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Abstract

The conserved function of protein phosphorylation, catalysed by members of protein kinase

superfamily, is regulated in different ways in different kinase families. Further, differences

in activating triggers, cellular localisation, domain architecture and substrate specificity

between kinase families are also well known. While the transfer of γ-phosphate from ATP to

the hydroxyl group of Ser/Thr/Tyr is mediated by a conserved Asp, the characteristic func-

tional and regulatory sites are specialized at the level of families or sub-families. Such fam-

ily-specific sites of functional specialization are unknown for most families of kinases. In this

work, we systematically identify the family-specific residue features by comparing the extent

of conservation of physicochemical properties, Shannon entropy and statistical probability

of residue distributions between families of kinases. An integrated discriminatory score,

which combines these three features, is developed to demarcate the functionally specialized

sites in a kinase family from other sites. We achieved an area under ROC curve of 0.992 for

the discrimination of kinase families. Our approach was extensively tested on well-studied

families CDK and MAPK, wherein specific protein interaction sites and substrate recognition

sites were successfully detected (p-value < 0.05). We also find that the known family-spe-

cific oncogenic driver mutation sites were scored high by our method. The method was

applied to all known kinases encompassing 107 families from diverse eukaryotic organisms

leading to a comprehensive list of family-specific functional sites. Apart from other uses, our

method facilitates identification of specific protein interaction sites and drug target sites in a

kinase family.

Author summary

Protein kinases are molecular switches that destine crucial decision points in cell signal-

ling pathways. Consequently, they are implicated in the normal functioning of a cell as

well as in various cancers if mutated. Kinases constitute a large and diverse superfamily

with conserved 3-dimensional structure and catalytic function. Despite the monotony,

individual kinase families differ extensively in their cognate substrates, binding partners
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and mode of regulation. The determinants of these specific characteristics are unknown

for most kinase families. Using an integrated computational method, tested successfully

on known cases, we propose a comprehensive list of functionally-specialized sites in all

known kinase families. Such knowledge allows for understanding of mechanistic basis of

regulation and tinkering of functions specific to a kinase family.

Introduction

Protein kinases, as key regulators of cellular functions, are among the largest and most diverse

protein superfamilies known [1,2]. On account of their phosphotransfer function to a Ser /

Thr / Tyr residue in eukaryotes, they are also known as STY kinases. Congruent to their func-

tion as molecular switches that determine outcome at critical decision points of cell signalling

pathways, their indispensable nature is reflected by the conservation of at least 51 unique

kinase families across phyla, from yeast to mammals [3]. During the course of divergent evolu-

tion, the broad catalytic function and the 3-dimensional fold are well conserved [4]. Despite

the monotony, kinases exhibit high diversity in terms of differences in activating triggers [5–

8], regulatory mechanisms [9,10], cellular localisation [11–13], domain architectures [1] and

substrate specificity [14]. In this context of dualism of similarity and differences, the modules

responsible for common and preserved features, like, ATP binding [15], phosphotransfer [16]

and 3-dimensional conformation of active state [17] are well known. However, the correlates

of kinase-specific functional and regulatory attributes, which differentiate one kinase from

another, are not completely understood. Indeed, for many kinases the sites of functional spe-

cialization is yet unknown.

In the present study, we aim to identify the sites of functional specialisation in all known

eukaryotic protein kinase families. These are residues involved in specific protein-protein

interactions, cognate substrate recognition, response to specific signals, etc., and thus are the

defining and discriminating attributes of the corresponding kinase. Clearly, knowledge of such

sites finds immense application in designing kinase-specific inhibitors, protein engineering

and recognition of interaction partners. Such sites should ideally be identified by traditional

experimental methods like mutation studies and structural analyses using X-ray diffraction;

but these are evidently slow processes as in-depth information on family-specific functional

sites is so far known only for a few kinase families such as PKA [18], Src [19], MAPK [20] and

CDK [21,22]. In this scenario, we have analysed the sequences of all known STY kinases, com-

prehensively studied the conservation patterns within and across kinase families, devised a

unified scheme and identified kinase family-specific functional sites in each of them.

Residues of functional specialisation in a particular kinase family, say PKA, are by defini-

tion, crucial for PKA-specific functions and regulatory mechanisms, and thus are expected to

be conserved in all PKAs [23]. Additionally, since the associated function / regulation itself is

PKA-specific, evolutionary pressure for conservation of these sites exists selectively in PKA

kinases. As a result, such sites also possess the discriminatory ability to distinguish PKA from

other kinase families like PKC and Src. Following this rationale, we use two cardinal properties

of family-specific functional sites, viz., (i) differential conservation and (ii) discriminatory abil-

ity, to identify them.

In the past, several studies have attempted to delineate functionally characterised residues

in a family of homologous proteins [24–26]. Some methods like evolutionary trace analysis

[27] and energetics-based predictions [28] rely on protein structure to identify protein-ligand

and protein-protein interfaces. Other methods perform hierarchical analysis [29,30], statistical

Kinase family-specific functional sites
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analysis [31–34], ortholog and paralog investigations [35,36], calculation of rate of evolution

[37] and log-likelihood analyses [38] of protein sequences to identify specificity determinants

[39]. These studies may measure absolute conservation of amino acids [27,40], conservation of

physicochemical properties [29], correlated mutations [41,42], Shannon entropy and mutual

information [35,36,43–50], and probability [51,52], among others [30,46,53–58]. However,

these methods followed an all-or-none approach, in which a residue is labelled either func-

tional or unimportant. The emerging picture of modularity, within and outside of a protein

domain, is increasingly pointing towards a continuum of functional importance of residues

and regulatory features [18]. Further, these studies carry the limitations of the individual quan-

tification methods used. Most protein kinase studies have considered the entire superfamily of

protein kinases as one cluster [59], while others looked into specificity determining residues at

the group level [60]. In the current study, we propose an integrated scheme which uses the

advantages of several methods (conservation of physicochemical property, Shannon entropy

and random probability distribution) and scores the sites on a continuous scale of their func-

tional / regulatory specificity at the family level.

We systematically compiled a dataset of 5488 kinase catalytic domain sequences belonging

to 107 distinct kinase ‘families’ [61,62]. After aligning them into a single multiple sequence

alignment, we comparatively analysed the amino acid distributions in topologically equivalent

positions of different families. Based on 3 different analytical measures, we identified family-

specific functional sites that are differentially conserved in each of the 107 families. By maxi-

mising the discriminability between the kinase families, we integrated the results of the three

measures and devised a unified scoring scheme called ID_score. We assessed the competence

of this method by testing its ability to (i) cluster kinase sequences into groups and families, (ii)

aid a linear classifier in predicting the family of the kinase, and (iii) identify experimentally

determined kinase-specific functional sites like protein-protein interaction sites in CDK, sub-

strate recognition sites in MAPK and specific cancer-causing driver mutation sites. Finally, we

recognise the sites of functional specialisation in all known kinase families and demonstrate

one of the applications of this method in the prediction of specific protein-protein interaction

sites. In summary, we developed an integrated discriminatory method to identify regions of

functional specialisation, validated the results for known cases and applied the method to all

known kinase families to present an exhaustive list of sites of functional specialization in all

the kinases involved in this study.

Results

The results of the study are organised into four major sections: (i) dataset curation, explaining

the method of selection and organisation of STY kinase catalytic domain sequences, (ii) method

development, detailing the rationale and protocol to identify differentially conserved sites in

kinases and maximise the discriminability among them, (iii) method assessment and validation,

elucidating its performance by application to known sites of functional specialisation in a few

well studied kinases, and (iv) application, demonstrating a feasible avenue for practical use of

the method and applying it to all known kinases.

Dataset curation

The primary rationale behind our method is to recognize sites in the kinase catalytic domain

that are conserved uniquely within a family of kinases [27]. This passively assumes the existence

of a reliable system of classification of all known STY kinases into families. Such an empirical

and curated system of kinase classification developed after a series of comprehensive studies

[3,63–66], KinBase (KB), is illustrated in Fig 1A. This system of hierarchical classification clusters

Kinase family-specific functional sites
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Fig 1. Curation of STY kinase catalytic domain sequence dataset. Depicted is a schematic of the work flow followed to achieve a master alignment of all known kinase

catalytic domains. The sequence-to-family association for kinases was first retrieved from KinBase (KB), and illustrated in (A). The circles represent different KB

families and the entries within correspond to sequences, shown by KB identifiers, belonging to the family. This is exemplified by 7 representative kinase families cask

(yellow), camk-tt (orange), musk (light blue), utk (light green), sgk495 (dark green), kin6 (dark blue) and czak (brown). The genes of the kinases classified by KB were

retrieved to form a gene-to-family association (B). Protein products of the identified genes were then collated from all eukaryotes and augmented to the existing

KB_sequence-to-family mapping to achieve an extended classification of all kinases in UniProt into families (C). Care was taken to include only non-fragments and

sequences with kinase domain annotation. Kinase catalytic domain regions were then extracted from the full length protein to form the kinase domain sequence-to-

family association (D), such that no two sequences within a family share a sequence identity of>90%. The UniProt IDs, along with the kinase domain extents, are

enlisted within each family. All these sequences, across families, were aligned into a single multiple sequence alignment (See Alignment in Methods), which served as an

Kinase family-specific functional sites
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the STY kinases broadly into ‘groups’ and more finely into ‘families’. For demonstration pur-

pose, 7 randomly selected kinase families (cask, camk-tt, musk, utk, sgk495, kin6 and czak) are

depicted as coloured circles (yellow, orange, light blue, light green, dark green, dark blue and

brown respectively) among other families (gray circles) (Fig 1A). Kinases belonging to these fami-

lies, as identified by KB, are enlisted inside the corresponding circles.

We note that the KB system of classification, and thus the KB_sequence-to-family mapping

(Fig 1A), is available for kinases from as many as 15 species. However, in the exigency of the

study, it is vital to construct a dataset with kinase sequences as diverse as possible within each

family so as to distinguish sites that are truly conserved through the course of evolution from

those that accommodate variation without affecting the stability and function of the protein.

Thus, we aim to augment the KB_sequence-to-family mapping (Fig 1A) with additional

sequences from other organisms/phyla. To this end, we first identified the genes of every

sequence in the existing mapping by individual BLASTs [67] against UniProt [68], and curated

a gene-to-family mapping (Fig 1B). Gene names of kinases belonging to different families are

enlisted inside the corresponding family circles in Fig 1B. We note that gene names could not

be identified for a few uncharacterised sequences (e.g., sequences from family camk-tt) in the

KB mapping. We then enriched the KB_sequence-to-family mapping with sequences of corre-

sponding genes from other phyla / organisms (Fig 1C). While doing so, care was taken to

include only non-fragment sequences of eukaryotic lineage with kinase domain annotation

(Pfam IDs: PF00069 and/or PF007714) [69]. In the cases of ambiguous association of the same

gene to multiple families in KinBase, which is rare, kinase sequences of the corresponding

gene from all organisms were eliminated from the dataset. This resulted in UniProt_ID-to-

family mapping of 34,881 kinase sequences into 164 families (Fig 1C), consisting of sequences

originally present in KB as well as their orthologues in other species (full dataset available as S1

File). In Fig 1C, the UniProt IDs of kinase sequences belonging to different families are

enlisted in the corresponding family circles.

The dataset was further subjected to filters and constraints (see Dataset sub-section in

Methods section) to eliminate ambiguity and extract the kinase catalytic domain region from

full length sequence, as described below. After eliminating sequences with ambiguous associa-

tions with multiple families, a template sequence was chosen for every family. Choice of the

template sequence was based on (i) availability of information on the boundary (region) of

kinase catalytic domain in the full length sequence [70], and (ii) structurally well-studied

nature of the sequence as reflected by the highest number of available crystal structures for the

kinase when compared to other kinases within the family. In case of absence of crystal struc-

tures for a kinase family, a sequence with known boundary of kinase catalytic domain was ran-

domly chosen as the template. Next, all sequences in a family were aligned using MAFFT [71]

and the kinase catalytic domains were extracted for all sequences based on the boundary of the

catalytic domain of the template sequence. Kinase catalytic domain sequences thus extracted

were clustered at 90% sequence identity [72] to remove any bias or redundancy in the dataset.

In Fig 1D, the unbiased dataset of kinase domain sequence-to-family mapping is illustrated,

wherein the UniProt IDs and the boundaries of kinase domain are enlisted in the correspond-

ing family circles.

Finally, all the kinase domain sequences across families were aligned into a single multiple

sequence alignment (See Alignment section in Methods) of 5488 sequences from 107 families

of 7 distinct groups, which serves as an input to our method. During the alignment process, a

input to the ID_score method. The final dataset of 5488 kinases of 107 families in the multiple sequence alignment are represented by their UniProt IDs and kinase

domain extents in (E).

https://doi.org/10.1371/journal.pcbi.1005975.g001
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few sequences that could not be aligned confidently were discarded and the kinase catalytic

domain boundary was further pruned in order to trim the flanking gap regions in the termini.

In Fig 1E, the UniProt IDs and the boundaries of kinase domains, as present in the final multi-

ple sequence alignment, are enlisted in the corresponding family circles (full alignment avail-

able as S2 File).

Development of a method to predict sites of functional specialization

By parsing the alignment generated in the previous step, we set out to pinpoint the uniquely

conserved sites that maximise the discriminability of the family from the rest. This rationale

calls for a systematic position-wise comparison of the residues populating the family of interest

with those in the other families in a quantitative manner. In the past, several attributes were

shown to be useful measures to quantify the residue distributions [27,29,35,40,43,44,49,52,53].

We used 3 such attributes, conservation of physicochemical property (pc), Shannon’s entropy

(ent) and statistical probability (prob), to measure the similarities and differences in residue

distributions between families. Later, we integrated the results of the 3 measures and devised a

single scheme (ID_score) that scores the kinase residues in a manner that is reflective of the

uniqueness of the site to the family.

Pipeline of the method. The master alignment of 5488 sequences belonging to 107 fami-

lies, indexed from f1 to f107, is schematised in Fig 2A depicting parts of sequences of families

f1 (PKA, blue), f2 (PKG, red), . . ., f107 (CDK, green). It should be noted that the alignment

depicted in Fig 2A is only illustrative, and does not reflect the entire master alignment. Also, for

purpose of clarity, we outline the pipeline of the method that identifies family-specific sites for a

family of interest (FOI) f1. Although the description in the section and illustration in Figs 2 and

3 are limited to f1, the entire procedure was repeated considering every family (f1, f2, . . ., f107)

as the FOI in order to identify family-specific sites in each of them.

An overt means to identify family-specific sites would be to compare the residues at every

alignment position p in the FOI f1 with those at the same position in all the other families.

However, f1 may be evolutionarily and functionally more closely related to a few families (say,

f2 and f3) than to others (say, f4, f5, . . ., f107). Thus, some attributes of p would be commonly

shared with that of the closely related families alone. As a result, upon comparison of p in the

FOI f1 with that of all the other families put together, f2-f107, quantification of the uniquely

conserved nature of p is not straightforward. We resolved this by performing pair wise com-

parisons of the FOI with every family in the dataset (nFOIs), viz., comparisons f1-f1, f1-f2, . . .,

f1-f107, as illustrated in Fig 2B. The justification is that a truly family-specific position in f1

will be differentially conserved in f1 in most / all of the pair wise comparisons. On the other

hand, a position in f1, say, from the ATP binding loop, whose function is globally conserved

across all kinase families, will be differentially conserved only in a few / none of the pair wise

comparisons. Thus, the fraction of pair wise comparisons in which p is differentially conserved

give a direct weight, on a scale of 0 to 1, indicating the magnitude of uniqueness of the position

to the FOI. Thus, every alignment position of the FOI was pair wise-compared with the corre-

sponding position of each of the 107 families in the dataset (nFOIs) as shown in Fig 2B.

Comparison of a position p in FOI f1 with that of, say, an nFOI f2 (Fig 2B, boxed position)

was made by analysing the residues that populate the family of interest (FOI), the family being

compared with (nFOI) and both the families considered together (FOI+nFOI), as illustrated in

Fig 2C. It should be noted that, in order to correct for any inaccuracy in the alignment, the res-

idues in position p in a family at a frequency less than 8.5% were disregarded before subse-

quent analyses. The conservation of physicochemical properties in the 3 categories, FOI, nFOI

and FOI+nFOI, is quantified (See Physicochemical measure section) and is denoted as

Kinase family-specific functional sites
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pc_FOI, pc_nFOI and pc_FOI+nFOI respectively. These were then consolidated and a binary

decision, as to whether (1) or not (0) the position p is differentially conserved in the FOI f1

when compared to the nFOI f2, with respect to conservation of physicochemical properties of

the residues, was taken. Since the FOI f1 was pair wise compared with each of the 107 families

in the dataset, we achieved 107 binary decisions (1 or 0) for an alignment position p, one for

each pair wise comparison. This procedure was repeated considering every position in the

master alignment as p, giving rise to pc_decision (Fig 2D). Likewise, ent_decision and prob_de-
cision were also calculated by measuring Shannon entropy and random probability attributes

of the residue distributions respectively (See Entropy measure and Probability measure

Fig 2. Pipeline of ID_score method. Shown is a schematic representation of the ID_score method to identify characteristic sites in kinase families. (A) A

representative fragment of the master alignment is shown illustrating 3 of the 107 families, f1 (PKA, blue), f2 (PKG, red) and f107 (CDK, green). Considering f1 as the

family of interest (FOI), for which characteristic sites are to be identified, pair wise comparisons of the FOI f1 with every family in the dataset (nFOIs), viz., f1-f1, f1-f2,

. . ., f1-f107, are carried out (B). During this procedure, every alignment position in FOI f1 is compared with the corresponding position in each of the 107 families. An

example alignment position p ((B), boxed) is depicted, showing the amino acids populating the categories FOI, nFOI and FOI+nFOI (C). Three measures,

conservation of physicochemical property (pc), Shannon’s entropy (ent) and statistical probability (prob) are quantified for the different categories, based on which

every position p in FOI is declared unique (1) or otherwise (0) with respect to the corresponding position in every nFOI. These form the pc_decision, ent_decision and

prob_decision respectively (D), which when averaged across the 107 pair wise comparisons gives rise to pc_score, ent_score and prob_score (E). A linear weighted

combination of the individual measures pc_score, ent_score and prob_score is achieved by optimisation (See Results) to obtain ID_score, which scores every alignment

position in f1 on a scale of 0 to 1, with 0 representing no specificity and 1 representing high specificity. This protocol is repeated, considering every family in the

dataset as the FOI to identify characteristic sites in them.

https://doi.org/10.1371/journal.pcbi.1005975.g002
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sections). The 3 methods (pc, ent and prob) weigh the FOI against nFOIs using different sets of

rules, and thus might result in different binary decisions for the same position.

We note that pc_decision, like ent_decision and prob_decision, of FOI f1 is simply a matrix

of 1s and 0s of size 107xN, where N is the total number of alignment positions in the master

alignment. This matrix contains a binary value for each pair wise comparison at every align-

ment position, indicating whether (1) or not (0) the particular position is differentially con-

served when compared with a particular family. The binary values across the 107 pair wise

comparisons were then averaged for every alignment position in f1 to get a pc_score (Fig 2E).

In other words, pc_score of FOI f1 is a vector of length N, with values ranging between 0 and 1,

with 0 indicating differential conservation in the position in none of the pair wise comparisons

and 1 indicating differential conservation in all the pair wise comparisons. Likewise, ent_score
and prob_score for FOI f1 were calculated, based on ent_decision and prob_decision respec-

tively. Thus, we scored every alignment position in f1 on a scale of 0 to 1 using 3 different mea-

sures (Fig 2E). The 3 individual scores (pc, ent and prob) at every alignment position was then

linearly combined (See Integrated discriminatory score section) to achieve an integrated score,

or ID_score. ID_score for family f1 is a vector of length N, containing scores ranging between

0 and 1 for each alignment position, with 0 indicating no family-specificity and 1 indicating

high family-specificity (data available as S3 File). The pipeline described above was repeated,

considering each of the 107 families as FOI to identify family-specific sites in them.

Fig 3. Three measures to decide the uniqueness of a position p. The amino acids populating an example position p in categories FOI, nFOI and FOI+nFOI, as seen in

Fig 2, is shown (A). Every amino acid in each of the categories is assessed for the presence (B, filled black box) or absence (B, unfilled white box) of 10 physicochemical

properties. The properties that are uniformly present or absent (green) in every amino acid in FOI, nFOI and FOI_nFOI are counted and called pc_FOI, pc_nFOI and

pc_FOI+nFOI respectively (B). In case of higher conservation of physicochemical properties in FOI or differential nature of physicochemical properties conserved in

FOI, a decision of uniqueness (pc_decision) is declared to be 1 (C). Shannon’s entropy for the distribution of amino acids in FOI, nFOI and FOI+nFOI are determined

and called ent_FOI, ent_nFOI and ent_FOI+nFOI respectively (D). (E) In case of lower randomness in FOI or differential nature of low randomness in FOI, the position

is declared unique (ent_decision = 1). The probability of drawing the distribution of amino acids in FOI upon repeated draws from the amino acid sample in nFOI,

without replacement, is calculated and called prob_FOI (F). (G) In case the calculated probability is sufficiently low, the position is considered unique (prob_decision =

1). tp, te and ts are the thresholds operative for the three measures pc, ent and prob respectively (See text for details).

https://doi.org/10.1371/journal.pcbi.1005975.g003
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Physicochemical measure (pc_decision). This section explains how the conservation of

physicochemical properties at a given alignment position p was quantified. Ten physicochemi-

cal properties were considered [29,73,74]: hydrophobic (I,L,V,C,A,G,M,F,Y,W,H,K,T), polar

(C,Y,W,H,K,R,E,Q,D,N,S,T), small (V,C,A,G,D,N,S,T,P), Proline (P), tiny (C,A,G,S), aliphatic

(I,L,V), aromatic (F,Y,W,H), positive (H,K,R), negative (E,D) and charged (H,K,R,E,D). Gaps

(‘-‘) in the alignment and unknown amino acids (X) were regarded as having none of the 10

properties. The residues in FOI (Fig 3A) were scrutinised for the presence (Fig 3B, 1st panel,
filled black box) or absence (Fig 3B, 1st panel, unfilled white box) of each of the 10 physicochem-

ical properties. The number of physicochemical properties that are absolutely conserved in all

the residues in FOI, nFOI and FOI+nFOI was counted and referred as pc_FOI, pc_nFOI and

pc_FOI+nFOI respectively (Fig 3B, green box). It is to be noted that if a specific property is

either uniformly present or uniformly absent in all the residues in a position, it is counted as a

conserved property in the spirit that the presence or absence of that property is evolutionarily

selected. The three category measures pc_FOI, pc_nFOI and pc_FOI+nFOI, representing the

number of absolutely conserved physicochemical properties in a given position p in FOI, nFOI

and FOI+nFOI respectively, could each take integral values between 0 and 10.

Based on the physicochemical measure, there are two scenarios in which position p could

be declared differentially conserved in FOI when compared to the nFOI (Fig 3C): (i) when

there is conservation of physicochemical properties in FOI but not in nFOI, i.e., if pc_FOI is

greater than or equal to a threshold value tp (pc_FOI� tp) and pc_nFOI< tp, or (ii) when both

FOI and nFOI have conserved physicochemical properties, but the properties conserved in

them are different, i.e., pc_FOI� tp, pc_nFOI� tp and pc_FOI + nFOI< tp. Thus,

pc decisionðnFOI; pÞ ¼

1; pc FOI � tp; pc nFOI < tp
1; pc FOI � tp; pc nFOI � tp; pc FOI þ nFOI < tp
0; else

8
><

>:

where pc_decision(nFOI,p) is the binary decision of whether the position p in FOI is differen-

tially conserved in comparison with the corresponding position in an nFOI; and tp is the

threshold number of conserved physicochemical properties (See Determination of threshold

values section).

Entropy measure (ent_decision). This measure is used to quantify the difference in a

given position p between the FOI and nFOI in terms of randomness of the residues populating

with the position [43,75,76]. Shannon entropy was calculated for the FOI, nFOI and FOI

+nFOI categories by measuring the frequency of occurrence of residues in FOI, nFOI and FOI

+nFOI respectively (Fig 3D). These are accordingly called ent_FOI, ent_nFOI, and ent_FOI
+nFOI. In this measure, the frequencies of each of the 22 possible values (20 amino acids,

unknown (X) and gap (‘-‘)) were considered individually, irrespective of any physicochemical

relatedness between them.

ent FOI ¼ �
X

8 a2fFOIg6¼

PðaÞFOIlogePðaÞFOI

ent nFOI ¼ �
X

8 a2fnFOIg6¼

PðaÞnFOI logePðaÞnFOI

ent FOI þ nFOI ¼ �
X

8 a2fFOIþnFOIg6¼

PðaÞFOIþnFOIlogePðaÞFOIþnFOI

where {FOI}6¼, {nFOI}6¼ and {FOI + nFOI}6¼ are the sets of non-redundant amino acids in posi-

tion p of FOI, nFOI and FOI+nFOI respectively; and P(a)FOI, P(a)nFOI and P(a)FOI+nFOI are the
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frequencies of occurrence of a in position p of FOI, nFOI and FOI+nFOI. The three category

measures ent_FOI, ent_nFOI and ent_FOI+nFOI, representing the randomness associated

with position p in FOI, nFOI and FOI+nFOI respectively, could each take values between 0

(absolute conservation of a single amino acid) and 3.09 (equal occurrence of all the 22 values).

Based on entropy measure, position p was declared differentially conserved in FOI when

compared to the nFOI (Fig 3E): (i) if there was low randomness in FOI, but not in nFOI, i.e.,

ent_FOI is smaller than or equal to a threshold value te (ent_FOI� te)and ent_nFOI> te, or

(ii) if both FOI and nFOI had low randomness, but the residues conserved in them were differ-

ent, i.e., ent_FOI � te, ent_nFOI � te and ent_FOI + nFOI> te.

ent decisionðnFOI; pÞ ¼

1; ent FOI � te; ent nFOI > te
1; ent FOI � te; ent nFOI � te; ent FOI þ nFOI > te
0; else

8
><

>:

where ent_decision(nFOI, p) is the binary decision of whether the position p in FOI is differen-

tially conserved in comparison with the corresponding position in an nFOI; and te is the

threshold entropy (See Determination of threshold values section).

Probability measure (prob_decision). This measure calculates the probability of obtain-

ing the exact set of residues found in position p in FOI when one repeatedly draws, without

replacement, from the set of residues in the same position of nFOI (Fig 3F). This score essen-

tially captures the chance occurrence of residues in p of FOI from those at nFOI, and ranges

between 0 and 1. Using classical statistics, we can calculate this probability, prob_FOI, as fol-

lows:

prob FOI ¼

Q
8 a2fFOIg6¼

no: of a in nFOI
no: of a in FOI

� �

jnFOIj
jFOIj

� �

where {FOI}6¼ is the set of non-redundant residues in position p in FOI, n
k

� �
represents the

number of combinations of k that can be chosen from n; and |FOI| and |nFOI| are the total

number of residues in position p of FOI and nFOI respectively. As a separate exercise, proba-

bility of drawing residues in FOI from the distribution in nFOI with replacement was also con-

sidered (S1 Fig) and was found to not improve the performance of the method.

We argue that if prob_FOI is sufficiently low, i.e., if prob_FOI is smaller than or equal to a

threshold value ts, then the distribution of residues in FOI is different from that of nFOI and

thus the position is differentially conserved (Fig 3G). Thus,

prob decisionðnFOI; pÞ ¼
1; prob FOI � ts
0; else

(

where prob_decision(nFOI, p) is the binary decision of whether the position p in FOI is differ-

entially conserved in comparison with the corresponding position in an nFOI; and ts is the

threshold probability (See Determination of threshold values section).

Determination of threshold values tp, te, ts. In the method described above, a binary

decision on the uniquely conserved nature of position p is made by comparing the FOI and

nFOI category measures with a corresponding threshold value (tp, te or ts). By altering the

threshold value, we tinker with the degree of uniquely conserved nature that passes off as a

family-specific site. In order to deliberate the threshold values that result in meaningful delin-

eation of family-specific sites, we used the discriminatory property of the family-specific sites.

To this end, we tested several possible values for the threshold, and optimally chose the value
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PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005975 February 13, 2018 10 / 32

https://doi.org/10.1371/journal.pcbi.1005975


that maximally distinguished the families from one another. For instance, the physicochemical

threshold tp was systematically tested with values from 0 to 10, at intervals of 1, and the corre-

sponding pc_scores were calculated for every FOI, as shown in Fig 2. For a given threshold

value, based on the pc_score of the FOI, conformity scores were assigned to the sequences in

the FOI (family_scores) and the rest of the families (nonfamily_scores). Conformity scores

reflect how well a given sequence conforms to the FOI using proportional weights at the

uniquely conserved sites as measured by pc_score (See Calculation of Receiver Operating Char-

acteristic in Methods). This process was repeated, considering every family as the FOI, to

define an accumulated set of family_scores and nonfamily_scores for a given value of tp. Obvi-

ously, the family_scores are expected to be reliably higher than the nonfamily_scores if the dif-

ferentially conserved sites are identified accurately. Thus, at the optimal value of tp, pc_score
would best discriminate between the families, and thus between the family_scores and nonfa-
mily_scores. To quantify this, we calculated the sensitivity, specificity and Receiver Operating

Characteristic (ROC) to distinguish the family_scores from nonfamily_scores. For every tp

value, we determined the area under the ROC curve, which is a measure of the ability of

pc_score to distinguish the family_scores from the nonfamily_scores, and thus discriminate

between the families (S2 Fig). The tp value that yielded the pc_score of the best discriminatory

capability with maximum area under ROC curve was chosen as the optimal threshold value tp.

Fig 4A shows a plot of the calculated area under the ROC curve for all possible tp values.

We find that a tp value of 4 resulted in the highest area under the ROC curve of 0.9904. Thus, if

(i) 4 or more physicochemical properties are conserved in FOI and less than 4 physicochemical

properties are conserved in nFOI, or (ii) 4 or more physicochemical properties are conserved

in FOI and nFOI, but less than 4 physicochemical properties are conserved in FOI+nFOI, the

position is decided to be uniquely conserved in FOI with respect to nFOI.

The optimisation procedure described above was followed for the determination of te and ts

values as well. In the case of te, values from 0 to 2.5, at intervals of 0.125, were tested. For each

te value, ent_score was calculated and the corresponding area under the ROC curve was deter-

mined as described earlier (S3 Fig). Fig 4B shows a plot of the calculated area under the ROC

curve as a function of the te values. It is clear from the plot that the area under the ROC curve

peaks to 0.9895 at a te value of 1.375. In the case of ts, values ranging from 0 to 0.9, at intervals

of 0.02, were tested (S4 Fig). ts value of 0.0 yielded the highest discriminatory capability (area

under ROC curve = 0.9743) to discriminate between the families as seen in Fig 4C.

Integrated discriminatory score (ID_score). The final step in the method is to combine

the three measures, pc_score, ent_score and prob_score, and achieve an integrated ID_score. To

this end, at every alignment position in a family, we linearly combined the 3 corresponding

scores, weighing them appropriately. For an FOI,

ID scorep ¼ ðpc wt � pc scorepÞ þ ðent wt � ent scorepÞ þ ðprob wt � prob scorepÞ

where ID_scorep is the ID_score at position p of the FOI; pc_scorep, ent_scorep and prob_scorep
are the pc_score, ent_score and prob_score of the FOI at position p respectively; and pc_wt,
ent_wt and prob_wt are the corresponding weights, which were optimised to provide the high-

est discrimination between families. Each weight, pc_wt, ent_wt and prob_wt, was indepen-

dently varied from 0 to 1; and the corresponding ID_score and area under the ROC curve

were calculated as described previously. This is to achieve an optimal integration of the 3 mea-

sures such that it maximised the capability of the ID_score to discriminate between kinase

families. In Fig 4D, we show a 3-dimensional plot with axes for weight of pc_score (pc_wt),
weight of ent_score (ent_wt) and weight of prob_score (prob_wt). The area under the ROC

curve observed for each combination of weights is plotted in a coloured scheme, with blue
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indicating the least and red indicating the largest area under the ROC curve. We found that if

the three measures, pc_score, ent_score and prob_score are linearly combined with correspond-

ing weights of 0.615, 0.385 and 0.0, the ID_score had the highest discriminatory ability (area

under ROC curve = 0.992). It is to be noted that the inclusion of prob_score in the method

decreased the discriminability of FOI from the rest of the families, and thus the prob_score was

optimally weighed at 0.0. Thus, we rejected the prob_score, and combined the pc_score and

ent_score in a ratio of 0.615:0.385 to achieve the final ID_score.

In summary, through a process of comprehensive measures and rigorous optimisation, we

developed a method to score the sites in 107 families of protein kinases that reflects the specific

nature of the site to the family (available as S3 File). Fig 4E shows the complete set of ID_scores

calculated for all the 107 families at every alignment position. The colour at each position sig-

nifies the ID_score in a blue-to-red scheme, with blue indicating the least ID_score and red

Fig 4. Optimisation of threshold values and integration to a unified ID_score. The thresholds for the 3 measures (pc, ent and prob) were each optimised such that

the corresponding scores (pc_score, ent_score and prob_score) had the highest ability to discriminate between kinase families. This was achieved by quantifying how

well the family_scores were separable from the nonfamily_scores at every threshold value in terms of area under the Receiver Operating Characteristic (ROC) curve.

The physicochemical threshold tp was systemically tested for all possible values, and the corresponding area under the ROC curve is plotted (A). The maximum area

under the curve (0.990) is achieved at a tp value of 4. The area under the ROC curves as a function of entropy threshold te and probability threshold ts is shown in (B)

and (C) respectively. Correspondingly, te = 1.375 and ts = 0.0 yield the highest area under the curves 0.990 and 0.974 respectively. (D) To optimise the weights for

linear combination of the 3 scores (pc_score, ent_score and prob_score), the area under the ROC curve, distinguishing family_scores from the nonfamily_scores, was

calculated for all possible values of pc_wt (weight of pc_score), ent_wt (weight of ent_score) and prob_wt (weight of prob_score) and plotted in a blue-red colour

scheme, with blue representing the least area and red representing the highest. pc_wt:ent_wt:prob_wt of 0.615:0.385:0.0 yielded the highest area under the ROC (0.992).

(E) The ID_scores of each of the 107 families as a function of the alignment position is plotted as a heat map in a blue-red scheme. Hotter the colour, higher is the

specificity of the site to the family.

https://doi.org/10.1371/journal.pcbi.1005975.g004
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indicating the highest. As discussed above, ID_score ranges from 0 to 1, where 0 indicates no

specificity and 1 indicates high specificity of the site to the family.

Assessment and validation of ID_score

The ID_score depicted in Fig 4E quantifies the sites based on their differentially conserved

nature and the ability to differentiate the family from the other families. Thus, regions of abso-

lute conservation in STY kinases conferring global functions like ATP binding, phosphotrans-

fer catalysis, and overall structural stability of the kinase fold are scored poorly. On the other

hand, sites involved in family-specific functions and regulations are likely to be scored favour-

ably. We assessed this by testing the ability of the proposed method to discriminate between

the kinase families and identify known family-specific functional and regulation sites.

ID_score identified sites cluster sequences into groups better. In Fig 4E, we observe

that there are a select few alignment positions which are consistently scored high in most fami-

lies. In a manner, these positions are possible “specific functional hotspots” that are highly con-

served within families, but the nature of conservation differs across families. Due to this

property, these positions are hypothesised to have high information content to discriminate

families from one another. We tested this hypothesis by first identifying the sites with an

ID_score greater than or equal to 0.1 in at least 10% of families. This resulted in 194 alignment

positions out of the entire 1094 (S5A Fig).

For comparative control and analyses, we designed 3 categories containing: (i) all 1094

positions in the master alignment (Fig 4E), (ii) 194 hotspot positions, as identified by ID_score

(S5A Fig), and (iii) 194 positions with the least number of gaps in the alignment (S5B Fig). In

the first category, using all the 1094 positions in the alignment as input, we constructed a phy-

logenetic tree [77] (See Phylogenetic tree in Methods) of all the 5488 sequences in the dataset.

In Fig 5A, the tree is illustrated with branches colour-coded according to the KinBase [62]

‘group’ of the leaf kinase. It can be appreciated from the tree that although complete informa-

tion available in the sequences is used as an input, kinases of group CAMK (pink) and CMGC

(yellow) are split into 3 and 2 separate clusters respectively.

In the second category, using only the 194 alignment positions identified by ID_score, we

constructed a similar phylogenetic tree of all the 5488 sequences (Fig 5B). In theory, since only

a fraction of information is used as input to the tree, we expect the tree to be more error-prone

in comparison to Fig 5A. On the contrary, we observe good clustering of all the groups except

TKL (Fig 5B, dark blue). This is possibly due to successful filtering of the noisy and indiscrimi-

nate sites, and use of only the most informative and discriminative positions. Upon closer

examination, we find that the smaller cluster of TKL (Fig 5B, dark blue), separated from the

primary TKL cluster, is predominantly composed of sequences of the STKR (Serine Threonine

Kinase Receptor) family (S5C Fig). This is indeed interesting because although classified

within the Tyrosine Kinase–Like (TKL) group, STKRs are the only receptor kinases that phos-

phorylate Ser / Thr residues on the substrates and thus have the properties of both the Tyr

phosphorylating kinases (TK and TKL) and Ser / Thr phosphorylating kinases. The tree built

using ID_score identified sites correctly captures this by placing the STKR family between

CAMK (pink) and TK (red).

In the third category, we used 194 least gapped positions from the alignment to draw a phy-

logenetic tree of 5488 sequences (Fig 5C). As can be noticed, the tree is highly similar to the

one constructed using the ID_score predicted sites, with good clustering of all groups except

TKLs (S5D Fig). Are ID_scores merely identifying the ungapped positions in the alignment,

and therefore not useful? Or, do ID_scores identify sites which contain only as much informa-

tion as contained in ungapped positions? Are the trees constructed in Fig 2B and 2C truly

Kinase family-specific functional sites

PLOS Computational Biology | https://doi.org/10.1371/journal.pcbi.1005975 February 13, 2018 13 / 32

https://doi.org/10.1371/journal.pcbi.1005975


similar to each other? To answer these questions, we probed the trees at a finer level and ana-

lysed the cluster purity in the 3 categories at the level of families, as described below.

ID_score identified sites cluster sequences into families better. We cut the phylogenetic

trees (Fig 5A–5C) at different branch lengths from the root. At every cut, we counted the num-

ber of clusters obtained and calculated their purity at the level of ‘families’ (See Cluster purity

calculation in Methods). We note that upon cutting the tree at increasing branch lengths from

the root, the number of resulting clusters as well as the cluster purity increases. If cut at the

extreme terminal of the tree, there would be as many clusters as there are number of sequences,

and the purity of the clusters would be 1. In Fig 5D, we plotted the family cluster purity of the

trees constructed using all positions, ID_score predicted positions and ungapped positions

(Fig 5A–5C) as a function of the number of clusters in blue, green and purple respectively. It is

Fig 5. Assessment of the ability of the ID_score to discriminate kinases. Shown are rooted, ultrametric and binary phylogenetic trees of all 5488 kinase sequences,

constructed using (A) all 1094 alignment positions, (B) 194 hotspot alignment positions identified by ID_score, and (C) 194 least gapped positions in the alignment as

input. The branches in the tree are coloured according to the ‘group’ of the kinase (AGC (blue), CMGC (yellow), CAMK (pink), CK1 (green), STE (purple), TK (red), TKL

(dark blue)) in the leaf. (D) The family cluster purity for the trees in A-C as a function of number of clusters is shown in blue, green and purple respectively. (E) Upon

training and testing a pseudolinear discriminant analysis classifier using all 1094 alignment positions (blue), 194 hotspot alignment positions identified by ID_score

(green), 194 random positions in the alignment (orange) and 194 least gapped positions in the alignment (purple), the error in the prediction of the kinase family is plotted.
� indicates a p-value< 0.001.

https://doi.org/10.1371/journal.pcbi.1005975.g005
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clear from the plot that when the ID_score identified sites are alone used for the construction

of a phylogenetic tree, the family clusters are purer (green) than when all the sites (blue) or an

equal number of ungapped positions (purple) are used. We conclude that although the

ID_score identified sites seemingly performed only as well as ungapped sites in clustering the

kinases into groups (Fig 5B and 5C), they outperform the ungapped positions in clustering the

kinases more finely into families (Fig 5D). Thus, we interpret that ID_score does not trivially

pick the ungapped positions but successfully identifies sites that efficiently discriminate the

kinases into groups and families.

ID_scores help classifiers predict the families of sequences. As interpreted from the pre-

vious analyses, if ID_score could indeed identify sites that contain information to discriminate

between the families, we hypothesised that a simple Linear Discriminant Analysis (LDA) clas-

sifier would be able to predict the families of the kinase sequences better if trained with

ID_score identified sites. To this end, we trained a pseudolinear classifier (See Classifier analy-

sis in Methods) with the family associations of a random 90% of the sequences in the dataset.

The classifier was then tested on the remaining unseen 10% of the sequences. This hold-out

training and testing was repeated 10 times. Upon using all the 1094 alignment positions for

training and testing, the error rate for the prediction of the family is about 8.5% (Fig 5E, blue).
However, when only the 194 sites identified by the ID_score were used for training and testing,

the error rate dropped to 6.7% (Fig 5E, green). This improvement in accuracy is in spite of

lesser information as input (194 alignment positions as opposed to 1094 positions leads to 82%

decrease in information) which should theoretically decrease the performance of the classifier.

This can be seen in the orange boxplot of Fig 5E, which shows the error rate (~20%) of the clas-

sifier trained and tested on 194 random positions in the alignment. Also, an equal number of

least gapped positions in the alignment, when used to train and test the classifier, made it per-

form poorly (Fig 5E, purple). Taken together, our analyses strongly suggest that ID_score

method has successfully scored the sites in a manner that not only maximises the discrimina-

bility across families, thus increasing the efficiency of prediction of family, but also clusters the

sequences into groups and families in an accurate and meaningful way.

Identification of family-specific protein-protein interaction sites: A case study with

CDK. We have so far demonstrated the ability of the proposed method to identify sites that

efficiently differentiates the families of kinases. However, a more meaningful and biologically

relevant validation of the method is to check if the method identifies the known family-specific

functional sites. For case study, the widely studied CDK family of kinases was chosen. Upon

analysing iPfam [78], the database of all domain-domain interactions in protein crystal struc-

tures, we identified 4 CDK-specific interacting partners: Cyclin_N (Pfam ID: PF00134),

Ank_2 (PF12796), CDKN3 (PF05706) and CKS (PF01111). It is known through several experi-

mental studies and structure determination that these interactions are specific to kinases of

CDK family and are unknown to occur in other families of STY kinases. We have illustrated

the structural complexes of these interactions in Fig 6A–6D, where CDK is represented in car-

toon and the interacting partner is shown in green sticks. The residues in CDK are coloured

red or gray depending respectively on whether or not they interact with the partner in the com-

plex. The distance criterion for interaction is considered as 6 Å. In Fig 6E, cartoon representa-

tion of CDK, whose residues are coloured in a gray-to-red colour scheme based on their

ID_score, is depicted. We observe that the sites known to be involved in family-specific pro-

tein-protein interactions (Fig 6A–6D, red) are indeed scored high by the proposed method

(Fig 6E, orange and red). As seen in Fig 6F, the residues involved in family-specific interactions

have ID_scores significantly higher than all residues (p-value< 0.001), non-interaction resi-

dues, random residues and non-specific functional sites (ATP binding loop, catalytic loop, salt

bridge residues, DFG and APE motifs). It should be noted that not all the interacting residues,
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as identified by the distance criterion from the crystal structures, may contribute equally

towards the interaction or binding energy. Vice versa, not all residues with high ID_scores

ought to be involved in a specific protein-protein interaction. Some of them may play roles in

other family-specific functions / regulations. However, we quantified the same and conclude

that, as a general trend, the proposed method identifies sites involved in family-specific pro-

tein-protein interactions.

Identification of family-specific substrate recognition sites: A case study with MAPK.

MAPK is a family of CMGC group of STY kinases, whose substrate recognition sites and

motifs are well studied. It is known through several biochemical and structural studies that

MAPK stabilises the kinase-substrate complex through interactions at distal docking sites

in the kinase domain [79–83]. These distal sites are away from the kinase active site, and

recognise specific sites on the cognate substrates. Two such docking sites, D-site and F-site,

predominantly dictate the substrate specificity of MAPKs (Fig 6G), apart from the P+1 site.

Consolidated from several crystal structures of MAPK complexes with substrate peptides and

mimics, we mapped the D-site and F-site residues that interact with substrates (Fig 6G, red).

Fig 6H shows the MAPK fold in which the residues are colour coded in a gray-to-red scheme

based on the ID_score of the sites. It can be seen that the sites experimentally known to recog-

nise substrates in MAPK (Fig 6G, red) are scored high by the current method (Fig 6H, orange-
red) as well. This excellent agreement between the known substrate recognition sites and

ID_score identified family-specific sites is quantified in Fig 6I, where the substrate recognition

sites have significantly higher ID_scores than the other sites in comparison (p-value< 0.001).

The ability of our method to identify the family-specific functional sites in CDK and

MAPK, defined from X-ray crystal structures (Fig 6A–6D and 6G, red), was then compared

with that of a previously published method referred to as real-value evolutionary trace (rvET)

[44]. rvET is a hybrid method that combines entropy and phylogeny information, further

drawing from experimental structures. The phylogeny aspect in rvET can be adjusted to cluster

the nodes at different distances from the root, thereby making it possible to isolate kinase fami-

lies from one another at suitable thresholds. The sensitivity and specificity of identifying the

family-specific functional sites were calculated at a series of score thresholds and plotted in Fig

6J. From the plot, it can be appreciated that ID_score identifies the family-specific functional

sites with better accuracy than rvET.

Identification of family-specific oncogenic driver mutation sites. Being implicated in

numerous cancers, STY kinases have an extensive literature on the cancer causing mutation

sites [84,85]. We hypothesised that if a mutation disrupts the activity of the kinase by activating

or inactivating it, by direct or indirect means, the residue ought to have been crucial for the

functionality of the kinase. In other words, the cancer causing mutation sites, if family-specific,

Fig 6. ID_score identifies sites of family-specific functions. Family-specific interactions experimentally found in CDK family of kinases are

illustrated in A-D. The CDKs are shown in cartoon and the interacting partners cyclin_N (A), Ankhyrin_2 (B), CDKN3 (C) and CKS (D) are

shown in green sticks representation. The residues in kinases are coloured red or gray depending on whether or not they form contact

interface with the binding partner respectively. (E) CDK is represented in cartoon, and the individual residues are colour coded in a gray-red

scheme depending on the ID_score of the sites, with red representing high ID_score and gray representing low ID_score. (F) The distribution

of ID_scores of the known specific interaction sites is compared with that of all the residues, non-interaction sites, random sites and

nonspecific functional sites in CDK. It is seen that the specific interaction sites are scored significantly higher by the ID_score than the other

comparisons. (G) Residues experimentally known to be involved in cognate substrate (green sticks) recognition in MAPK (cartoon) is shown

in red. (H) MAPK is illustrated in cartoon representation, with individual residues coloured according to their ID_scores. (I) The ID_scores of

specific substrate interaction sites are significantly higher than that of all residues, non-interaction sites, random sites and nonspecific

functional sites in MAPK. (J) The performance of ID_score method (orange) in detecting the family-specific functional sites in CDK and

MAPK, in terms of sensitivity and specificity, is plotted along with that of real-value evolutionary trace (rvET, gray) method. � indicates a p-
value< 0.001.

https://doi.org/10.1371/journal.pcbi.1005975.g006
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are most likely family-specific functional sites and thus will be identified by the present

method. From KinDriver [86], a database of all known cancer causing driver mutations in

kinases, we identified the missense mutation sites that were recorded only in a specific family

of kinases with a relative frequency of>2. The identified family-specific cancer causing driver

mutation sites are represented as spheres in Fig 7A–7H in families ACK, ALK, EGFR, FGFR,

JAK, RAD53, PDGFR and RET respectively. The mutation sites, as represented by spheres, are

coloured in a gray-to-red scheme, representing the ID_score of the site. We can appreciate

that most of the sites are scored highly by the ID_score method and are thus represented in the

orange-red range. Quantitatively, we find that the known family-specific driver mutation sites

were scored high by the ID_score method (Fig 7I) when compared to other residues.

Application

So far, we have discussed the development of the ID_score method and its successful identifi-

cation of known family-specific functional sites in various families. In this section, we present

the application of the method in falsifiable prediction of family-specific functional sites for all

known protein kinase families and discuss the predictions made for PKG and PKC families.

Prediction of family-specific protein-protein interaction sites: A case study with PKG

and PKC. We parsed BioGrid [87], a database of all experimentally known domain-domain

interactions, and identified all interactions of kinases that were verified by at least two different

techniques. From this highly confident set, we identified that the WD Repeat domain 77

(WDR77) specifically interacts with the kinases of the PKG family. Although several studies

have shown the interaction [88], the site of interaction in the kinase domain is unknown. Car-

toon and surface representations of a kinase fold is depicted in Fig 8A and 8B respectively, in

which the residues are coloured in a gray-to-red scheme based on the ID_score of the sites. We

observe a cluster of solvent accessible, high ID_score sites in close proximity to each other at

the conjunction of αE, αF and αH helices (Fig 8A and 8B, green circle). We predict that this

region is the potential WDR77 interaction region in PKG. Likewise, we also identified that

C1QBP (Complement 1, Q Subcomponent Binding Protein) specifically interacts with kinases

of PKC family [89]. As can be seen in the ID_score-colour-coded cartoon and surface repre-

sentations of PKC, a cluster of family-specific functional sites are seen around the αG helix

(Fig 8C and 8D, green circle). We predict that αG helix is involved in the binding of PKC

kinases with C1QBP. For the purpose of visualisation, we illustrate the PKG-WDR77 (Fig 8E)

and PKC-C1QBP (Fig 8F) complex models docked at the interface predicted by ID_score.

Prediction of sites of functional specialisation in all known kinases. Encouraged by the

ability of the method to identify accurately the functionally specialised residues and cancer

driver mutation sites in some of the well-studied kinase families, we present the predicted sites

of functional specialisation in all the 107 kinase families used in the study (predicted sites are

documented in the S3 File). Each site in every family is given a score that ranges between 0 and

1, where 0 indicates no functional specificity and 1 indicates high functional specificity. We

emphasise that our method identifies sites of functional specialisation in a family and not

global functional regions like catalytic loop and ATP binding site.

To our knowledge, this is the first and only available resource that provides the functional

sites in a large scale to the kinase community. We hope that this serves as a useful starting

point for biochemical and structural studies as well as insilico drug targeting studies. The users

are encouraged to set arbitrary cut-off values of the ID_score to identify the sites to pursue.

For instance, for an uncharacterised kinase family under study, the users may set a cut-off of,

say, 0.4 and restrict their preliminary analyses to sites with an ID_score of� 0.4 in the family.

This lets the user work with a tangible set of residues, which may further be guided by other
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known features of the kinase. The current study also opens up a consequent scope to find the

functional implications of the identified sites. As already noted, the sites predicted by our

Fig 7. ID_score identifies family-specific oncogenic driver mutation sites. Driver mutation sites that are specific to ACK, ALK, EGFR, FGFR, JAK, RAD53,

PDGFR and RET (A-H) are represented as spheres in the corresponding kinase folds, and coloured according to their ID_scores. (I) It is seen that the specific

mutation sites are scored significantly high by the ID_score method, when compared to all residues, non-mutation residues and random residues in the families. �

indicates a p-value< 0.001.

https://doi.org/10.1371/journal.pcbi.1005975.g007
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method may impart functional specialisation to the kinase by way of specific substrate recogni-

tion, protein-protein interaction or allostery.

Discussion

An emerging picture of signalling networks strongly suggests a complex system of organisation

with regulatory orchestration at multiple levels [90]. Traditionally, this complex scheme of

Fig 8. Testable predictions of specific protein-protein interaction sites. PKG kinase is shown in cartoon (A) and surface (B) representations, with the residues

coloured according to their ID_scores. A cluster of high ID_scored residues that are solvent accessible and spatially proximal to each other is marked (A-B, green
circle). This region that is formed at the junction of αE, αF and αH-helices is a putative candidate region involved in specific protein-protein interaction, potentially

with WDR77. PKC kinase is shown in cartoon (C) and surface (D) representations, with the residues coloured according to their ID_scores. A cluster of high

ID_scored residues that are solvent accessible and spatially proximal to each other is marked (C-D, green circle). This region that is formed at the junction of αG and

αH-helices is a putative candidate region involved in specific protein-protein interaction, potentially with C1QBP. Models of (E) PKG-WDR77 and (F) PKC-C1QBP

complexes docked at the ID_score predicted interfaces are presented.

https://doi.org/10.1371/journal.pcbi.1005975.g008
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control has been studied in a reductionist approach, attributing modularity to the interacting

proteins, associated domains, scaffold proteins, and hubs in the network [91–94]. If we extend

the theory of modularity and reductionism to within a domain, we expect division of the mul-

titude of specific functions of the domain to certain subparts, conventionally known as func-

tional motifs. Supporting evidence of this theory includes alteration and loss of specific

function upon mutation of certain residues. Additionally, regardless of whether function of a

protein is modular or emergent, it is well known that subtle functional differences between

proteins reside in a few key residues.

On an average, an STY kinase catalytic domain is 250 residues long. Within this region

exists information for (i) global attributes like stable structure formation and catalysis of phos-

photransfer, and (ii) specific attributes like recognition / phosphorylation of its cognate sub-

strate, interactions with specific binding partners and response to specific signal. Identification

of functional sites / motifs conferring global attributes is feasible through experimental muta-

genesis studies and in silico detection of conserved sequence patterns across all kinases. For

instance, global functions like ATP binding and catalysis are attributed to the GXGXXG and

HRDLXXXN motifs respectively. On the other hand, specific functional attributes are not only

challenging to detect using experimental methods, but also difficult to identify in silico. In the

present study, we have identified the family-specific functional sites in all known families of

eukaryotic protein kinases.

Previous studies that attempted to identify differentially conserved family-specific func-

tional sites relied heavily on the measurement of a single property and lacked an integrated

approach. In the present study, we have for the first time used physicochemical, entropy and

probability measures to identify family-specific functional sites in the most meaningful man-

ner. The pc_score, which scores a position based on the conservation of physicochemical prop-

erties, tolerates an Arg to Lys substitution more than an Arg to Leu substitution. The

ent_score, on the other hand, tolerates certain other substitutions better, and detects conserva-

tion of a position that could be missed out by pc_score. For instance, if a position in an FOI is

populated with 2 physicochemically dissimilar amino acids, and the equivalent position in

nFOI is populated with 6 different hydrophobic amino acids, pc_score would disregard the

position, but ent_score classifies it as differentially conserved in FOI. During the course of the

study, many metrics including mutual information, that measures correlated mutations

between residue positions, were considered to score the uniqueness of sites. We found that the

area under the ROC for the mutual information score was not better than that obtained

through the individual Shannon entropy (ent_score). This is because, unlike methods that

stringently mandate absolute conservation of an amino acid or physicochemical property,

ent_score allows for limited number of substitutions at a residue position, thereby not punish-

ing the correlated mutation sites. Although the correlations between residue positions is

unidentified by our method, the individual sites harbouring correlated mutations are still

scored high by the ID_score. This is evident by the fact that ID_score performs better than the

rvET method, which considers covariances.

The third measure, prob_score, calculates the probability that the exact set of amino acids at

a position in FOI can be drawn from a pool of amino acids in nFOI. This is a highly stringent

score that punishes dissimilarity heavily and gives a high score only if the amino acids in the

FOI and nFOI are similar in composition. One could imagine why such a stringent measure

failed to add to the discriminability across kinases in the integrated method. Skew and lack of

variance in the distribution of prob_scores made the discriminability between FOI and the rest

of the families poorer. As an extreme example, the absence in nFOI of one of the amino acid

residue types found in FOI will directly lead to a poor score even if the other amino acids resi-

due type distributions matched well.
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We note that ID_score primarily uses the multiple sequence alignment and prior classifica-

tion of sequences into families as input to calculate the specificity determinants. As a result,

error in the alignment, especially in cases of large and diverse superfamilies with sequences

less than 20% sequence identity, can affect the accuracy of the method. Similarly, incorrect

classification and subgrouping will also propagate through the method and result in reduced

accuracy.

A couple of previous studies have looked at group-specific functional signatures and speci-

ficity determinants in kinases [60,95]. For the purpose of the current study, we intended to

understand the family-specific functional sites in kinases, which will be of immense value to

suppress drug cross-reactivity. Using the same method to identify group-specific functional

sites is an interesting proposition that warrants a separate study by itself. Group-specific fea-

tures like C-terminal tail binding of AGC-group kinases and SH2 domain interaction of TK-

group kinases may be predicted if ID_score is used at the group-level.

After identifying the family-specific sites in all the 107 families of kinases by maximising

the discriminability across families, we might ask if all the identified sites are indeed func-

tional. Although, we have addressed the question by showing excellent agreement between the

ID_scores and known family-specific functional sites, answering the question in its entirety is

difficult. Nevertheless, it is advantageous to know the bare essential set of sites that renders

PKA different from, say, Src. In fact, if needed, pair wise comparisons of families can be easily

extracted from the ID_score method, and the specific set of residues that differ between the

two families can be identified. This leads us to an interesting thought experiment: if we

replaced the bare essential sites in PKA that differentiates a PKA from Src with those of Src,

would we expect the PKA to inherit some of the properties of Src kinase? If the modularity of

functionality within the kinase domain is valid and we have identified the family-specific func-

tional sites, including the redundant ones, one should expect so. Extending this thought exper-

iment, if one were to identify the functions of each of the family-specific sites identified by the

method, would it be possible to build a synthetic protein kinase with customised functions?

Although the literature is ripe with studies of cancer causing mutations in kinases [85],

mechanistic / functional reasoning behind why a mutation derails the functionality of a kinase

is understood more in retrospect than in advance. This is because a complex network of inter-

actions and abundant redundancy in the protein’s functionality makes it an extremely chal-

lenging task. In this study, we show that those cancer causing mutation sites, which occur

within specific families, are identified with high scores by the ID_method. Furthermore, we

also show biologically relevant clustering of kinase families, when aided by ID_score method.

Taken together, our analyses suggest that ID_score can successfully predict the family-specific

functional sites. Using ID_scores, we predict the interaction sites in PKG and PKC for binding

WDR77 and C1QBP respectively. Although developed and demonstrated for the STY kinase

superfamily, the method is inherently transferable to other protein superfamilies, and is

expected to aid identification of functional sites and characterisation of ambiguous / new

families.

In summary, we curated an unbiased and non-redundant dataset of 5488 sequences of

kinase catalytic domains from diverse phyla belonging to 107 families of 7 distinct groups.

After careful alignment of all the curated sequences, we developed an integrated approach to

detect differential conservation of residues in kinase families. Using measurements of physico-

chemical properties, Shannon entropy and probability, we scored the selectively conserved

nature of the all the sites in the kinase families. Furthermore, by maximising the discrimina-

tion across families, we succeeded in optimising the threshold criterion for each method that

passes a differentially conserved position as a family-specific functional site. Finally, we inte-

grated the 3 scores to attain a unified ID_score that scores the sites in kinase families
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depending on their functional specificity, characteristic to the family. We have assessed and

validated the ability of ID_score to (i) discriminate and cluster the kinase families in a mean-

ingful way and (ii) identify family-specific functional sites. Further, we demonstrate the appli-

cation of the method in prediction of protein-interaction sites. Taken together, we developed

an integrated method and successfully identified the family-specific functional sites in all

known eukaryotic kinases.

Methods

Dataset

After UniProt_ID-family mapping was established (Fig 1C), the kinase catalytic domains were

to be excised from the full length sequences. To this end, families in which information on

kinase domain boundary [70] is not known for any sequence were eliminated. Then, within

every family, the sequence with the most number of experimentally solved structures was iden-

tified as the most well studied STY kinase of the family, or the template sequence of the family.

In case of absence of solved crystal structures for a family, a sequence in which the kinase

domain boundary is known was randomly chosen as the template sequence of the family. The

sequences within every family were multiply aligned [71] and the kinase catalytic domains

were extracted from the sequences by mapping the topologically equivalent residues corre-

sponding to the kinase catalytic domain of the template sequence. Thus derived kinase cata-

lytic domain sequences of a family were further filtered to contain residue length in the range

of 150 to 350 residues and clustered at 90% sequence identity [72] to remove redundancy and

bias in the dataset. After this step, if a family contained less than 5 kinase catalytic domain

sequences, it was discarded; and if a family contained more than 200 sequences, it was clus-

tered at progressively higher sequence identity thresholds until it contained less than 200

sequences. In total, clustering threshold of 90% sequence identity resulted in more than 200

sequences in only 6 of the 107 families. The families and their threshold identities are MAPK

(80%), STE20 (80%), MLK (80%), CDK (70%), IRAK (60%) and CAMKL (50%). Since only

less than 6% of the kinase families were clustered at lower that 90% sequence identity and such

families still retained an average of 184 sequences per family, the contribution of error due to

this is considered minimal. This procedure was repeated for every family and the kinase

domain sequence-family mapping was established (See S1 Text in Supplementary Information

and Fig 1D).

Alignment

An accurate multiple sequence alignment (MSA) of the catalytic domain sequences in the

dataset is a prerequisite to probe the family-specific functional sites in the sequences. However,

given the large divergence in the dataset, precise error-free alignment of all the sequences in a

single MSA is challenging. The approach used in the study is to first align [71,96] the sequences

within families and obtain a consensus sequence / profile for each family [97]. Subsequently,

the consensus sequences of all families within a group were multiply aligned using sequence

and structure information. This crucial step was feasible because reliable hierarchical classifica-

tion of STY kinases into groups / family and crystal structures in active conformations belong-

ing to different families within a group were available (See list of PDB IDs and hierarchy used

in S6 Fig). Superposition of the crystal structures, with not more than one structure per family,

if available, was used to guide the alignment of profiles of families within groups. This resulted

in profile or consensus sequence for each group, which were then multiply aligned using

sequence and structure information. Again, superposition of structures, with not more than

one structure per group, if available, guided the alignment of across-group profiles, resulting
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in a profile / consensus sequence for the entire STY kinase dataset. The above described

method for hierarchical alignment of profiles to arrive at a consensus sequence for STY kinases

was implemented using a python script called Fammer [98]. Considering the consensus

sequence of the STY kinase as the template, all the sequences in the dataset were aligned to it

in a statistical method [99] to get the final MSA as described in previous studies [52]. During

this procedure, a few families / sequences that did not align well within themselves or the

entirety of the kinase database were manually eliminated. The final alignment consisted of

5488 STY kinase domain sequences of 107 families.

Calculation of Receiver Operating Characteristic (ROC)

For a threshold value, say, tp, the corresponding pc_score was calculated as described in the

Results section. For every FOI, pc_score is a vector of length N, where N is the length of align-

ment positions, containing values in the range of 0 and 1 with 0 representing no family-speci-

ficity of the position and 1 representing maximum family-specificity. All sequences in the

database are given a conformity score with respect to the pc_score of a family of interest (FOI),

say f1. The conformity score of a sequence is the sum of all pc_score values at those positions in

which the sequence conforms to the sequences of the family f1. A sequence is considered to

conform to f1 sequences at position p if the amino acid in the sequence at p is one of those that

populate the position in the sequences of f1. For instance, if at an alignment position p, where,

say, pc_score of FOI f1 at p = 0.4, sequences in f1 are populated with A, L, I and M, and a

sequence to be conformity scored contains I, then the conformity score of the sequence is

increased by 0.4. On the other hand, if the sequence to be conformity scored contains V at p,
then, conformity score is unchanged.

conformity scoreðs;FOIÞ ¼
XN

p¼1

pc scoreFOI;p½sp 2 fFOIpg6¼�

where s is the sequence for which score is to be evaluated according to its conformity to FOI;

N is the total number of positions in the alignment; pc_scoreFOI,p is the pc_score of FOI at posi-

tion p; and [sp 2 {FOIp}6¼] is the conditional clause as to whether the amino acid at position p
in s belongs to a set of non-redundant amino acids in position p of FOI.

In this manner, each of the 5488 sequences in the dataset is each given a conformity score

with respect to the pc_score of FOI f1. These conformity scores are divided into 2 categories: (i)

family_scores, when s is a sequence of the FOI and (ii) nonfamily_scores, when s is a sequence

of an nFOI. This process is repeated, considering each family (f1, f2, . . ., f107) as FOI, and the

family_scores and nonfamily_scores are augmented.

Similarly, for optimisation of the entropy threshold te,

conformity scores;FOI ¼
XN

p¼1

ent scoreFOI;p½sp 2 fFOIpg6¼�

and probability threshold ts,

conformity scores;FOI ¼
XN

p¼1

prob scoreFOI;p½sp 2 fFOIpg6¼�

were carried out.

The set of family_scores is expected to be reliably higher than the nonfamily_scores upon

accurate determination of the threshold value. Thus, we calculated the sensitivity, specificity

and the ROC for the two scores. In essence, the area under the ROC curve implies the
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discriminability between families based on the pc_score (ent_score or prob_score) derived using

a specific threshold tp (te or ts).

Phylogenetic tree

A phylogenetic tree was constructed by considering all the 1094 positions of the master

sequence alignment using FastTree [77]. This resulting tree was mid-point rooted and made

ultrametric by extension of all the terminal branches to a constant distance from root. Finally,

if the tree had multiple originating branches at any given node, it was bifurcated and thus con-

verted to a binary tree [100]. This tree is shown as a circular cladogram in Fig 5A. The same

protocol was used for the construction of trees in Fig 5B and 5C, with the exception that spe-

cific chosen positions (as identified by ID_score and those containing the least number of gaps

respectively) of the alignment were used as input to for the construction of the tree.

Cluster purity calculation

The phylogenetic tree that is rooted, ultrametric and binary was cut at different distances from

the root resulting in different number of clusters. For each cut, cluster purity of the resulting

clusters was calculated as follows:

cluster purity ¼
1

n

Xk

i¼1

maxjjci \ fjj

where n is the total number of leaf sequences; k is the number of clusters generated; ci is the set

of leaf sequences in the ith cluster; fj is the family classification that has the maximum number

of leaves in cluster ci.

Classifier analysis

We trained and tested a simple pseudolinear classifier to understand its ability to ascertain

family classification to a kinase sequence. In a hold-out approach, we used a random 90% of

the sequences to train the classifier and the remaining 10% to test, repeating 10 times. The

sequences were in aligned format and the corresponding family associations of the sequences

were used to train the classifier. The k-fold loss in the performance of the classifier in the test

set was quantified [101]. The classifiers were trained and tested using all the alignment posi-

tions (Fig 5E, blue), positions identified by the ID_score (Fig 5E, green) or the positions with

the least number of gaps (Fig 5E, purple). This analysis was performed using the Statistics and

Machine Learning toolbox of MATLAB [102].

Supporting information

S1 File. UniProt_ID-to-family mapping of 34,881 kinase sequences into 164 families.

(XLS)

S2 File. Multiple sequence alignment of kinase domains of 5488 sequences from 107 fami-

lies of eukaryotic protein kinases.

(TXT)

S3 File. Position-wise ID_scores for each of the 107 kinase families used in the study.

(XLS)

S1 Text. Constraints used in dataset selection.

(DOCX)
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S1 Fig. Use of random chance of amino acid retrieval with replacement. The threshold for

the probmeasure was optimised such that the corresponding prob_score had the highest ability

to discriminate between kinase families. This was achieved by quantifying how well the

family_scores were separable from the nonfamily_scores at every threshold value in terms of

area under the Receiver Operating Characteristic (ROC) curve. ts, the threshold probability of

obtaining the exact set of amino acids in position p in FOI when one repeatedly draws, with

replacement, from the set of amino acids in the same position of nFOI was systemically tested

for all possible values, and the corresponding area under the ROC curve is plotted. The maxi-

mum area under the curve (0.970) is achieved at a ts value of 0.02. This is lower than that of the

ts calculated without replacement.

(TIFF)

S2 Fig. Receiver Operating Characteristic quantification for discriminability between

family_scores and nonfamily_scores at different tp. For tp values ranging from 0 to 10 (A-K),

the family_scores (blue) and nonfamily_scores (red), augmented across families, are shown as

normalised histograms; and the corresponding areas under the ROC are indicated. tp value of

4 (E) yielded the highest area the ROC of 0.9904, showing good separability between the

family_scores and nonfamily_scores.
(TIFF)

S3 Fig. Receiver Operating Characteristic quantification for discriminability between

family_scores and nonfamily_scores at different te. For te values ranging from 0 to 2.375

(A-T), the family_scores (blue) and nonfamily_scores (red), augmented across families, are

shown as normalised histograms; and the corresponding areas under the ROC are indicated. te
value of 1.375 (L) yielded the highest area the ROC of 0.990, showing good separability

between the family_scores and nonfamily_scores.
(TIFF)

S4 Fig. Receiver Operating Characteristic quantification for discriminability between

family_scores and nonfamily_scores at different ts. For ts values ranging from 0.0 to 0.06

(A-D), the family_scores (blue) and nonfamily_scores (red), augmented across families, are

shown as normalised histograms; and the corresponding areas under the ROC are indicated. ts
value of 0.0 (A) yielded the highest area the ROC of 0.974, showing good separability between

the family_scores and nonfamily_scores.
(TIFF)

S5 Fig. Performance of ID_score identified sites, in comparison with ungapped positions.

(A) The ID_scores of each of the 107 families as a function of 194 alignment positions identi-

fied by ID_score is plotted as a heatmap in a blue-red scheme. Hotter the colour, higher is the

specificity of the site to the family. The positions identified are those in which at least 10% of

the families have an ID_score of>0.1. (B) Plotted, as a heatmap, is the ID_scores of the 107

families at 194 positions with the least number of gaps in the alignment. Large regions of blue,

or low ID_score, is seen in highly conserved sites. (C) Closer snapshot of the secondary TKL

group cluster as seen in Fig 5B, depicting predominantly STKR family sequences. The tree was

built using 194 ID_score identified sites as input. (D) Closer snapshot of the secondary TKL

group cluster as seen in Fig 5C, depicting predominantly STKR family sequences. The tree was

built using 194 least gapped positions in the alignment as input.

(TIFF)

S6 Fig. Hierarchy of STY kinase classification and active structures used to generate align-

ment. Sequences from 7 groups of STY kinases were organised in the hierarchy as shown. The
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number of families within each group, and the available crystal structures in active conforma-

tion, not more than one per family, are enlisted. For the alignment of across-group profiles,

available crystal structures in active conformation, not more than one per group, were used as

shown (See Methods for details).

(TIFF)
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