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Adenosine (ADO) is an extracellular signaling molecule generated locally under
conditions that produce ischemia, hypoxia, or inflammation. It is involved in
modulating a range of physiological functions throughout the brain and periphery
through the membrane-bound G protein-coupled receptors, called adenosine
receptors (ARs) A1AR, A2AAR, A2BAR, and A3AR. These are therefore important
targets for neurological, cardiovascular, inflammatory, and autoimmune diseases
and are the subject of drug development directed toward the cyclic adenosine
monophosphate and other signaling pathways. Initially using public data for A1AR
agonists we generated and validated a Bayesian machine learning model (Receiver
Operator Characteristic of 0.87) that we used to identify molecules for testing. Three
selected molecules, crisaborole, febuxostat and paroxetine, showed initial activity
in vitro using the HEK293 A1AR Nomad cell line. However, radioligand binding, β-
arrestin assay and calcium influx assay did not confirm this A1AR activity. Nevertheless,
several other AR activities were identified. Febuxostat and paroxetine both inhibited
orthosteric radioligand binding in the µM range for A2AAR and A3AR. In HEK293 cells
expressing the human A2AAR, stimulation of cAMP was observed for crisaborole (EC50

2.8 µM) and paroxetine (EC50 14 µM), but not for febuxostat. Crisaborole also increased
cAMP accumulation in A2BAR-expressing HEK293 cells, but it was weaker than at the
A2AAR. At the human A3AR, paroxetine did not show any agonist activity at 100 µM,
although it displayed binding with a Ki value of 14.5 µM, suggesting antagonist activity.
We have now identified novel modulators of A2AAR, A2BAR and A3AR subtypes that are
clinically used for other therapeutic indications, and which are structurally distinct from
previously reported tool compounds or drugs.
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INTRODUCTION

Adenosine (ADO) is an extracellular signaling molecule
generated locally under conditions that produce ischemia,
hypoxia, or inflammation and is involved in modulating a
range of physiological functions throughout the brain and
periphery by activating membrane-bound G protein-coupled
receptors (GPCRs) (Borea et al., 2018). There are four
subtypes of adenosine receptors (A1AR, A2AAR, A2BAR, and
A3AR), which are the subject of vigorous drug development
directed toward the cyclic adenosine monophosphate (cAMP)
and other signaling pathways (Borea et al., 2016; Borea et al.,
2018; Jacobson et al., 2019; Effendi et al., 2020). Adenosine
receptors (ARs) were first classified according to their
differential coupling to adenylate cyclase (AC) to regulate
cAMP levels (Borea et al., 2018). Adenosine induces various
biological effects associated with each adenosine receptor on
the membrane surface of specific cells or tissues (Borea et al.,
2018). Based upon sequence similarity and G protein-coupling
specificity, A1AR and A3AR share 49% sequence identity and
preferentially couple to Gαi/o to inhibit AC (Effendi et al., 2020),
which subsequently inhibits presynaptic glutamate release
(Ciruela et al., 2006; Effendi et al., 2020). In contrast, A2AAR
and A2BAR receptors, which are ~59% identical and couple to
Gαs, are able to stimulate AC (Cheng et al., 2017) increasing levels
of cAMP (Wardas, 2002). A1AR and A2AAR receptors possess
high affinity for ADO, while A2BAR and A3AR receptors show
relatively lower affinity. A1AR has been found to be widely
distributed throughout the body. In the brain, it slows
metabolic activity by a combination of actions. At neuronal
synapses, it reduces synaptic vesicle release. A1AR is
implicated in sleep promotion by inhibiting wake-promoting
cholinergic neurons in the basal forebrain (Elmenhorst et al.,
2007). A1AR is also present in smooth muscle throughout the
vascular system (Fredholm et al., 2001; Tawfik et al., 2005). A1AR
has antiseizure activity and contributes to neuroprotection in
models of neurodegeneration (Effendi et al., 2020). A1AR
activation under hypoxic conditions leads to inhibition of
presynaptic Ca2+ influx-related release of transmitters (Wu
and Saggau, 1997) such as dopamine, acetylcholine, GABA,
and, especially, glutamate, to generate neuroprotection (Stone
et al., 2009).

A2AAR has been linked to the anti-inflammatory effects of
adenosine. Activation of A2AAR reduces immune cell
migration and produces tissue protection from ischemia/
reperfusion injury (Okusa et al., 1999; Ohta and Sitkovsky,
2001). In contrast to other adenosine receptors, A2BAR, shows
upregulated expression in many pathological conditions, such
as inflammation, cancer and hypoxia (Borea et al., 2016; Cekic
and Linden, 2016; Gao and Jacobson, 2019). It interacts with
Gs to induce the PKA signaling to increase cAMP and can
trigger signaling transduction to elevate intracellular Ca+2

levels (Effendi et al., 2020). Activation of A2BAR in mast
cells might be useful in the treatment of asthma (Gao and
Jacobson, 2017). A3AR is widespread with abundant
expression in the lung and liver, and its activation reduces
inflammation and chronic neuropathic pain (Jacobson et al.,

2019). A3AR coupled to Gi proteins inhibits AC, decreases
cAMP accumulation and PKA activity, while A3AR also
increases Ca2+ levels and modulates PKC activity (Baraldi
et al., 2012; Borea et al., 2018).

ARs are therefore important targets for neurological,
cardiovascular, inflammatory, and autoimmune diseases (Borea
et al., 2016; Borea et al., 2018). In addition, selective ligands are
available for the different AR subtypes, which increase the
chances to achieve spatially-specific modulation, representing a
pharmacological opportunity to control addictive
psychostimulant consumption, among many other health
problems (Ballesteros-Yáñez et al., 2017). Initially, we used
machine learning models to find agonists of A1AR and futher
expanded the testing against other subtypes, and we have
identified novel AR modulators that are structurally distinct
from previously reported tool compounds or drugs in clinical
trials for targeting ADO receptors (Jacobson et al., 2019).

METHODS

Reagents
All test compounds were purchased from MedChemExpress
(MCE, Monmouth Junction, NJ).

Machine Learning
Initially, an A1ARmodel was built with data reported in ChEMBL
(Gaulton et al., 2017) (target 262). Assay Central® was used to
build the model using EC50 values, and non-druglike compounds
such as Zn2+ (CHEMBL1201279), Li+ Cl− (CHEMBL69710), and
Li+ (CHEMBL1234004) were removed to increase the
performance of the model. The ChEMBL compounds for
ADORA1 consisted of 430 compounds with EC50 values, and
the corresponding Bayesian model was built using Assay
Central®. Assay Central® has been used by our group in
various drug discovery projects (Hernandez et al., 2018; Lane
et al., 2018; Russo et al., 2018; Sandoval et al., 2018; Ekins et al.,
2019a; Anantpadma et al., 2019; Ekins et al., 2019b; Dalecki et al.,
2019; Wang et al., 2019; Ekins et al., 2020); its use as well as
clarification on the applicability of the model statistics have been
previously described. Metrics such as Receiver Operator
Characteristic (ROC), Recall, Precision, F1 Score, Cohen’s
Kappa and Matthew’s Correlation Coefficient are generated
from internal five-fold cross-validation of the model. To
maximize these internal performance statistics, the software
can select a reasonable activity threshold, and generate
predictions as well as applicability scores for any desired
compound. Higher prediction scores are desirable as scores
higher than 0.5 are assigned to active compounds (inhibitors).
Higher applicability scores are also desirable as they ensure the
representation of a given drug in the training set (Clark et al.,
2015). The activity threshold for this external dataset was set to
100 nM, and Assay Central™ was used to generate the model
performance metrics.

We have also used our updated Assay Central® software which
now uses multiple classification algorithms described previously
(Lane et al., 2018) as well as multiple regression algorithms
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including adaboost, Bayesian, elastic net, K-nearest neighbors
(knn), random forest, support vector machine and XGboost. We
have further curated data available from ChEMBL for not only
A1AR (ChEMBL226) but also A2AAR (ChEMBL251), A2BAR
(ChEMBL255) and A3AR (ChEMB256L). The data on
CHEMBL comprise a diverse set of molecules and may
comprise both full agonists and positive allosteric modulators
(PAMs). For classification models the cut-off was set to 100 nM.
5-fold cross validation was performed for all algorithms except
deep learning, which used the removal of 20% of the training set,
in a stratified manner, and these were used as external test sets for
models trained on the remainder of the data.

A1AR–cAMP Assay
This assay was performed using the screening services of
Innoprot (Bizkaia, Spain). For screening of the initial
compounds predicted by machine learning models to activate
A1AR receptor, we used the HEK293 A1AR Nomad cell line,
which consists of HEK293 cells stably expressing human A1AR
with no tag. This cell line has been designed to assay compounds
or analyze their capability to modulate the A1AR. When the
agonist binds to A1AR in this engineered cell line a Go protein is
activated, which in turn, triggers a cellular response mediated by
cAMP inhibition. This cellular response can be measured by
quantifying the increase in fluorescence intensity and its cellular
distribution. An agonist assay was performed for 29 compounds
(predicted to be active by the machine learning model) in the
human recombinant HEK293 A1AR Nomad cell line using a
fluorescence-based assay. An agonist effect of the compounds was
measured by quantifying the changes in the fluorescence emission
cAMP Nomad biosensor, this elevation of fluorescence was
analyzed using a plate reader Synergy 2 (Biotek, Winooski,
VT). The error bars represent the standard deviation among
the three replicate wells. The 29 compounds were tested at 10 μM
using nonselective AR agonist adenosine-5′-N-ethyluronamide
(NECA) at 10 μM as a reference.

Radioligand Binding Assays
HEK293 cells stably expressing the human A1AR, A2AAR, A3AR
were cultured in DMEM supplemented with 10% fetal bovine
serum, 100 Units/ml penicillin, 100 µg/ml streptomycin, and
2 µmol/ml glutamine. To prepare cell membranes, cells were
detached from culture plates by scraping into cold PBS and
centrifuged at 250 g for 5 min. The pellets were resuspended in
ice-cold PBS buffer (pH 7.4) and then homogenized. After
homogenization and suspension, cells were centrifuged at
1,000 g for 10 min, and the pellet was discarded. The
suspension was then re-centrifuged at 20,000 g for 60 min at
4°C. The pellets were resuspended in buffer containing 3 Units/ml
adenosine deaminase (Worthington Biochemical, Lakewood, NJ)
and incubated at 37°C for 30 min. The aliquots of membrane
preparations were stored at −80°C until the binding experiments.
For displacement binding assays, membrane preparations
(20 µg proteins/tube) were incubated at 25°C for 60 min with
a final concentration of [3H]DPCPX (0.5 nM), [3H]ZM241385
(1.0 nM), [3H]DPCPX (5.0 nM) and [125I]I-AB-MECA (0.1 nM)
for A1AR, A2AAR, A3AR, respectively, in a mixture containing

50 µl of increasing concentrations of a test ligand in a total assay
volume of 200 µl of 50 mM Tris HCl, pH 7.4, containing 10mM
MgCl2. Nonspecific binding was determined using 100 µM of
XAC. The reaction was terminated by filtration with GF/B
filters using a Brandel (Gaithersburg, MD) 24-channel harvester.
Filters were placed in scintillation vials containing 5 ml of
Hydrofluor scintillation buffer (National Diagnostics, Atlanta,
GA) and counted using a Tricarb 2810TR liquid scintillation
counter (PerkinElmer, Waltham, MA).

cAMP Assay in AR-Expressing HEK293
Cells
HEK293 cells were grown in 96-well plates in DMEM
supplemented with 10% fetal bovine serum, 100 Units/ml
penicillin, 100 µg/ml streptomycin, and 2 µmol/ml glutamine.
After overnight growth, cells were treated with assay buffer
containing phosphodiesterase (PDE) inhibitor rolipram
(10 µM), and adenosine deaminase (3 units/ml) for 30 min (for
A1AR, A2AAR and A3AR assays PSB603 (8-[4-[4-(4-
chlorophenzyl)piperazide-1-sulfonyl)phenyl]]-1-propylxanthine,
1 µM, was included to block the endogenous A2BAR)
followed by addition of agonists and a 20 min incubation. For
A1AR and A3AR, after incubation with agonists for 20 min,
forskolin (10 µM) was added and the mixture incubated for
an additional 15 min. The reaction was terminated upon
removal of the supernatant and addition of 100 µl Tween-20
(0.3%). Intracellular cAMP levels were measured with an
ALPHAScreen cAMP assay kit as instructed by the
manufacturer (PerkinElmer).

A1AR–bla U2OS–Agonist Screen
This assay was performed using the screening services of Thermo
Fisher (Waltham, MA). A1AR-bla U2OS cells are thawed and
resuspended in Assay Media (Freestyle media) to a concentration
of 312,500 cells/ml. 32 μl of cell suspension (10,000 cells) was
added to each well of a 384-well TC-Treated assay plate. Cells in
Assay Media were incubated for 16–24 h in the plate at 37°C/5%
CO2 in a humidified incubator. 4 μl aliquots of a 10X serial
dilution of NECA (control agonist starting concentration,
500 nM) or compounds were added to appropriate wells of the
plate. 4 μl of Assay Media was added to all wells to bring the
final assay volume to 40 μl. The plate was incubated for 5 h at
37°C/5% CO2 in a humidified incubator. 8 μl of 1 μM substrate
+ Solution D Loading Solution was added to each well and the
plate was incubated for 2 h at room temperature. The plate was
read on a fluorescence plate reader.

PathHunter
®
β-Arrestin Assays

This assay was performed using the screening services of Eurofins
(Luxembourg). The PathHunter® β-Arrestin assay monitors the
activation of a A1AR in a homogenous, non-imaging assay format
using a technology developed by DiscoverX called Enzyme
Fragment Complementation (EFC) with β-galactosidase (β-
Gal) as the functional reporter. The enzyme is split into two
inactive complementary portions (EA for Enzyme Acceptor and
PK for ProLink) expressed as fusion proteins in the cell. EA is
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fused to β-Arrestin and PK is fused to the A1AR. When the A1AR
is activated and β-Arrestin is recruited to the receptor, ED and EA
complementation occurs, restoring β-Gal activity which is
measured using chemiluminescent PathHunter® Detection
Reagents. PathHunter cell lines were expanded from freezer
stocks according to standard procedures. Cells were seeded in
a total volume of 20 μl into white walled, 384-well microplates
and incubated at 37°C for the appropriate time prior to testing.
For agonist determination, cells were incubated with sample to
induce response. Intermediate dilution of sample stocks was
performed to generate 5X sample in assay buffer. 5 μl of 5X
sample was added to cells and incubated at 37°C or room
temperature for 90–180 min. Vehicle concentration was 1%.
Assay signal was generated through a single addition of 12.5
or 15 μl (50% v/v) of PathHunter Detection reagent cocktail,
followed by a 1 h incubation at room temperature. Microplates
were read following signal generation with a PerkinElmer
Envision™ instrument for chemiluminescent signal detection.
Compound activity was analyzed using CBIS data analysis suite
(ChemInnovation, San Diego, CA). For agonist mode assays,
percentage activity was calculated using the following formula: %
Activity = 100% x (mean RLU of test sample–mean RLU of
vehicle control)/(mean MAX control ligand–mean RLU of
vehicle control).

A1AR–Calcium Influx Assay
This assay was performed using the screening services of Eurofins.
Evaluation of the agonist activity of compounds at the human A1

receptor expressed in BA/F3 cells was determined bymeasuring their
effect on cytosolic Ca2+ ion mobilization using a fluorimetric
detection method. The cells were suspended in HBSS buffer
(Invitrogen) complemented with 20mM Hepes and then
distributed in microplates at a density of 5 × 104 cells/well. The
fluorescent probe (Fluo8, AAT Bioquest, San Francisco, CA) mixed
with probenicid in HBSS buffer (Invitrogen) complemented with
20mMHepes (Millipore, Burlington, MA) (pH 7.4) was then added
into each well and equilibrated with the cells for 60 min at 30°C.
Thereafter, the assay plates were positioned in a microplate reader
(FlipR Tetra, Molecular Devices, San Jose, CA), which was used for
the addition of the test compound, reference agonist or HBSS buffer
(basal control), and for themeasurements of changes in fluorescence
intensity that varies proportionally to the free cytosolic Ca2+ ion
concentration. For stimulated control measurements, N6-
cyclopentyladenosine (CPA) at 0.25 μM was added in separate
assay wells. The results were expressed as a percent of the control
response to CPA at 0.25 μM. The standard reference agonist was
CPA, which was tested in each experiment at several concentrations
to generate a concentration-response curve from which its EC50

value was calculated.

RESULTS

Machine Learning
Assay Central® (Clark and Ekins, 2015; Clark et al., 2015) is our in-
house software that was used to curate the published A1AR data,
build and validate machine learning models then enable predictions

for molecules. This software has been previously used to build
Bayesian machine learning models that generate predictions in
toxicological and drug discovery projects (Lane et al., 2018; Russo
et al., 2018; Zorn et al., 2019). The interpretation of the model
metrics as well as the prediction and applicability scores have been
described in detailed in previously published work (Clark et al., 2015;
Lane et al., 2018; Russo et al., 2018; Zorn et al., 2019). While our
Assay Central® software can select a reasonable threshold, 100 nM
was set for the original A1AR Bayesian model (and subsequent
models derived with additional algorithms). Compounds with an
EC50 lower than this threshold were considered active, and those
above were considered inactive. The initial Bayesianmodel for A1AR
agonists using literature data (Figure 1A), demonstrated a five-fold
cross-validation ROC of 0.87, which is excellent. This model was
then used to predict the SuperDrug library (Siramshetty et al., 2018)
and our in-house library of compounds (predominantly consisting
of FDA approved drugs and other compounds of interest), and 30
compounds were initially selected for testing for agonist activity in
the A1AR cAMP assay (Supplementary Table S1).

Subsequently we have also built classification and regression
models using our latest version of the Assay Central software for
A1AR, A2AAR, A2BAR and A3AR (Supplementary Figures
S1–S4). The classification machine learning models (100 nM
cutoff) all had good 5-fold cross-validation statistics, and we
have additionally generated regression models that can be used
for scoring and selecting new compounds for testing in future.
We used these additional models to predict activity of the hits
selected from our initial models (Supplementary Table S2).

A1AR Assays
The initially selected 29 molecules were tested using the HEK293
A1AR Nomad cell line stably expressing human protein with no
tag (Figure 1B). Activation of A1AR by an agonist engages Gi1/2/3
or Go protein to inhibit adenylate cyclase and, therefore, decreases
the cAMP concentration. Compounds were tested at 10 µM using
NECA at 10 µM as the reference agonist. The fluorescence
intensity was normalized to NECA at 10 µM and vehicle
(DMSO) alone, which were considered 100% and 0%,
respectively. The normalized results showed that febuxostat,
BAY11-7082 ((E)-3-(4-methylphenylsulfonyl)-2-propenenitrile)
and crisaborole showed a normalized activity with respect to the
positive control of 94.53%, 95.74% and 98.52%, respectively
(Figure 1B). Additionally, tilorone hydrochloride and
paroxetine hydrochloride showed a normalized activity with
respect to the positive control of 55.9 % and 68.0%,
respectively (Figure 1B). Other compounds predicted
computationally by Assay Central showed an activity of less
than 50% at the concentration tested. We therefore conducted
additional assays with crisaborole, febuxostat and paroxetine
using radioligand binding assays and measured dose response
curves in the HEK293 A1AR assay using ALPHAScreen (Perkin
Elmer) assay, as described below.

Radioligand Binding
The first step toward activation involves receptor binding. Thus,
we have measured the inhibition of the binding of standard AR
radioligands at the orthosteric site of three AR subtypes (Table 1).
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No significant binding inhibition was observed at 100 µM for the
three compounds at the human A1AR or human A2BAR or by
crisaborole at human A2AAR and A3ARs. However, febuxostat
and paroxetine both inhibited orthosteric radioligand binding in
the µM range for A2AAR and A3AR.

Functional Activity on cAMP Levels in
Transfected HEK Cells
Functional activity on cAMP levels in transfected HEK cells
was determined for the three hit compounds. No A1AR agonist
activity was observed (Figure 2). In HEK cells expressing the
human A2AAR, stimulation of cAMP was observed for

crisaborole (EC50 2.8 µM) and paroxetine (EC50 14 µM), but
not for febuxostat. We did not measure A2BAR and A3AR
effects of febuxostat in the cAMP cell assays. However,
crisaborole is not an orthosteric A2AAR agonist, because it
did not inhibit binding. Istradefylline, an A2AAR antagonist,
only minimally affected crisaborole’s effect, suggesting a
mechanism of crisaborole-induced cAMP accumulation that
is different from standard full agonist NECA. Istradefylline
(1 µM) had minimum effect, but it slightly lowered both basal
value and the maximum effect. This concentration of
istradefylline (Ki = 2.2 nM) should be sufficient to saturate
the orthosteric A2AAR binding site. Curiously, crisaborole also
increased cAMP accumulation in A2BAR-expressing HEK293

FIGURE 1 | A1AR machine learning model and testing of predictions. (A) Bayesian machine learning model 5-fold cross validation ROC plot showing statistics for
A1AR (B) Normalized agonist effect of compounds in the activation of A1AR receptor. The cells were treated with 30 compounds at 10 µM concentration. Data points
represent the mean ± SD for each condition for a single experiment performed in triplicate. The results were normalized to 10 µM NECA and vehicle (DMSO) that were
considered to be 100% and 0%, respectively.

TABLE 1 | Inhibition of specific binding at all four ARs (% inhibition at 100 µM of the radioligand shown, or Ki (µM)).a

Molecule A1 ([3H]DPCPX) A2A ([3H]ZM241385) A2B ([3H]DPCPX) A3 ([125I]I-AB-MECA)

Crisaborole 36.9 ± 3.4% 31.2 ± 5.6% <10% 28.8 ± 16.3%
Febuxostat 29.8 ± 5.2% 22.9 ± 4.3 µM <10% 67.3 ± 45.7 µM
Paroxetine 9.1 ± 3.9% 40.4 ± 9.8 µM <10% 14.5 ± 9.7 µM

aData are expressed as mean ± standard error from three independent experiments. Experimental procedures are described in Methods.

TABLE 2 | Summary table of in vitro data for compounds tested against adenosine receptors.

Adenosine receptor Binds with Adenosine Adenylate
cyclase/cAMP

Crisaborole cAMP Febuxostat cAMP Paroxetine cAMP

A1AR Gi High affinity Inhibition/Decrease Not active Not active Not active
A2AAR Gs High affinity Stimulate/Increase Active Emax = 67% Not active Active Emax = 69%
A2BAR Gs Low affinity Stimulate/Increase Emax = 17% N/A N/A
A3AR Gi High affinity Inhibition/Decrease N/A N/A Not active
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cells, but it was weaker than at the A2AAR. At the human
A3AR, paroxetine did not show any agonist activity at 100 µM,
although it displayed a binding Ki value of 14.5 µM, suggesting
antagonist activity. A summary table of in vitro data for
compounds tested against adenosine receptors is showed in
Table 2.

A1AR–β-Arrestin Assay
We used A1AR-bla U2OS cells to test activation of A1AR
receptor by crisaborole and paroxetine. This parental cell line
stably expresses a beta-arrestin/TEV protease fusion protein
and the beta-lactamase reporter gene under the control of a UAS
response element. Paroxetine and crisaborole showed no
activation in this system (Supplementary Figure S5). We
also used a secondary assay PathHunter® β-Arrestin assay,
which monitors the activation of A1AR in a homogenous,
non-imaging assay format using a technology developed by
DiscoverX called Enzyme Fragment Complementation (EFC)
with β-galactosidase (β-Gal) as the functional reporter. This
data was normalized to the maximal and minimal response
observed in the presence of control agonist CPA and vehicle
(Supplementary Figure S6), and no activation of the A1AR
receptor was observed in this assay at the maximum crisaborole
concentration of 20 µM.

A1AR–Calcium Influx Assay
Crisaborole was tested using cellular and nuclear receptor
functional Assays (Eurofins) for calcium influx assay and
showed no activity of the A1AR receptor at the maximum
concentration tested (20 μM) (Supplementary Figure S7).

DISCUSSION

While there have been several previous attempts to use machine
learning for ARs (Saad et al., 2019; Wang et al., 2021), few have
performed external validation. One recent study used deep learning
combined with pharmacophore and docking approaches to identify
novel A1/A2A antagonists (Wang et al., 2021). In contrast, we were
keen to use machine learning alone to potentially repurpose existing
drugs for ARs. Using our initial machine learning model, we have
identified crisaborole as weakly binding to A1AR, but without
activity on the cAMP, β-arrestin and calcium influx assays.
However, crisaborole can activate A2AAR and A2BAR at the
highest concentrations examined. Unexpectedly, the presence of
an orthosteric A2AAR antagonist istradefylline did not antagonize
the effect of crisaborole, suggesting a mechanism of crisaborole-
induced cAMP accumulation that is different from standard full
agonist NECA. Paroxetine induced weak activation of A2AAR, but

FIGURE 2 | Functional effects measured in transfected HEK cells. (A) Determination of cAMP inhibition in A1AR-expressing cells, usingN6-bicyclo [2.2.1]hept-2-yl-
5′-chloro-5′-deoxyadenosine (Cl-ENBA) as a reference full agonist (100% stimulation). (B) Determination of cAMP stimulation in A2AAR-expressing cells, using 2-[p-(2-
carboxyethyl)phenyl-ethylamino]-5′-N-ethylcarboxamidoadenosine (CGS21680) as a reference full agonist (100% stimulation). (C) Lack of antagonism, by an orthosteric
agonist istradefylline, of the crisaborole-induced cAMP stimulation in A2AAR-expressing cells. A2A activation by crisaborole in the absence of antagonist showed an
EC50 = 2.78 µM, and in the presence of istradefylline EC50 = 2.99 µM. (D) Comparison of cAMP stimulation by crisaborole in A2A- and A2BAR-expressing cells, using
NECA as a reference full agonist (100% stimulation). (E) Lack of agonist effect of paroxetine in A3AR-expressing cells, in comparison to (1S,2R,3S,4R,5S)-4-(6-((3-
chlorobenzyl)amino)-2-((3,4-difluorophenyl)ethynyl)-9H-purin-9-yl)-2,3-dihydroxy-N-methylbicyclo [3.1.0]hexane-1-carboxamide (MRS5698) as a reference full agonist
(100% stimulation).
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no activation of A3AR, despite a binding Kd of 14.5 ± 9.7 µM. The
lack of A3AR activation suggested that paroxetine is an antagonist at
this subtype. The structures of the three hit compounds do not
resemble AR-targeting drugs that have been studied in clinical trials
previously (Jacobson et al., 2019) (Supplementary Figure S8).

We evaluated the activity of crisaborole using several different
in vitro assays. Crisaborole is an inhibitor of phosphodiesterase 4
(PDE4), which is responsible for the hydrolysis and subsequent
inactivation of cyclic nucleotides such as cAMP. A1AR activation
promotes inhibition of adenylate cyclase and consequently
inhibits cAMP production leading to the inhibition of
presynaptic glutamate release (Wardas, 2002). Thus, since
crisaborole is an inhibitor of PDE4 and A1AR, it may have
different effects on cAMP levels that are antagonistic. When
crisaborole was tested in a second independent β-arrestin assay
using the A1AR-bla U2OS Cells and PathHunter technology, it
showed no agonist activity at the A1AR (Supplementary Figures
S5, S6) and had no activity in the calcium influx assay
(Supplementary Figure S7).

In the United States, crisaborole is indicated for topical treatment
of mild to moderate atopic dermatitis in people 3 months of age and
older (Schlessinger et al., 2020). Crisaborole enhances cellular
control of inflammation by inhibiting PDE4 and its ability to
degrade intracellular cAMP. Apparent A2AAR agonist-like activity
of crisaborole in combination with its PDE4 inhibitory activity may
contribute when used topically in the clinic, regardless of the
mechanism of A2AAR activation.

The medicinal chemistry surrounding the development of
novel adenosine receptor ligands has largely been driven by
derivatization of the adenosine and other purine-like scaffolds
to gain understanding of the structure-activity relationships
especially in the early stages to distinguish between A1AR and
A2AAR (Geldenhuys et al., 2017). From these studies, novel
scaffolds were developed, such as the A2AAR antagonist core
8-styrylxanthine. It was discovered that substitution of the styryl
moiety with an 8-phenoxymethyl moiety leads to a dual A1/A2A

receptor antagonist (Harmse et al., 2016). The current study
provides additional scaffolds based on approved drugs that could
be modified in the future to improve activities against these
receptors.

The A2AAR receptor is also expressed in the brain, where it
has important roles in the regulation of glutamate and
dopamine release, making it a potential therapeutic target
for the treatment of conditions such as insomnia, pain,
depression, and Parkinson’s disease (Borea et al., 2018).
A2AAR is recognized as the main adenosine subtype located
in the striatum, where it is colocalized with dopamine D2

receptors (D2R). This results in A2AAR/D2R heteromers that
have a crucial role in the modulation of motor function (Borea
et al., 2018). A2AAR may be a therapeutic target in Alzheimer’s
disease, Huntington’s disease, epilepsy, acute and chronic
stress, and memory fear (Borea et al., 2018).
Pharmacological agents that increase the activation of A1AR
in response to adenosine would be useful for the treatment of
CNS, cardiovascular, and inflammatory pathologies (Borea
et al., 2018). Coactivation of two AR subtypes might be
therapeutically beneficial, such as both A1AR and A3AR in

cardioprotection (Jacobson et al., 2005). Understanding the
mechanisms of drug actions at GPCRs and translating this
understanding into more selective and effective medicines
remains a challenge (May et al., 2007). The effects of an
allosteric modulator on ligand efficacy and on affinity at the
orthosteric site do not always correlate, such that a modulator
can increase the affinity of an orthosteric ligand while
decreasing the efficacy and vice versa (May et al., 2007).

CONCLUSION

The goal of this work was to use machine learning approaches to
assist in identifying new molecules to modulate ARs. In the
process we have identified several approved drugs with in vitro
functional activity against the A2AAR, A2BAR and A3AR
subtypes, which could potentially be repurposed. The three
molecules derived from machine learning each had a distinct
pharmacological activity, which diverged in the different in vitro
assays used and, in some cases, suggested non-canonical
interaction with these receptors. Subsequent pharmacological
characterization, including the use of AR-knockout mice (Xiao
et al., 2019), will be needed to better understand their respective
modes of action in future. The data generated in this study may
also be used to improve ourmachine learningmodels and provide
further structural diversity for starting points for medicinal
chemistry efforts for AR modulators.
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