also revealed that out of 404
respondents with COVID-19 and MS, 51% had worsened pre-
existing symptoms, and 20% developed new symptoms (70).
Retrospective studies support these findings, one of which
showed that 61% of MS patients with COVID-19 developed
exacerbated symptoms, mainly motor and sensory issue
exacerbations that occurred in the acute phase of COVID-19
(8). Another retrospective study of 41 RRMS patients with
COVID-19 showed a significant increase in relapse during the
at-risk period (ARP) of COVID-19, defined as two weeks before
until five weeks after disease onset (9). In contrast, Etemadifar
and colleagues did not find any long-term increase or
TABLE 1 | Case reports of MS following SARS-CoV-2 infection [adapted from (63)].

Author Sex,
Age

Time to
symptoms
after SARS-
CoV-2 infec-

tion

Clinal manifestation Laboratory testing MRI findings Diagnostic

Palao
et al. (5)

F29 2-3 weeks ON Oligoclonal bands in CSF.
Negative serum anti-IgG-
NMO-AQP4 and anti-MOG
antibodies.

Right-sided optic nerve lesion and supratentorial
periventricular demyelinating lesions, with one
gadolinium-enhancing lesions

MS

Yavari
et al. (64)

F24 N/A Diplopia, blurry vision,
paresthesia, paresia

N/A Multiple lesions in different brain areas MS

Ismail
et al. (65)

M36 2 months Ataxia Oligoclonal bands in CSF. Multiple hyperintense lesions in both juxta-cortical and
periventricular regions, as well as the cerebellum, with
no contrast-enhancement

MS

Moore
et al. (66)

M28 2 weeks Paresthesia, internuclear
ophthalmoplegia

5 unique oligoclonal bands in
CSF. Negative CSF SARS-
CoV-2. Negative serum AQP-
4 and MOG.

Contrast-enhancing and non-enhancing white matter
lesions in juxtacortical, periventricular and infratentorial
locations.

MS

Zanin
et al. (6)

F54 N/A Unconsciousness Negative CSF RT-PCR for
SARS-CoV-2. Normal CSF
examination.

Periventricular hyperintense white matter alteration,
without contrast enhancement. Similar lesions present
at the bulbo-medullary junction and in both the cervical
and dorsal spinal cord.

MS

Karsidag
et al. (67)

F42 1 month Jaw and facial pain,
numbness.
Five months after the first
attack, new weakness in legs
and paresthesia with bladder
incontinence.

Negative oligoclonal bands in
CSF. Negative AQP4-IgG.
Negative CSF SARS-CoV-2
PCR.

Multiple bilateral periventricular hyperintense lesions,
some showing contrast enhancement and a single
contrast-enhancing hyperintense lesion covering 1
segment on cervical MRI.

MS

Karsidag
et al. (67)

M32 4 months Jaw numbness
After two months, new
weakness in the right leg.

Type II oligoclonal bands in
CSF. Positive CSF PCR for
SARS-CoV-2.

Periventricular hyperintense lesions, some showing
contrast enhancement. Lesions in the cerebellum and
left pontocerebellar junction.

MS

Sarwar
et al. (63)

F47 3 weeks Fatigue, numbness, blurry
vision

N/A Multiple scattered periventricular lesions with contrast
enhancement and hyperintense lesions involving
periventricular areas of both hemispheres

MS
April 2022 | Volume 13 | Ar
A list of reported MS cases following SARS-CoV-2 infection, based on Sarwar 2021. When available, laboratory results for AQP-4, MOG, oligoclonal bands in CSF, and CSF SARS-CoV-2
are listed.
AQP-4, aquaporin-4; CSF, cerebrospinal fluid; F, female; IgG, immunoglobulin G; M, male; MOG, myelin-oligodendrocyte-glycoprotein; MS, multiple sclerosis; MRI, magnetic resonance
imaging; N/A, not available; NMO, neuromyelitis optica; ON, optic neuritis; RT-PCR, reverse transcription polymerase chain reaction; SARS-CoV-2, severe acute respiratory syndrome
coronavirus 2.
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exacerbation in RRMS patients’ clinical disease activity following
COVID-19 (71).Despite increasing evidence for a potential impact
of COVID-19 onMS, the mechanisms behind viral neurotropism,
neuronal spread, anddamage tomyelin require further elucidation.
This review offers a hypothesis of SARS-CoV-2 CNS infection and
MS exacerbation. We posit that the direct CNS infection through
the olfactory pathway can lead to gliosis andweakening of theBBB.
At the same time, peripherally-generated immune responses can
further potentiate neuroinflammation via adaptive immune
molecular mimicry paired with cytokine storm. Given the
rapidly moving state of the field, we considered both published
papers, as well as manuscripts uploaded to preprint servers that
have not yet undergone peer review.

Neurotropism and Viral Spread in the CNS
The high prevalence of anosmia, coupled with the presence of
airborne viral particles, suggests an intranasal route of SARS-CoV-
2 CNS invasion, particularly through the olfactory pathway
(Figure 1). Within each nostril, the olfactory epithelium contains
bipolar olfactory neurons (72). These neurons extend apically to
Frontiers in Immunology | www.frontiersin.org 5
interact with air particles, as well as basally in small nerve bundles
to transverse the cribriform plate of the ethmoid bone, forming
olfactory nerves (72). The bony cribriformplate contains foramina
which may serve as easy access points for viral brain infection
through access to the intracranial space (72). However, viral
particles may also spread from the olfactory nerve to the
olfactory bulb, following the olfactory tract to brain structures
such as the piriform cortex, amygdala, parahippocampal gyrus,
olfactory tubercle, and anterior olfactory nucleus (72). Bacterial
meningitis can occur through nasal infections (73), and evidence
suggests that SARS-CoV-2 follows the olfactory pathway to gain
access to the CNS as well. In autopsies of patients that succumbed
to COVID-19, high viral presence is detected in the olfactory
mucosa underneath the cribriform plate and high levels of SARS-
CoV-2 RNA are detected in the olfactory bulb (74, 75).
Understanding how SARS-CoV-2 transits from the olfactory
bulb to connecting CNS structures is therefore of great interest.

Mouse models of SARS-CoV, SARS-CoV-2, and orthologous
murine coronaviruses are useful in studying the spread of viral
antigen throughout theCNS.Because SARS-CoVandSARS-CoV-2
FIGURE 1 | Neurotropism of SARS-CoV-2. Upon inhalation, SARS-CoV-2 can reach the brain parenchyma via two mechanisms. Following the olfactory route,
SARS-CoV-2 infects the olfactory epithelium (1) directly under the cribiform plate (2). The virus can then traverse the cribiform plate through its foramina or via the
olfactory nerves, gaining access to the olfactory bulb (3) and spreading to first and second order connections throughout the brain. Additionally, SARS-CoV-2 may
be inhaled into the lungs, reach the alveoli (4) and gain access into the blood stream (5). A hematogenous route of SARS-CoV-2 neuroinvasion can then occur
following breach of the BBB. Once inside the brain parenchyma, neurons and glial cells such as astrocytes have been shown to be directly infected.
Oligodendrocytes and OPCs have shown similar infection with the coronavirus strain MHV.
April 2022 | Volume 13 | Article 871276
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do not bind effectively to murine ACE2, transgenic models
expressing humanized ACE2 (hACE2) are required to allow the
recapitulation of coronavirus infection in mice (76, 77). K18-
hACE2 mice, which express hACE2 driven by the cytokeratin 18
(KRT18) promoter, allow the expression of hACE2 in lung and
brain epithelial cells, as well as in epithelia of the kidney,
gastrointestinal tract, and liver (77). These mice show significant
viral antigen presence in brain structures following intranasal
infection with SARS-CoV, despite low hACE2 expression in the
brain compared to the lungs (76). Following intranasal infection,
viral antigen presence is observed in the olfactory bulb by 60-66
hours post infection (hpi) (78). The virus then spreads to brain
regionswithfirst andsecondorder connections to theolfactorybulb
such as areas in the cortex (piriform and infralimbic cortices), basal
ganglia, andmidbrain (dorsal raphe) (78). This suggests retrograde
neuronal migration, which is also seen in rabies and herpes zoster
infections (79). Interestingly, intracranial inoculation of even a low
dose of SARS-CoV (3.2 PFU) in k18-hACE2 mice causes neuronal
inflammation and rapid death by 4 days post infection (dpi), with a
high viral presence in the dorsal vagal complex that controls
breathing (78). CNS infection may therefore contribute to
respiratory issues associated with severe coronavirus-induced
pathologies such as SARS or COVID-19.

Murine studies with SARS-CoV-2 show similar neuronal
spread, with viral nucleocapsid presence detected in the
olfactory bulb and connecting brain regions such as the
cerebral cortex, caudate/putamen, thalamus, hypothalamus,
and ventral striatum by 6 dpi in k18-hACE2 mice infected
intranasally (105 PFU) (80). Thrombi are also observed in the
thalamus at this time (80). The involvement of the thalamus is
particularly interesting, as greater than half of MS patients
present with thalamic lesions (81). Injury of thalamic gray
matter in MS has been linked to cognitive and motor
impairment, as well as fatigue, pain, and ocular motility issues
(81, 82). Viral presence in the thalamus may potentially worsen
these symptoms. In addition to showing viral presence in MS
associated structures, the mouse model utilized by Zheng et al.
(2021) also recapitulated anosmia phenotypes during social scent
discrimination and buried food assays, further suggesting the
importance of the olfactory pathway in CNS infection (80).

The Perlman group has conducted pioneering work with
models of coronavirus infectivity, particularly with the MHV-
JHM murine betacoronavirus, which shares 52.5% homology
with SARS-CoV-2 (83). Infection with this virus induces CNS
demyelination in mice, offering an animal model of MS and a
way to study viral spread to CNS white matter. Previous work
from the Perlman laboratory also supports the role of the
olfactory pathway in facilitating viral spread to the CNS,
specifically the olfactory nerve, suggesting this may also be a
likely candidate for SARS-CoV-2 neuroinvasion. Unilateral
ablation of the olfactory bulb in mice infected with MHV-JHM
prevents viral spread on the ablated side (84). In the same mouse
model, temporary impairment of the olfactory nerve with the
surfactant Triton X-100 prevents CNS viral entry until the
reagent wears off and the neuroepithelium begins to
regenerate (85).
Frontiers in Immunology | www.frontiersin.org 6
Tracking viral spread from the brain to the spinal cord offers a
way to elucidate virus-induced pathology and disease exacerbation.
In fact, extending survivability of MHV-JHM infected mice with
low levels of monoclonal antibodies against the virus’ surface (S)
glycoprotein leads to infectionof the spinoreticular tract at 5dpi, the
timepoint at which spinal cord graymatter shows signs of infection
(86). This suggests possible retrograde spread from the brain to the
spinal cord (86). Spinal cord white matter is infected in this model
by7dpi, further showing thepotential for coronavirus infiltration in
structures associated with MS (86).

A compartmentalized immune response to SARS-CoV-2
could further highlight the differences between direct CNS
infection and CNS infection via a hematogenous route. To
determine whether intrathecal anti-SARS-CoV-2 antibodies are
triggered by neuroinvasion and activation by local antigen or by
the systemic circulation, an adeno-associated virus (AAV) can be
used in mice to express hACE2 in 1) lungs only, 2) brain only, or
3) both lungs and brain (87). Expression of hACE2 permits
SARS-CoV-2 infection, since the virus does not bind effectively
to murine ACE2 (76, 77). When hACE2 is expressed only in the
lungs, intranasal SARS-CoV-2 infection triggers anti-Spike IgG
in the lungs and serum of the mice, but not in the brains or CSF
(87). When hACE2 is expressed in both lungs and brain, anti-
Spike antibodies are identified in all four compartments (87).
Lastly, when the receptor is expressed only in the brain and
infection occurrs intracranially, anti-Spike antibodies are only
detected in the brain and CSF and not the lungs or serum (87).
The compartmentalization of the immune response suggests that
anti-COVID antibodies do not enter the brain parenchyma from
the bloodstream; rather, they are elicited within the CNS (87),
presumably by B cells recruited to clear the infection.

Glial Interactions
Once SARS-CoV-2 breaches the CNS, the presence of the virus
particles may impact the glial landscape. In the CNS,
oligodendrocytes (OLs), astrocytes, and microglia are the
major glial types and all three cell types express ACE2 and
TMPRSS2 (21, 88, 89). Because glial cells play an integral role in
the maintenance of neural microenvironments and secrete
inflammatory cytokines in response to injury, examining a
potential glial response to SARS-CoV-2 is important in the
context of neurodegenerative disorders like MS (Figure 2).

Oligodendrocytes (OLs)
OLs are responsible for myelin production in the CNS, and
oligodendrocyte precursor cells (OPCs) renew the OL pool.
Thus, damage to OLs and OPCs in MS induces demyelination
while also repressing remyelination (90). Importantly, in recent
years it has been shown that OLs and OPCs are not simply
passive targets of damage in MS but can also play active roles in
MS inflammation and progression, possessing the ability to
present antigen and attract CD4+ and CD8+ T cells that elicit
further demyelination (91, 92). Direct coronavirus infection of
OLs has been documented previously, as the OL cell line MO3.13
shows acute and persistent infection with human coronavirus
229-E (HuCV-229E) (93).
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Because of their direct involvement in MS pathogenesis, the
infection of OLs by SARS-CoV-2 could potentially alter, or even
worsen, demyelination in MS patients. Indeed, coronavirus-
induced demyelination of the brain, spinal cord, and optic
nerve has been postulated based on case studies of HCoV-
OC43 and SARS-CoV-2 patients (5, 6, 94). Case study reports
indicate that symptomatic COVID-19 might even precede
demyelinating events. For example, COVID-19 respiratory
complications arose two weeks before the onset of
demyelination in the cervical and thoracic spine, pons, and
corpus collosum in a previously healthy individual (7).
Similarly, MS developed de novo 3 weeks after a 47-year-old
female was admitted to the hospital for COVID-19 (63).
Interestingly, in another case, the onset of COVID-19
respiratory issues appeared two weeks before peripheral
nervous system demyelination symptoms associated with
Guillain Barre syndrome (95). CIS has also been reported in a
patient with positive SARS-CoV-2 antibodies in the CSF (96).
The fact that some patients present with COVID-19 symptoms
before the appearance of demyelinating lesions suggests a
Frontiers in Immunology | www.frontiersin.org 7
potential connection between viral infection and myelin
destruction. While anecdotal, these observations suggest that
COVID-19 infect ion may be a tr igger for neuro–
inflammatory responses.

Mechanistically, it has been documented how coronavirus
infection can alter myelination in the CNS. Utilizing the MHV
model, Pan et al. (2020) infected flox/STOP TdTomato reporter
mice with a Cre-expressing recombinant MHV strain; this results
in previously infected and surviving cells permanently expressing
the tdTomato protein. Interestingly, tdTomato+ cells in this
model are mainly identified as OLs, especially in the splenium
of the corpus callosum and cervical and thoracic spinal cord (83).
At 30 dpi, previously infected TdTomato+ OLs in the spinal cord
are located in areas with demyelinated lesions and are associated
with activated microglia/macrophages, as well as increased levels
of CD8+ T cells (83). These OLs also show upregulated
expression of MHC class I through 90 dpi, as well as
upregulated expression of genes involved in antigen
presentation (83). As class I-restricted CD8+ T cells and their
inflammatory responses are strongly linked to MS pathogenesis
FIGURE 2 | SARS-CoV-2 impacts the glial landscape. Once inside the brain parenchyma, SARS-CoV-2 can alter the neural microenvironment by impacting glial cell
function. Infected oligodendrocytes can result in neurodegeneration (1), leading to inaccurate remyelination by surviving oligodendrocytes (2). Inhibited OPC
differentiation (3) further impairs the remyelination process, as new oligodendrocytes are not formed. While activated microglia secrete proinflammatory cytokines that
are damaging to neural tissue, microglial apoptosis reduces myelin debris clearance (4), further suppressing remyelination potential. Lastly, activated astrocytes may
secrete neurotoxic soluble factors (5) that can impair neuronal viability and damage axons.
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(97), this data might present a potential mechanism by which
coronavirus infection may exacerbate MS.

Additionally, TdTomato+ OLs in this model show
downregulation of genes required for precursor cell
differentiation (83). This is interesting, as TdTomato+ cells in
the subventricular zone (SVZ) were oligodendrocyte precursor
cells (OPCs) rather than OLs, posing the question of whether
infection halted or inhibited their differentiation (83). It has
recently been shown in a zebrafish model that OLs that survive
demyelination are less capable of inducing remyelination,
exhibiting less myelin sheath generation and more mistargeted
myelin compared to newly generated OLs (98). Coronavirus OL
infection may therefore impact the demyelination process in
those with MS by increasing the CD8+ T cell inflammatory
response, as well as delaying or inhibiting remyelination
potential by affecting OPCs (83). With OPC differentiation
inhibited, the surviving OLs may be forced to attempt
remyelination that is mistargeted and inaccurate (98). Thus,
both direct damage to OLs, as well as inhibition of OPCs
following coronavirus infection has the potential to negatively
alter myelination in the CNS.

Microglia
While OLs are directly involved in myelin production, microglia
serve as the resident immune cells within the CNS, playing roles
in debris clearance, synaptic organization, OPC maintenance,
and communication between different cell types through the
secretion of neurotropic factors (99, 100). In the context of MS, it
has been suggested that different subtypes of microglia play
distinct roles. Microglia with a proinflammatory phenotype,
traditionally classified as M1, tend to worsen demyelination in
MS through the production of inflammatory cytokines such as
IL-6, IL-8, IL-12, IL-23, IL-1b, and TNF-a (99, 101). They also
facilitate antigen presentation and ROS and NO production (99,
101). M2 microglia on the other hand secrete anti-inflammatory
cytokines such as IL-4, IL-10, and IL-13, clear myelin debris, and
promote the differentiation of OPCs (99, 101). Because of their
immune cell function, microglia would likely be implicated in the
initial response to SARS-CoV-2 infection of neuronal tissues.
Indeed, activated CD68+ microglia have been observed in the
brains of autopsied COVID-19 patients (102). However,
persistent microglial activation can lead to an overproduction
of inflammatory cytokines that can damage CNS structures (83).
It is thus tempting to speculate that SARS-CoV-2 infection of
microglia might shift their phenotype to an inflammatory M1
state, leading to worsening demyelination in MS. One must note,
however that the M1/M2 dichotomous paradigm is not entirely
accepted, with evidence to support a model in which a
continuum of phenotypes exist between M1 and M2 (103, 104).

Multiple lines of evidence indicate that coronavirus infection
may trigger microglial inflammation and activation. Treating the
mouse microglia BV-2 cell line with the S1 Spike protein of
SARS-CoV-2 causes these cells to increase their expression of the
inflammatory cytokines TNF-a, IL-6, and IL-1b, as well as
augment iNOS, NO, and NF-kB DNA binding and
transcriptional activity. The increase in cytokines and reactive
Frontiers in Immunology | www.frontiersin.org 8
oxygen species are hypothesized to result from increased NF-kB
signaling (105). In vivo, SARS-CoV infection in k18-hACE2 mice
also results in microglial activation, although minimal
inflammation is observed compared to a JHMV model (78).
Further research is needed to address the specific release of
cytokines by microglia in vivo following SARS-CoV-2 infection,
and how this can potentially damage myelin.

In a preprint study, K18-hACE2 mice infected with SARS-
CoV-2 also present with microgliosis and microglial activation,
as well as a T cell inflammatory response and viral presence in
the CNS (106). Despite a lack of CNS demyelination in this
model, microglial apoptosis is detected (106). Microglial
apoptosis in the context of SARS-CoV-2 is intriguing, as there
is evidence that these cells are required for remyelination after
coronavirus infection. MHV-infected mice, whose microglia are
depleted with the drug PLX5622, fail to recover from paralytic
symptoms and show unchanged demyelination levels at 21 dpi,
while control mice have reduced demyelination (107). Even at 50
dpi, when control mice are fully recovered from the effects of
MHV infection, microglia depleted mice show persistent
demyelination and paralysis (107). Higher levels of myelin
debris and vacuoles are also observed in these animals, as are
reduced OLs in the spinal cord (107). Interestingly, these mice
show reduced CD4+ and CD8+ T cells in the CNS, which
normally contribute to demyelination in the MHV model and
CNS autoimmune diseases such as MS. This suggests that instead
of attenuating demyelination, microglia play a role in
remyelination, and that debris clearance by microglia may be
necessary for this to happen. This is supported by transcriptional
analysis from microglia RNAseq results from microglia of
infected mice without PLX5622 treatment, showing upregulation
of genes responsible for remyelination, oligodendrocyte
maturation, and debris clearance (107). Thus, even if SARS-
CoV-2 neuroinvasion does not cause myelin degeneration, the
induction ofmicroglial apoptosis (106)might disruptmechanisms
of remyelination in MS-affected individuals.

Astrocytes
Astrocytes have additionally been implicated in SARS-CoV-2
infection and COVID-19 and need to be considered in the
context of MS exacerbation. In a preprint study, SARS-CoV-2-
infected astrocytes have been observed from autopsied COVID-
19 patients, and neural stem-cell derived human astrocytes are
also shown to be infected following exposure to SARS-CoV-2 for
1 hour in vitro (108). This is indicated by the presence of viral
genetic information and Spike protein in astrocytes in both
autopsy and in vitro studies (108). While direct infection of
neurons with SARS-CoV-2 does not appear to result in cell
death, neuronal viability is reduced when cultured with a
conditioned medium of SARS-CoV-2-infected astrocytes (108).
Infected glial cells, including astrocytes, may therefore alter the
microenvironment by releasing soluble factors that damage
surrounding cells. In a preprint manuscript, it has been shown
that human cortical tissue cultured with SARS-CoV-2 for 72
hours shows extensive astrocytic infection, as do cortical
organoids when infected at peak neurogenesis (22 weeks of
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differentiation) (109). Increased cellular stress and reactivity are
also observed following astrocyte infection, as indicated by
increased expression of the endoplasmic reticulum (ER) stress
marker ARCN1 and the reactive marker SYNM (109). It is
possible that a reactive gliosis state triggered by astrocyte
infection could further damage CNS structures.

In patients with severe COVID-19, increased levels of plasma
biomarkers for CNS injury, including GFAP (astrocytic
activation/injury) and NfL (axonal damage) are exhibited
(110). Interestingly, severe COVID-19 patients show a decrease
in GFAP levels between initial (a mean of 13 days after onset of
symptoms) and follow-up tests (a mean of 11.4 days after initial
test), yet an increase in NfL, suggesting initial astrocyte activation
followed by delayed neuronal injury (110). Importantly, NfL is a
common marker of MS disease. Serum NfL (sNfl) levels are
significantly higher in MS patients than in healthy controls and
correlate with brain and spinal cord lesions, expanded disability
status score (EDSS) assessments, and relapse risk (111). Plasma
NfL (pNfL) also appears to correlate with MS severity. For
example, a longitudinal study has shown that elevated pNfL in
MS-afflicted individuals increases the risk of developing long-
term sustained disability (112). As severe COVID-19 appears to
trigger axonal damage through astrocyte activation, it is possible
that CNS injury in MS-affected individuals may be exacerbated
by SARS-CoV-2 infection.
BBB Disruption
General Evidence for BBB Disruption
by SARS-CoV-2
Evidence for altered BBB permeability following SARS-CoV-2
infection has been obtained from 2D static and 3D microfluidic
in vitro BBB models. While SARS-CoV-2 Spike protein does not
trigger endothelial cell cytotoxicity in vitro, the introduction of
the Spike protein subunit 1 (S1), subunit 2 (S2), or receptor
binding domain (RBD) results in loss of integrity of a 2D BBB
model (113). The model, which consists of a 2D static human
brain microvascular endothelial cell (hBMVEC) monolayer,
shows significant reductions in electrical resistance, a correlate
of BBB tightness, following introduction of Spike protein (113).
A 3D microfluidic in vitro BBB model, which mimics the three
dimensionality of the CNS vasculature, supports these results, as
evidenced by increased barrier permeability to a dextran dye
following introduction of S1 (113). Discontinuous or absent ZO-
1 in this model also suggests tight junction breakdown following
SARS-CoV-2 introduction. Human induced pluripotent stem
cell (hiPSC)-derived brain capillary endothelial like cells
(BCECs) are also shown to be infected with SARS-CoV-2 in
another in vitromodel, accompanied by passage of SARS-CoV-2
RNA through a transwell (114). Taken together, these studies
show evidence for potential BBB leakiness following SARS-CoV-
2 infection.

Recent animal models also support the idea that the virus
impacts the BBB. In C57BL/6 mice, injection of full length S1
Spike protein via the tail vein results in a significant decrease in
neuronal MFSD2a (115), a protein responsible for BBB structural
integrity and omega 3 fatty acid transport (116, 117). Injection of
Frontiers in Immunology | www.frontiersin.org 9
truncated S1, which contains only the RBD, does not decrease
MFSD2a in thismodel, nor does injectionof S2, suggesting a role for
the N-terminal region of the S1 protein in BBB disruption (115).

In humans, endothelial cells of the BBB expresses ACE2, and
it is also upregulated in the vasculature of individuals with
dementia and hypertension, two disorders that increase
complications due to COVID-19 (113). Brains of autopsied
COVID-19 patients show a high presence of viral Spike
protein in microvessel endothelial cells, as well as signs of
perivascular edema and endothelial cell degeneration (115).
Spike protein co-localizes with IL-6 and caspase 3 in the
endothelial cells of these individuals, supporting the idea that
SARS-CoV-2 infection may induce apoptosis of cellular
components of the neurovasculature (115). Interestingly,
postmortem studies show that MFSD2a protein is significantly
decreased in the brains of COVID-19 infected individuals
compared to healthy individuals, similar to results seen in mice
(115). Case studies of COVID-19 patients also show high CSF/
serum albumin indexes, indicative of BBB disruption (118).

With growing evidence that SARS-CoV-2 infection implicates
the BBB and the microvasculature, it is important to investigate
the mechanisms underpinning this disruption. If SARS-CoV-2
makes its way to the brain parenchyma via the olfactory route as
we have postulated, it is plausible that a glial inflammatory
response to SARS-CoV-2 triggers an “inside-out” weakening of
the BBB. It is well documented that cytokines such as IL-6 and
IL-17 impact vascular permeability and play a role in MS
pathogenesis. As these inflammatory cytokines are released by
infected neurons and microglia in the context of both SARS-CoV
and SARS-CoV-2 (78, 105), increased permeability of the BBB
could lead to further viral neuroinvasion, as well as heightened
infiltration of myelin autoantibodies in MS patients. On the other
hand, viral particles may also make their way from the peripheral
blood to the BBB and trigger leakiness in an “outside-in” route of
BBB disruption via ACE2, additionally fueling MS exacerbation.
In the following sections, we examine the evidence supporting
these two pathways to BBB weakening as a result of COVID-
19 (Figure 3).

Evidence for Inside-Out BBB Disruption
In vivo models of SARS-CoV-2 infection demonstrate leakiness
of the BBB in an “inside-out” fashion. In both k18-hACE2 mice
and Syrian hamsters, intraperitoneal injection of Evans blue dye
at 6 dpi shows leakage into the cortex when the animals are
inoculated with SARS-CoV-2 intranasally (119). Both mouse and
hamster brains show elevated levels of inflammatory molecules
such as IL-6, TNF-a, and MCP1. Collagen IV, a component of
the basement membrane, is decreased in cerebral vessels of the
animals, while matrix metalloproteinase-9 (MMP9), which is
known to degrade Collagen IV, is increased (119). Interestingly,
tight junctions do not appear to be damaged in this model, as
there are no significant differences in occludin, ZO-1, or claudin-
5 between the infected and mock infected animals (119).
Basement membrane disruption in the absence of tight
junction alteration thus supports the “inside-out” hypothesis,
since the basement membrane is proximal to the CNS
parenchyma. In mechanistic in vitro BBB co-culture models
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using k18-hACE2 mice- or hamster-derived BMECs and
astrocytes, decreased Collagen IV, increased MMP9, increased
inflammatory cytokine mRNA, and unaltered tight junction
structures are observed following treatment with SARS-CoV-2.
These data further suggest a transcellular pathway of BBB
breach, rather than a paracellular breach through tight
junctions (119).

Other in vivomodels suggest that endothelial cells may not be
directly infected by SARS-CoV-2, but rather obtain altered
orientation or damage from an inside-out infection. For
example, one study showed that intranasal inoculation of k18-
hACE2 mice with SARS-CoV-2 did not result in infection of
endothelial cells in the brain or spinal cord, indicating that these
cells were likely not direct targets of the virus (106). However,
discontinuous endothelial layers were seen in vessels with
leukocyte infiltrate, and both the vessels and infiltrate stained
Frontiers in Immunology | www.frontiersin.org 10
positive for cleaved caspase 3, indicative of apoptosis. Further,
SARS-CoV-2 infection in structures with secondary and tertiary
connections to the olfactory bulb was consistently observed
(106). This may indicate an “inside-out” model of BBB
breakdown, as CNS infection may be required to trigger
alterations in the vasculature.

Further evidence supporting the idea of SARS-CoV-2-
induced damage to the neurovascular network comes from
Song et al. (2021), who found no viral presence in the vascular
endothelium of intranasally-infected k18-hACE2 mice but did
observe disruption in the cortical vasculature at 7 dpi. After
labelling for nucleocapsid protein, CD31, and Podocalyxin, a
whole brain vascular reconstruction was made using ClearMap
(120). Neural cells with high viral expression coincided with
abnormal density and orientation of the vascular network (120).
As the vascular endothelium was negative for SARS-CoV-2
FIGURE 3 | SARS-CoV-2 Damages the Blood Brain Barrier from the “Inside-Out” as well as from the “Outside-In.” Neurotropic infection triggers the activation of
glial cells and a proinflammatory response that damages the BBB from within the CNS (inside-out). This is supported by evidence of basement membrane disruption
without tight junction alteration, as well as altered cerebral vasculature without direct endothelial cell infection. In contrast, evidence of disrupted or absent tight
junctions, as well as upregulated ICAM and VCAM on endothelial cells suggests an outside-in mechanism that allows the diapedesis of autoreactive T cells from the
blood, through the BBB, and into the brain. Contracted pericyte morphology coupled with upregulated ICAM and ACE-2 expression also suggests an outside-in
mechanism.
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expression, these results suggest that CNS infection can lead to
vasculature alteration and potential “inside-out” damage to the
BBB (120).

In summary, even if SARS-CoV-2 infection is not, on its own,
sufficient to trigger MS-like demyelination in infected subjects,
the likelihood of an altered or disrupted BBB appears high. In
individuals with existing MS, further weakening of an already
compromised BBB from the inside-out by COVID-19 could
further damage oligodendrocytes and exacerbate existing
demyelination, thus contributing to exacerbation of symptoms.

Hypoxia: A Potential Factor in Demyelination?
With growing evidence that SARS-CoV-2 can alter the
neurovasculature, the potential for microthrombi in the large
vessels of the brain should be addressed, as this can lead to
reduced blood flow and ischemia. Large vessel occlusion is
frequently observed in around half of COVID-19 patients, as
well as ischemic stroke (121). Microthrombi and acute infarction
are seen in the brains of autopsied COVID-19 patients (74, 122,
123), accompanied by elevated D-dimer and fibrinogen (122,
124). Ischemic infarcts in subcortical white matter have been
found following brain autopsies, as well as tissue damage and cell
death (120). In a case series of 50 patients assessed a minimum of
6 weeks following a confirmed SARS-CoV-2 infection, Fogarty
and colleagues found that, compared to controls, these patients
had pro-thrombotic changes and elevated EC activation markers
(125). Together, these findings are suggestive of an underlying
endotheliopathy and could explain the high prevalence of
thrombotic events in convalescent COVID-19 patients (126).

Further, studies utilizing human brain organoids have
demonstrated how virally induced hypoxia can damage nearby
cells. When incubated with SARS-CoV-2, infection is seen in
neurons, radial glia, and neuronal progenitor cells, but only 15%
of infected cells show evidence of cell death (120). Rather, infected
cells appear to promote death of nearby cells, possibly via hypoxia,
as evidenced by increased HIF-1a staining (120). This, coupled
with hypoxia triggered from altered neurovasculature and
ischemia, could play a role in oligodendrocyte damage and
interfere with myelination.

An “inside-out” mode of altered vasculature and subsequent
hypoxia has the potential to severely damage the neural landscape
in those with MS, particularly oligodendrocytes. A study utilizing
zebrafish to investigate the effect of hypoxia on myelination
showed that hypoxia is linked to suppressed OPC migration,
decreased oligodendrocyte myelination, and reduced myelin
basic protein (MBP) (127). Hypoxia has also been linked to
reduced myelinogenesis and motor impairment in adult mice,
likely from inhibiting OPC differentiation (128). This raises the
possibility that SARS-CoV-2 triggered hypoxia may exacerbate
CNS myelin damage in MS patients, as reparative and
remyelination mechanisms appear to be suppressed in hypoxic
states. Indeed, hypoxia has been observed in both mouse and
human demyelinating lesions, suggesting it plays a role inMS. For
example, in an LPS triggered EAEmodel ofMS, hypoxia is evident
in the gray andwhitematter of rat spinal cords prior to the onset of
demyelination (129). Interestingly, autopsymaterial from patients
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with MS, patients with virally induced (HSV, CMV, and PML)
inflammatory white matter lesions, and patients with acute
ischemic stroke, show similar trends of decreased myelin
associated glycoprotein (MAG), oligodendrocyte apoptosis, and
significant nuclear HIF-1a expression (130). SARS-CoV-2
induced hypoxia via vasculature alteration or other mechanisms
may therefore increase the demyelinating process in MS
afflicted individuals.

Evidence for “Outside-In” Neuroinvasion
Some viruses such as West Nile Virus, HIV-1, and Zika Virus,
gain access to the CNS via the hematogenous route, by either
infecting circulating cells capable of passing the BBB, or by
directly altering the integrity of the BBB and its endothelial cells
(131–134). Here, we examine evidence that SARS-CoV-2 may
also use a hematogenous route to invade the CNS from the
outside-in.

Following infection of hiPS-BCECs from the apical side of a
transwell dish (representing the vessel), SARS-CoV-2 N and
Spike proteins are detected in a dose dependent manner in these
cells starting at 1 dpi (114). A significant increase in SARS-CoV-
2 RNA is seen on the basolateral side (representing the brain
parenchyma) as early as 16 hpi, although permeability to
fluorescein protein is unchanged (114). Thus, tight junctions
may not be directly disrupted by SARS-CoV-2; however, the
virus may breach the BBB via transcellular passage in vesicles,
mimicking “outside-in” infiltration (114). In vivo, injection of
radiolabeled S1 protein (I-S1) revealed that it readily crosses the
BBB in comparison to radiolabeled albumin, which crosses poorly
(135). This was shown to occur via adsorptive transcytosis, a
mechanism in which proteins bind to endothelial glycoproteins
and travel across the cell membrane via vesicles (135).
Interestingly, intravenous injection resulted in ten times more
whole-brain I-S1 than intranasal injection in this model, and low
amounts of I-S1 could be detected in the blood following intranasal
injection (135). This suggests that the hematogenous route of
SARS-CoV-2 infection may in fact be more efficient than the
“inside-out” route (Figure 1).

ACE2 is expressed in endothelial cells of theBBB, pericytes, and
astrocyte endfoot processes, which extend to the blood vessels
(136). ACE2 expression is heterogenous in pericytes, with some
patients exhibiting moderate to high levels of ACE2, and others
expressing close to none (137). Of note, an analysis of brains of
COVID-19 patients at autopsy indicated that neurological
symptoms were only present in those with moderate-to-high
levels of perivascular ACE2 expression and subsequent BBB
leakiness (137). In human brain vascular pericytes, ACE2
expression is significantly upregulated in a dose dependent
manner following in vitro stimulation with SARS-CoV-2 Spike
protein, aswell as inpericytes exposed toSpikeproteinandhypoxia
(138).A contracted and elongatedmorphology accompaniedby an
increase in ICAM, IL-18, and MIF expression is also seen in these
pericytes, which is enhanced by hypoxia (138). In k18-ACE2mice
infected intranasally with SARS-CoV-2, ACE2 expression in
pericytes is also increased, and pericytes exhibit a reactivity
pattern similar to that seen after ischemic stroke (138). An
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upregulation of ACE2 may facilitate the neuroinvasion of SARS-
CoV-2 through the BBB and into the brain parenchyma, while an
altered pericytemorphologymay be harmful to the BBB structural
integrity. An increase in ICAM and inflammatory pathways could
also increase the diapedesis of immune cells in an “outside-in”
manner, further allowingBBBbreach and potential damage to glial
cells such as oligodendrocytes.

The pathophysiology of long COVID may feature a sustained
increase in BBB permeability, with evidence suggesting that
endothelial cell activation may play an important role. Chioh
and colleagues found elevated levels of circulating endothelial
cells (CEC), a marker of vascular injury, in post-COVID-19
patients (139). The CEC elevation in these patients correlated to
elevated pro-inflammatory cytokine levels, such as IL-8, IL-17A
and IL-18, suggesting persistent immune activation as a trigger of
EC activation. Evidence of direct endothelial cell infection is of
importance when evaluating possible entry routes of SARS-CoV-
2 in the CNS. It could suggest that upregulation of ACE2 in the
brain vasculature could permit SARS-CoV-2 virus to gain access
to the CNS directly after infecting endothelial cells. Notably,
hBMVECs incubated with all three Spike protein subunits also
trigger an increase in ICAM-1 and VCAM-1 after 4 hours, which
remain elevated by 24 hours. ICAM-1 and VCAM-1 play
essential roles in T cell extravasation from the blood into
tissues, including the diapedesis of particles across the BBB
into the brain parenchyma (140) . Viral ly induced
inflammation coupled with upregulated ICAM-1 and VCAM-1
could allow SARS-CoV-2 to breach the BBB in an “outside-in”
manner. Further, elevated levels of the leukocyte chemotaxis
factors CXCL10 and CCL5, the pro-inflammatory cytokines IL-
1b and IL-6, and numerous MMPs are also observed following
exposure to each of the subunits (113). In the context of MS,
elevated ICAM-1, VCAM-1, and leukocyte chemotaxis factors
may not only increase the potential for SARS-CoV-2
neuroinvasion but may also increase the diapedesis of
autoreactive T cells into the CNS where they can attack and
destroy myelin. Further degradation of the BBB by inflammatory
cytokines and MMPs have the potential to facilitate this process.
It is thus important to consider the hematogeneous route of
SARS-CoV2 neuroinvasion, as the BBB can be attacked from
both the “inside-out”, as well as the “outside-in”.

Evidence for “Outside-In” via the Choroid Plexus
Studies also suggest a role for the choroid plexus in SARS-CoV-2
neurotropism. Transcriptome studies of the choroid plexus from
COVID-19 patients show that the structure expresses genes for
SARS-CoV-2 entry and has upregulated inflammatory genes, as
well as upregulated IFITIM3, which is a gene responsible for
antiviral defense (102). Choroid plexus inflammation is also
observed in the brains of postmortem COVID-19 patients
(120). Infection of the choroid plexus presents an alternate
route for viral and leukocytic entry into the CNS, likely in an
“outside-in” manner from the blood into the CSF and
brain parenchyma.

SARS-CoV-2 infection has been observed in choroid plexus
organoids (141, 142), and viral breach may be due to loss of
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integrity of the barrier following infection. Genes involved in cell
junction structure are downregulated in infected organoids (141),
and disrupted tight junctions are also observed, as evidenced by
irregular claudin-5 staining (142). An upregulation of
inflammatory cytokines such as CCL7, IL-32, CCL2, IL-18, and
IL-8 (3)may further allow theweakening of the choroid plexus and
permit the entry of SARS-CoV-2 and leukocytes into the CNS,
resulting in further neuroinflammation and damage to CNS
structures such as myelin.

Molecular Mimicry and Generation of
Autoantibodies
Relapse-onset MS is well established as a T cell autoimmune
disease. The possibility of cross-reactivity of SARS-CoV-2-
specific T cells with myelin antigen (molecular mimicry) is
thus an attractive one. T cell clones generated from blood
samples of MS patients have previously shown to be cross-
reactive for human coronaviruses (HCoV-229E and HCoV-
OC43) and myelin, with HCoV-229E and MBP appearing to
be the two antigens most involved in cross-reactivity (143). An
activated coronavirus-specific T cell clone in the immune
periphery could conceivably infiltrate the CNS and elicit or
worsen tissue damage. Indeed, cross-reactivity to both myelin
basic protein and coronavirus epitopes is observed in T cell
clones from MS-affected individuals (Figure 4).

Recent literature suggests that SARS-CoV-2 can in fact trigger
the production of autoantigens against neural structures. In a
study of eleven SARS-CoV-2 positive patients in Germany, two
patients were identified to have myelin autoantibodies in their
serum and CSF (144). The CSF was analyzed with indirect
immunofluorescence on unfixed mouse brains to identify
autoantibodies not detected by normal assays (144). This
demonstrated goat anti-human IgG staining on numerous
neuronal structures such as the hippocampus, olfactory bulb,
vessel endothelium, astrocytic proteins, neuropil of the basal
ganglia, glial limitans, and myelinated fibers in the cerebellum
(144). The specific observation of autoantibodies against myelin
and vascular components is interesting, as one could imagine that
damage tomyelinated structures and the BBB would be harmful to
COVID-19 patients with MS. While the study size was small, the
fact that autoantibodies for neural structures were detected
highlights the potential for virally induced molecular mimicry.

In a preprint study, 408 proteins with high dermatan sulfate
(DS) affinity have been uncovered; DS often binds released
autoantigens (145). Using bioinformatics, this “autoantigenome”
was compared to proteins thatwere altered at the protein andRNA
levels in COVID-19 patients and SARS-CoV-2 infected cells. This
analysis identified numerous autoantigens that were highly
associated with the nervous system, including 23 autoantigens
for the olfactory bulb and 26 for the myelin sheath (145). This is
intriguing, as it could explain case studies showing demyelination
following SARS-CoV-2 infection (7, 95). As an example, a recent
case study of a SARS-CoV-2 positive 26-year old man presenting
with optic disc edema, bilateral optic neuritis, and short lesion in
the cervical spine, showed the presence of MOG-IgG antibodies
(51). The patient reported experiencing a progressive dry cough a
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few days before the occurrence of vision issues and lacked a
personal or family history of demyelination or autoimmunity (51).
TheMOGautoantibodies and subsequent CNSdemyelination were
thus thought to be triggered by SARS-CoV-2 infection (51).
Demyelination following viral infection is not unheard of, as it
also occurs in acute disseminated encephalomyelitis (ADEM), a
phenotype of MOG-associated disease (146).

Neural autoantigens were detected in another study in which
molecular mimicry was suspected (87). The CSF and blood of
COVID-19 patients with neurological symptoms were analyzed
to determine if compartmentalized immune responses occur in
response to the virus (87). Numerous antineural autoantibodies
were discovered in the CSF through anatomic mouse brain
immunostaining, including that for cortical neurons, the
olfactory bulb, thalamus, hippocampus, cerebellum, brain stem,
and cerebral vasculature (87). As the thalamus is another
important relay and plays a significant role in MS pathology,
and antibodies targeting most of these structures were also
demonstrated in Franke et al. (144), these data further
highlight the potential for SARS-CoV-2 to trigger autoimmune
responses that could potentially exacerbate MS symptoms.
Frontiers in Immunology | www.frontiersin.org 13
Cytokine Storm and Peripheral T Cells
COVID-19 pathogenesis involves an initial viral replication
phase, responsible for the flu like symptoms and pneumonia,
that can progress in some cases to a multi-systemic inflammatory
disease, with an exaggerated immune response characterized by
cytokine storm (147). Acute respiratory distress syndrome
(ARDS) is one example of a secondary organ dysfunction that
was observed in up to 20% of COVID-19 cases early in the
pandemic (148). The biphasic disease model is supported by the
RECOVERY trial (149) in which dexamethasone, an
immunosuppressive drug, showed great benefits in severely ill
patients (severe and critical disease), but did not improve
outcomes in patients that did not need supplemental oxygen
(mild to moderate disease). The inflammatory response in
COVID-19 patients is mediated by cytokine storm, that may
be induced by pro-inflammatory T cells. Indeed, persistent
activation of CD4+ and CD8+ T cells in COVID-19 patients is
associated with severe disease and worse outcomes (150).

Fajgenbaum and June have proposed a unifying definition of
cytokine storm based on three criteria: 1) elevated circulating
cytokine levels, 2) acute systemic inflammatory symptoms and
FIGURE 4 | Peripheral immune activation and molecular mimicry against myelin. The adaptive immune response to SARS-CoV-2 may result in the activation of
CNS-autoreactive T cells as a result of molecular mimicry. Cytokine storm, observed in SARS-CoV-2 infected individuals, could then elicit the differentiation of CNS-
antigen-specific Th17 cells. The upregulation of IL-6, IL-17, and TNF-a is of particular interest, as these cytokines are heavily linked to MS and other demyelinating
disorders in mouse and man such as NMOSD and EAE. Further research is needed to understand the Th1 response and generation of IFN-g in response to COVID-
19, as literature suggests mixed results.
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3) excessive secondary organ dysfunction due to inflammation (if
a pathogen is present), or any cytokine-driven organ dysfunction
(in the absence of pathogen) (55). Numerous cytokines have
been identified as being increased in the circulation of COVID-
19 patients, such as IL-6 (14, 68, 151, 152), as well as IFN-g and
IL-17 (69). Other elevated cytokines in COVID-19 patients
include TNF-a, G-CSF, IL-2, and IL-7, as well as the anti-
inflammatory cytokines IL-4 and IL-10 (11, 151, 152). Here,
we focus on IL-6, IL-17, and IFN-g, given their known
involvement in MS and other neuroimmunological
disorders (Figure 4).

IL-6
IL-6 is a prominent pro-inflammatory cytokine in the innate
immune response to pathogen, often released by macrophages,
endothelial, epithelial, and mast cells (153). A significant
increase of IL-6 in the blood can lead to cytokine storm, as it
triggers immune cell recruitment to the infection site,
contributes to endothelial cell damage and vascular
permeability, and increases the likelihood of ARDS, multi-
organ failure, and death in cases with systemic inflammation
(153). Coronavirus infections can trigger the release of cytokines
such as IL-6 from monocytes, macrophages, and dendritic cells,
leading to either the classic cis or trans signaling pathways (148).
While the cis pathway can result in Th17 cell differentiation, an
increase in CD8+ T cells, and a decrease in Treg cells, the trans
pathway can trigger an increased proinflammatory response
that can damage vasculature (148). In human airway epithelial
cells, the nucleocapsid protein of SARS-CoV appears to
stimulate IL-6 expression (154). In the murine nervous
system, SARS-CoV infection triggers IL-6 expression by
neurons and astrocytes (78), while SARS-CoV-2 triggers IL-6
expression by microglia in vitro (105), suggesting a potential
role for IL-6 in neurological damage seen by coronaviruses. IL-6
expression is also seen in the brains of SARS-CoV-2 infected
mice and hamsters, as well as from infected BMECs from these
animals, further supporting IL-6’s role in SARS-CoV-2-
triggered vasculature damage (119).

Given its significant upregulation and role in SARS-CoV-2-
triggered cytokine storm, it is unsurprising that elevated IL-6 is
associated with poor prognosis (14, 68, 151, 152). Specifically, IL-
6 serum levels are higher amongst patients with moderate to
severe COVID-19 (151). Additionally, a meta-analysis revealed
that serum IL-6 concentration was, on average, 2.9-fold higher in
complicated COVID-19, defined as the presence of ARDS, ICU
admission, or severe/critical COVID-19, as compared to their
non-complicated counterparts (68). Heightened IL-6 is
associated with respiratory failure and the need for mechanical
ventilation, marking it as an important cytokine in COVID-19
pathogenesis (155).

Researchers have suggested the use of IL-6 blocking agents
such as tocilizumab and sarilumab for therapeutic benefit, but
clinical trials have produced varied results. One clinical trial
showed no significant benefit of tocilizumab treatment in
preventing intubation or death in COVID-19 patients (46),
while others have shown significant reductions in mechanical
Frontiers in Immunology | www.frontiersin.org 14
ventilation and death, as well as significant improvements in
clinical outcomes in patients treated with tocilizumab or
sarilumab (156, 157). Metanalyses tend to favor the use of IL-6
blocking agents in improving patient outcomes (158, 159). One
has even showed that IL-6 concentrations in the blood before
drug administration can predict the outcome of tocilizumab
treatment, with initially high IL-6 correlated to improved
treatment success compared to initially low IL-6 (160).

Upregulated IL-6 in COVID-19 patients may lead to MS
exacerbation, as this cytokine has consistently been linked to
worsened demyelination and histopathological scores in EAE
models. IL-6 deficient mice appear resistant to EAE, as evidenced
by significantly reduced clinical scores, demyelination, and
inflammation in the CNS (161, 162). The activation and
differentiation of MOG-specific T cells is dampened in IL-6
deficient mice, suggesting this process is dependent on IL-6
(162). Anti-IL-6R monoclonal antibodies (anti-IL-6R-mAbs)
have been shown to significantly reduce the onset and severity
of EAE induced inflammatory infiltrates anddemyelination inmice
(163).An increase in IL-6due to SARS-CoV-2may therefore lead to
worsened MS symptoms, specifically demyelination. The fact that
SARS-CoV infection triggers upregulated IL-6 in astrocytes is also
intriguing (78), as astrocytic IL-6 has been shown to play a
significant role in EAE development (164). Specifically, astrocyte-
IL-6-KOmice (Ast-IL-6-KO) showdelayedonset ofEAEpathology
and significantly less inflammatory infiltrates and demyelination in
the spinal cord (164). While this effect is only observed in female
Ast-IL-6-KO mice (164), the evident role of IL-6 in demyelination
supports the potential for an IL-6 driven exacerbation of
inflammation and demyelination in SARS-CoV-2 positive
MS patients.

IL-6 also plays a significant role in the pathogenesis of NMO
and NMOSD. Individuals with NMO that are seropositive for
anti-AQP4 show significantly higher CSF concentrations of IL-6
than patients that are seronegative (165). IL-6 concentrations in
the CSF are also positively correlated with the length of spinal
cord lesions in these patients (165). Additionally, risk of relapse
is correlated with IL-6 plasma concentration and with monocyte
production of IL-6 (166). IL-6 may additionally play a role in
reducing BBB integrity in NMOSD (167). Interestingly,
tocilizumab and satralizumab show promise in treating
NMOSD, as they appear to significantly reduce relapse rate in
patients, further implicating the role of IL-6 in this
demyelinating disorder (168).

The fact that IL-6 is linked to both EAE and NMOSD shows
its importance in demyelinating events and suggests a negative
effect of heightened IL-6 in SARS-CoV-2 positive individuals
with MS. Notably, IL-6 plays a critical role in the differentiation
of Th17 cells, acting in concert with TGF-b (169) to drive this
subset at the expense of Treg (170, 171). As IL-17+ Th17 cells and
IL-17 play critical roles in MS pathogenesis, their response to
COVID-19 is also of interest (36, 54).

IL-17 and Th17 Cells
Recent data has implicated the role of IL-17 in COVID-19
pathogenesis. Transcriptomics analyses showed upregulated
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IL-17 signaling in various cell types infected with SARS-CoV-2,
including those of the lung, heart, and liver (172). IL-17
upregulation appears stronger in SARS-CoV-2 relative to SARS-
CoV or MERS-CoV, suggesting a robust IL-17 response that is
unique to SARS-CoV-2 (172). IL-17 production is also increased
uponCOVID-19 infection in humans.While some have suggested
IL-17 is significantly elevated in mild COVID-19 patients
compared to those that are not infected (69), other studies have
shown upregulated IL-17A in COVID-19 patients regardless of
disease severity (173).

COVID-19pathologymay also shift the relative balance ofTh17
versus Treg. In a study of 40 COVID-19 patients admitted to the
ICU, Th17 cell frequency was upregulated in peripheral blood
compared to healthy controls (174). The increase in Th17 cells
was accompaniedby a significant increase in theTh17 transcription
factor RORgt, as well as an increase in IL-17 and IL-23, indicating a
significant Th17 response (174). Interestingly, a significant
reduction in Treg cells was seen in COVID-19 patients compared
to controls, accompanied by a reduction in the Treg transcription
factor FoxP3 and a decrease in Treg related cytokines such as IL-10
and TGF-b (174). The same trends were observed in COVID-19
patients that succumbed to the disease compared to recovered
patients, indicating a substantial role of Th17 driven IL-17 response
inCOVID-19 severity (174).Neutrophilsmay also play a role in the
promotion of Th17 induction upon SARS-CoV-2 infection, as co-
cultures of SARS-CoV-2 infected neutrophils and T cells appear to
shift the resulting response towards Th17 and away from IFN-g+

Th1 (175).
An increase in mortality of patients from IL-17 upregulation

seems plausible, as upregulated IL-17A has been associated with
acute respiratory distress syndrome (ARDS) and diseases that
increase COVID-19 complications such as hypertension,
diabetes, and obesity (176, 177). Indeed, IL-17 is elevated in
the peripheral blood of ARDS patients, as well as the
bronchoalveolar lavage (BAL) fluid in mice with LPS-induced
acute lung injury (ALI) (178). IL-17 is correlated with ALI in
these mice, and IL-17 deficient mice show significantly less
severe ALI, as do mice treated with neutralizing antibodies
against IL-17 (178).

Accessory proteins such as the open reading frame 8 (ORF8)
may be responsible for an increase in IL-17 driven inflammation in
COVID-19 patients, as it has been shown to interact with the IL-
17Areceptor (IL17RA)and stimulate the IL-17pathway, even in IL-
17 deficient cells (179). Mice treated with IL17RA antibodies are
protected from IL-17pathway activation (179). Interestingly, ORF8
has also been linked to the inhibition of the type I interferon (IFN-I)
response (180, 181). It has been suggested that COVID-19 severity
is driven by dampened antiviral IFN-I and IFN-III responses,
coupled with an excess of proinflammatory cytokines such as IL-
6 and TNF-a (182–184). An activated IL-17 inflammatory
pathway, a weakened antiviral response, and an abundance of
proinflammatory cytokines triggered by ORF8 is therefore likely
to trigger a cytokine storm that could lead to an excessive
inflammatory microenvironment.

The growing literature surrounding the role of IL-17 in
COVID-19 has led some researchers to propose inhibiting
Frontiers in Immunology | www.frontiersin.org 15
Th17 and IL-17 for therapeutic benefit (177, 185). The IL-17
antagonist netakimab has shown promising results (186, 187). In
a retrospective study of COVID-19 patients treated with
netakimab, the IL-6 antagonist tocilizumab, or no treatment,
the netakimab treated group showed significantly less mortality,
ICU admission, and mechanical ventilation requirement than
the other two groups (187). Individuals in the netakimab group
also showed significant reductions in lung lesions and no longer
required oxygen support (187). In another study, COVID-19
patients taking netakimab showed significant improvement in
parameters such as respiratory rate, body temperature, and
spO2/FiO2, but clinical outcomes such as mortality rates were
not impacted (186). A clinical trial for the IL-17A monoclonal
antibody Ixekizumab is also underway (188).

Increased serum levels of IL-17 could plausibly lead to MS
exacerbation, as it has been closely linked to its pathogenesis.
Th17 cells are involved in the recruitment of neutrophils via IL-
17, IL-21 and IL-22 release (54). They have been linked to the
pathogenesis of several autoimmune disorders, including MS,
and contribute to BBB disruption, microglial activation, and
astrocyte dysregulation in EAE models (53). During MS relapses,
increased frequencies of IL-17-producing CD4+ T cells have been
detected in both peripheral blood and CSF (36). Th17 cells are
also involved in the activation of CD8+ T cells. Further, they can
directly damage oligodendrocytes (52) and may also be involved
in the axonal damage seen in MS (36). Indeed, it is hypothesized
that Th17, via IL-17, inhibits the maturation and survival of
oligodendrocytes (53). In RRMS, elevated levels of IL-17A
correlate with an increased CSF to serum albumin quotient
(Qalb), suggesting a role of IL-17 in BBB disruption and loss
of integrity (189). High levels of IL-17 and Th17 have been
documented during MS relapses, both in the periphery and in the
CSF (36). Th17 is now considered, along with Th1, one of the
main players in MS relapses.

IFN-g
Th1 cells are characterized by their release of the pro-
inflammatory cytokine IFN-g, and both recruit and activate
macrophages (190). They have historically been considered key
drivers in MS, having been linked to disease onset and
progression (54), and to inflammatory activation within the
CNS (53). Given that it is a noted player in cytokine storm
(55), one might expect that IFN-g production and, by extension,
Th1 activation, may characterize COVID-19 pathology.

Surprisingly, however, the evidence is somewhat mixed. On
the one hand, in a study of COVID-19 patients with ARDS,
SARS-CoV-2-specific T cells robustly secreted Th1-related
cytokines such as IFN-g, TNF-a, and IL-2 (191). Further, IFN-
g was found to be amongst the most upregulated cytokines in
COVID-19 patients, along with IL-6 and TNF-a; concomitant
blockade of IFN-g and TNF-a rescued mortality in k18-hACE2-
Tg mice that were infected with SARS-CoV-2 (192).

On the other hand, other studies have drawn the conclusion
that IFN-g production and Th1 activity may actually be
diminished in the context of COVID-19 pathology. Advanced
age and comorbidity index are associated with lower overall
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levels of IFN-g secreting T cells in COVID-19 patients, and
patients who recover from a mild disease also appear to have a
higher expression of IFN-g T cells compared to ICU patients
(193). Furthermore, severe COVID patients have lower levels of
circulating IFN-g as well as reduced frequencies of CD4+ and
CD8+ T cells as compared to those with moderately severe
pathology (151), and polyfunctional Th1 cells are present in
lower frequencies in patients with COVID-19. These data hint at
a failure to generate a robust Th1 response to SARS-CoV-2
(194). It is important to keep in mind that Th1 cells are
considered protective in the context of viral infection –
therefore, impaired Th1 responses to acute infection might
allow SARS-CoV-2 infection to persist, ultimately resulting in
more severe pathology. Further, IFN-g production is not
restricted to T cells; it is a key effector cytokine produced by
macrophages and NK cells, and thus impaired Th1 functionality
might not present the full picture with respect to the role
played by IFN-g in COVID-19 disease. Further work is needed
to clarify a potential connection between COVID-19-induced
cytokine storm and IFN-g/Th1-mediated exacerbation
of neuroinflammation.
CONCLUSION

MS pathophysiology is multi-factorial, with strong evidence
pointing toward a potential viral trigger, such as EBV. The
goal of this hypothesis paper was to present the evidence
supporting that SARS-CoV-2 may also act as a viral trigger for
MS and other neuro-inflammatory diseases, by altering the CNS
cellular micro-environment by two potential routes of entry. We
propose a model in which SARS-CoV-2 infection and
subsequent COVID-19 pathology might exacerbate MS or
related disorders such as NMOSD. SARS-CoV-2 can directly
infect the CNS via the olfactory bulb and the cribriform plate,
resulting in neuronal damage and the inhibition of OL
differentiation and remyelination. These pathologic responses
are augmented by microglial cell death, leading to impaired
clearance of myelin debris, and by the secretion of neurotoxic
soluble factors from activated astrocytes. In parallel, SARS-CoV-
2 can elicit the generation of CNS-specific lymphocytes via
molecular mimicry, while favoring the differentiation of key Th
subsets pertinent in MS, via the elicitation of cytokine storm.
Crucially, the neurotropic and hematogenous routes of infection
and pathology converge on the BBB, which is weakened from
both the inside and outside, thus facilitating the infiltration of
peripheral immune cells into the CNS parenchyma.

The potential effect of SARS-CoV-2 infection on MS is two-
fold. First, it may trigger MS relapses in affected individuals as
an immediate consequence to a pro-inflammatory reaction.
Second, it can alter more permanently the CNS structural and
cellular environment in infected individuals, increasing the risk
of developing MS in the long-term. We note that these two
mechanisms are currently speculative, at this point, as published
data on a direct link between MS and SARS-CoV-2 in
humans is scarce. A number of case studies have reported
Frontiers in Immunology | www.frontiersin.org 16
neuroimmunological events, occurring shortly after SARS-
CoV-2 infection, as expected in secondary auto-immune
events. However, caution should be used in interpreting case
reports, given the sheer number of SARS-CoV-2 infections
worldwide and the possibility of reporting bias; one cannot
infer whether these cases happened by chance or not, in people
who happened to be recovering from COVID-19. Few
retrospective studies have been conducted so far to examine
exacerbation of MS symptoms following SARS-CoV2 infection,
and those identified show mixed results. Large-scale
epidemiological studies would be needed, to show an increase
in incidence of the disease or in its relapse rate during COVID-
19 waves or in the years to follow. MS is a chronic disease and its
diagnosis can be made years after an initial pathological event.
This is a limitation in establishing a link between SARS-CoV-2
infection and MS. The use of disease modifying therapies in MS
and the widespread COVID-19 vaccination campaign can also
alter a potential causal link between SARS-CoV-2 and MS,
respectively by affecting immune cells and their cytokine
profile and by reducing SARS-CoV-2 viral load and the
likelihood of COVID-19 infection.

In conclusion, we propose a model for how SARS-CoV2 can
potentially shape CNS autoimmunity via parallel activity in the
CNS microenvironment and immune periphery. Further
research is warranted in several key areas before a more
conclusive link between SARS-CoV-2 and MS can be made.
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