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Technological advances in sequencing and single nucleotide polymorphism (SNP) genotyping
microarray technology have facilitated advances in forensic analysis beyond short tandem
repeat (STR) profiling, enabling the identification of unknown DNA samples and distant
relationships. Forensic genetic genealogy (FGG) has facilitated the identification of distant
relatives of both unidentified remains and unknowndonors of crime sceneDNA, invigorating the
use of biological samples to resolve open cases. Forensic samples are often degraded or
contain only trace amounts of DNA. In this study, the accuracy of genome-wide relatedness
methods and identity by descent (IBD) segment approaches was evaluated in the presence of
challenges commonly encountered with forensic data: missing data and genotyping error.
Pedigree whole-genome simulations were used to estimate the genotypes of thousands of
individuals with known relationships using multiple populations with different biogeographic
ancestral origins. Simulations were also performed with varying error rates and types. Using
these data, the performance of differentmethods for quantifying relatednesswas benchmarked
across these scenarios. When the genotyping error was low (<1%), IBD segment methods
outperformed genome-wide relatedness methods for close relationships and are more
accurate at distant relationship inference. However, with an increasing genotyping error
(1–5%), methods that do not rely on IBD segment detection are more robust and
outperform IBD segment methods. The reduced call rate had little impact on either class of
methods. These results have implications for the use of dense SNP data in forensic genomics
for distant kinship analysis and FGG, especially when the sample quality is low.
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INTRODUCTION

Inferring familial relationships between individuals using genetic data is a common practice in
population genetics, medical genetics, and forensics. Advances in next-generation sequencing (NGS)
and genotyping microarray technology have enabled the rapid profiling of millions of single
nucleotide polymorphisms (SNPs) with near-perfect accuracy. With these new methods,
investigators have improved one of the most significant challenges in forensic analysis:
attribution and identification of the source or close relatives of DNA samples from unknown
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donors. In response to these advances, SNP-based kinship
analysis algorithms and software for analyzing and inferring
genetic relationships between individuals have been developed.

The methods for SNP-based kinship analysis and
relatedness inference on genome-wide data can be broadly
classified into two categories: 1) genome-wide relatedness
methods and 2) identity by descent (IBD) segment–based
relatedness estimation methods. Likelihood methods are
also useful when working with data more sparse than
microarray or whole-genome sequencing data (Kling and
Tillmar, 2019). Generally, genome-wide relatedness methods
have lower data and resource requirements, requiring only a
sparse set (e.g., <20,000) of SNPs in linkage equilibrium to
perform as well as with genome-wide data and allow the use of
unphased genotypes and low density of variant calls. By
contrast, IBD segment methods usually (but not always,
e.g., IBIS (Seidman et al., 2020)) require dense phased data
and would require the imputation of incomplete genotyping or
SNP data to fill in missing genotypes (or removal of sites with
missing data in any sample). With respect to applications and
assuming high-quality (low-error) genotyping data, genome-
wide relatedness methods perform as well as IBD segment
methods for close relationships, while IBD segment methods
more accurately identify more distant relationships
(Ramstetter et al., 2017).

The goal of this study was to evaluate the accuracy of genome-
wide relatedness methods and IBD segment approaches in the
presence of challenges that are commonly encountered with
forensic data, namely, the high level of dropout (low call rate)
and increased genotyping error. This study differs from Gorden
et al. (2022), where we simulate genome-wide microarray rather
than SNP capture; this differs from similar work in de Vries et al.
(2022) by using different simulation strategies, different pedigree
and error structures, and uses both crossover interference and a
sex-specific genetic map for forward-time simulation. The
challenges with forensic samples are commonly encountered
due to samples being degraded, contaminated, and/or having
limited input from trace amounts of DNA. Furthermore, in
disaster victim identification scenarios, DNA from all samples,
queries, and references may be of low quality. To this end, a
selection of tools was identified based on previously published
data that fit into either of these categories of relatedness analysis
methods to assess for relatedness characterization. Systematic
and comprehensive benchmarking requires many pedigrees with
known relationships, which can be generated across a range of
call rates and genotyping error, using multiple populations with
different biogeographic ancestries. As such, developing a
comprehensive set of benchmarking data using simulation
was an equally important aim of this study. The performance
of different kinship identification methods and software
implementations was assessed for accurately quantifying
relatedness using the simulated data generated within this
study. The specific goal for this study was to benchmark the
performance of different approaches to SNP-based kinship
analysis to detect and characterize first through third-degree
relatives in the presence of challenges associated with forensic
genetic data.

METHODS

Genome-Wide Relatedness and Identity by
Descent Segment Detection
There are several existing methods for the inference of
relatedness from SNP data (Ramstetter et al., 2017). The
methods for relatedness inference were classified into two
broad categories: genome-wide relatedness measures and IBD
segment detection methods. An additional goal of the
systematic review conducted here was to identify datasets
and/or simulation methods that can be used to benchmark
the performance of algorithms and software for SNP-based
kinship analysis. Many of the publications describing the
selected methods performed their own benchmarking with
empirical or simulated data; these published benchmarking
datasets were assessed for their utility in the testing and
evaluation goals of this study. Testing and evaluation require
related individuals with known ground truth pedigree
information, and these kinds of data can be created in silico
by sampling existing well-characterized unrelated individuals
such as those available in the 1000 Genomes Project (Auton
et al., 2015) under a forward-time simulation framework. As
such, this systematic evaluation included existing methods and
software implementations for simulating genome-wide SNP
genotyping data.

The KING algorithm (Manichaikul et al., 2010) was chosen
as an exemplar genome-wide relatedness method as it allows
for the presence of unknown population substructure,
enabling the robust estimation of the kinship coefficient,
regardless of sample composition, and does not require the
specification of allele frequencies for calculating the kinship
coefficient, which may not be known prior to analysis. Two
different IBD segment approaches were selected. IBIS (Saada
et al., 2020) allows for the IBD segment inference from dense
genotyping data without the requirement for phased data. In
addition to reduced resource requirements, a phase-free
inference may be robust to phasing errors that can be
introduced with genotyping data and small sample sizes. In
addition, hap-IBD (Zhou et al., 2020), which requires phased
inputs, has recently been demonstrated to enable fast, scalable,
and accurate IBD segment detection in comparison to other
leading methods.

When attempting to rescue the performance of IBD segment
approaches, more permissive parameter settings were used with
both IBIS and hap-IBD (described in Supplementary Table S2).
A thorough description of methods and selection criteria can be
found in the Supplementary Data.

Reference Genotypes
Founder haplotypes were obtained from the 1000 Genomes
Project (GRCh37). The set of variants was thinned to 590,588
autosomal biallelic SNPs primarily those represented on the
Illumina Global Screening Array (GSA) (see Supplementary
Data), a commonly used platform for medical genomics and
forensic genetic genealogy (FGG) analysis. In addition to
capturing a large set of known polymorphic sites (including
sites that confer high imputation accuracy in non-European
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populations), this array-centric strategy is commonly used in the
genetic genealogy space even when whole-genome sequencing is
used to generate data. Even though the GSA is by no means
historically the only array used to generate data that populates
forensic genetic genealogy (FGG) databases, it is a commonly
used platform for medical genomics and FGG analysis.

Data Simulation
Pedigrees and phased genotypes for benchmarking of the selected
tools were simulated using ped-sim (Caballero et al., 2019), using
the keep_phase flag, to allow direct comparison between tools.
Ped-sim outputs IBD segment sizes and positions from an input
pedigree definition. When supplied with population genotype
data from a pool of founders, ped-sim will use forward-time
genetic data simulation to generate genotype data in simulated
pedigrees, allowing specified error rates to be introduced into the
output data. The effect of removing SNPs from original 1000
Genomes genotypes was investigated by performing a limited
number of simulations using identical family structures with both
the full genotypes and the selected SNP genotypes and performed
an accuracy assessment. The effects of SNP selection on the
kinship calculation did not materially affect the overall
relationship between the tools and their accuracy, indicating
that using a reduced SNP set was a reasonable proxy for the
wider pools of SNPs (Supplementary Data).

A total of 264 simulations were created using unrelated
founders from each of three populations in 1,000 Genomes:
GBR (British in England and Scotland), ASW (African
Ancestry in Southwest US), and MXL (Mexican Ancestry in
Los Angeles, California), respectively. Each of the three
population’s data was simulated using a range of missing
genotype and genotyping error rates. The full details of
simulation are provided in the Supplementary Data. Sweeping
through each of the parameter combinations earlier resulted in 88
simulations per population for a total of 264 simulations across
the three populations studied across a wide range of missingness
and genotyping error rates (see Supplementary Table S1). For
each simulation, five-generation pedigrees were simulated
(Supplementary Figure S1), resulting in a wide range of
relative types: 130 first-degree relationships, 184 second-degree
relationships, 212 third-degree relationships, 212 fourth-degree
relationships, 176 fifth-degree relationships, 144 sixth-degree
relationships, 64 seventh-degree relationships, and 769
unrelated pairs for each pedigree. The counts and distribution
of these relationship degrees are shown in Supplementary
Figure S2.

Benchmarking
The accuracy of each approach was measured by comparing the
calculated degree of relatedness to the true relatedness degree
from the simulated pedigree. In all categorical analyses,
relationships were classified as first through the fourth degree,
with anything more distant than the fourth degree binned as
“unrelated,” and accuracy was assessed using classification
accuracy. The relationship degree for IBIS used the built-in
degree inference. KING and hap-IBD relationship degree
inference used conventional cutoffs (geometric means between

theoretical medians for each degree) as described in Manichaikul
et al. (2010). Quantitative accuracy analysis was also calculated by
comparing the estimated kinship coefficient to the actual kinship
coefficient that was simulated using the root mean square error
(RMSE).

RESULTS

Performance on Simulated Pedigrees With
Missing Data and Genotyping Error
First, the performance of KING, IBIS, and hap-IBD was assessed
against data with increasing missingness and the genotyping
error, using their default settings without any parameter
tuning. To align with analysis most useful for forensic
genealogy investigations (Greytak et al., 2019; Gorden et al.,
2022), classification accuracy was assessed focusing on
identifying relatively close relatives; therefore, relationship
degree classification resolution was limited to the fourth
degree, where any relationship more distant than the fourth
degree was classified as “unrelated.” This aligns most closely
with the use case of missing persons’ identifications, where
identifications are made with relatives closer than the fourth
degree. Figure 1 shows classification accuracy for KING, IBIS,
and hap-IBD against the simulations generated using ASW, GBR,
and MXL genotypes from 1000 Genomes. Classification accuracy
is near 100% for all populations using all kinship methods when
there is zero genotyping error. Missing data, without the
genotyping error, has little to no effect on overall classification
accuracy. Classification accuracy decreases for all methods as the
genotyping error increases. Notably, the classification accuracy
for both IBD segment methods, IBIS and hap-IBD, falls near the
accuracy of guessing, as the error increases (indicated by the
dashed red line, See Supplementary Data). IBIS accuracy
decreases to near the accuracy of guessing when the error is
between 5 and 10%. The accuracy of hap-IBD approaches this
point when the genotyping error is ≥1%. By contrast, the
classification accuracy for KING is still impacted by the
genotyping error but not to the degree that the IBD segment
methods are affected. We also assessed accuracy quantitatively by
evaluating the RMSE of the estimated kinship coefficient
compared to the actual kinship coefficient for each pair of
relatives as simulated, shown in Figure 2. These results exhibit
a similar trend as the classification error results described earlier;
increasing missing data rates do not noticeably increase any
method’s RMSE. Increasing the genotyping error, however, has
a substantial effect. The RMSE for KING is slightly higher than
that of IBIS or hap-IBDwhen the genotyping error is zero, but it is
impacted less dramatically at higher levels of the genotyping
error. By contrast, both IBD segment methods have much higher
RMSE at higher levels of the error in comparison to the KING
genome-wide relatedness method. Increasing error rates give rise
to higher RMSE as the genotyping error increases. Next, the
correlation between the calculated and simulated kinship
coefficient was examined using a single population (GBR)
under default parameters for each method. Supplementary
Figures S3–S5 show the estimated kinship coefficient
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compared to the simulated kinship coefficient for KING, IBIS,
and hap-IBD, for each pair of relatives simulated. These results
indicate that with zero genotyping error, there is no systematic
bias, but IBD segment methods show substantially less variability.
As the genotyping error increases, the kinship coefficient inferred
by all methods is underestimated compared to the true kinship
coefficient between two individuals. The underestimation of the
true kinship coefficient is much more dramatic in the IBD
segment methods when using default parameters. In summary,
these results demonstrate that while KING has higher variance
than IBD segment methods in the absence of genotyping error,
the KING method is more robust than either of the two IBD
segment methods as the genotyping error increases. These results
also indicate that missing data have little to no effect on the ability
of any of these methods to assess relatedness, given dense
genotype data.

The calculated kinship coefficient was compared to the
recorded simulated kinship coefficient for all pairwise
comparisons. Figure 3 shows the difference between the
calculated and simulated kinship coefficient as a function of
the increasing simulated kinship coefficient. A perfect
correspondence between the estimated kinship coefficient
versus the kinship coefficient that was simulated would be
displayed as a horizontal line centered at zero on the Y-axis.
With zero genotyping error, there is very little difference between
the estimated versus simulated kinship coefficient, regardless of

the recorded kinship coefficient of the two individuals compared.
As the genotyping error increases, the negative impact on
relationship estimation becomes clear for KING and both IBD
segment methods. All three methods suffer from an increasingly
underestimated kinship coefficient as the true relationship is
closer, but the degree to which these methods are impacted
differs highly. At 1% error, KING and IBIS are less impacted
at closer relationships, but IBIS is impacted more negatively for
closer relationships. At higher levels of error (5–10%), both IBD
segment methods are much more severely impacted than KING,
especially with closer relationships. The performance of hap-IBD
was extremely poor with any genotyping error ≥1%.

Assessing the Impact of Identity by Descent
Segment Method Parameters With High
Genotyping Error
The aforementioned results indicate that when used with
default parameters both IBD segment methods are
extremely sensitive to the genotyping error compared to the
KING estimator. These methods were developed and
optimized primarily for use in population or medical
genetics studies where there is a reasonable expectation for
accurate and robust data. With high-quality samples, industry-
standard microarray genotyping or short-read sequencing and
variant calling routinely produce data with well over 99.9%

FIGURE 1 | Overall classification accuracy using default parameters. Panels show the genotyping error increasing in panels going left-to-right and missing data
rates increasing panels going top-to-bottom. Individual bars within each panel show the classification accuracy within each simulated population. This graphic shows
roughly equivalent accuracy with zero error but decreased accuracy for both IBD segment methods in comparison to KING with a higher genotyping error.
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accuracy (Olson et al., 2021). These methods were developed
using sensible defaults that maximize the ability to detect long
IBD stretches minimizing artificial breaks introduced by
sequencing or genotyping errors, all while minimizing false
positives that may be introduced while being too permissive.
The KING method does not have parameters that can be
tuned. However, IBIS and hap-IBD can be run with
different parameters. For tools that calculate IBD segments,
the most impactful measures are related to the minimum
length of segment reported and the maximum distance
between SNPs for a segment to be continued. With IBIS,
the allowed error rate, which specifies the acceptable
number of mismatches in a segment before the extension of
a segment is stopped, the minimum number of shared SNPs
required to identify a segment, and the minimum length of any
detected segments to output were all varied. The error rate
tolerance was increased up to 0.2 (20%), the minimum SNPs
required to identify a segment were decreased to a minimum of
2, and the minimum length decreased to a minimum of 2 cM.
With hap-IBD, the max gap parameter, which specifies the
maximum base-pair gap between a seed segment and another
IBS segment in order for the seed segment to be extended
(default 1,000), was varied. The gap value was increased to
5,000 and 10,000, which allows output IBD segments to
include very short non-IBS regions that can result from the
genotype error, mutation, and gene conversion. Also varied
were hap-IBD’s minimum output length from the default of

2 cM to add more permissive (1 cM) and more restrictive
(7 cM) options.

In the results presented earlier, the tool parameters were held
constant at defaults, and the performance was examined over
different missing and genotyping error rates. Here, the simulation
constant was held at zero missing data. For IBIS, the simulated
data generated by ped-sim using 5% simulated error were used.
For hap-IBD, due to its higher sensitivity to the error, ped-sim
simulations allowing the 1% error were selected. These error rates
are the last simulation for each tool with accuracy significantly
greater than the accuracy of guessing.

Permissive parameters allowing the variation of acceptable
IBD segments were not able to rescue the performance of IBD
segment methods assessed here. As mentioned earlier, the
correlation between the estimated and simulated kinship
coefficient was examined when using more permissive IBIS
and hap-IBD parameters. These results indicate that the
variation of IBIS parameters (allowed mismatches in a
segment before extension, and the minimum length of
detected segments) does not improve kinship coefficients for
high error data and that varying the minimum segment length for
hap-IBD results in severely underestimated kinship coefficients,
regardless of the allowed error.

In summary, increasing the acceptable error rate in a segment
before considering it as false and decreasing the minimum
centimorgan length to consider a segment IBD did not have
an appreciable impact on increasing the kinship inference

FIGURE2 |RMSE comparing the inferred versus simulated kinship. Panels show the genotyping error increasing in panels going left-to-right andmissing data rates
increasing in panels going top-to-bottom. Individual bars within each panel show the classification accuracy within each simulated population (ASW, GBR, and MXL).
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accuracy in the presence of high genotyping error for either IBIS
or hap-IBD. Taken together, these results indicate that no
combination of reasonably permissive parameters could rescue
the performance of the two IBD segment methods assessed here
when the genotyping error is in the 1–5% range.

DISCUSSION

Dense SNP genotype data have made it possible to infer
relationships between samples with far greater granularity than
what is possible using traditional short tandem repeat (STR)
analysis with capillary electrophoresis. The methods for
measuring genome-wide relatedness (Purcell et al., 2007;
Manichaikul et al., 2010; Conomos et al., 2016) and for
detecting IBD segments (Gusev et al., 2009; Browning and
Browning, 2011, 2013; Caballero et al., 2019; Naseri et al.,
2019; Saada et al., 2020; Zhou et al., 2020) are routinely used
for characterizing relatedness in medical genetics, genome-wide
association studies, population genetics, and, more recently,
forensics.

Recent benchmarking efforts have shown that genome-wide
relatedness methods and IBD segment methods performed
equally well (assuming little or no error) and are generally
accurate for close relationships, but IBD segment methods
outperformed genome-wide relatedness methods for more
distant relationships (Ramstetter et al., 2017). The goal of the
present study was to assess how these methods perform in the
special case of forensics, which differs from other common use
cases in population genetics and public health genomics. In
forensics, and especially in the field of forensic genetic
genealogy (FGG) (Greytak et al., 2019), the samples are rarely
the same degree of quality and quantity as is usually available in
population and medical genetics. Instead, the samples are often
degraded, and in some cases, DNA is present in only minute,
trace amounts. The combination of low input together with
degraded template DNA can lead to both increased
missingness (low call rate for microarrays or high dropout rate
for sequencing) and an increased genotyping error (Alaeddini
et al., 2010; Loreille et al., 2011; de Vries et al., 2022). All the
methods discussed in this work were developed and optimized for
contemporary genotyping array data or variant calls from short-

FIGURE 3 | Difference between the inferred kinship coefficient versus the true simulated kinship coefficient for three different methods using default parameters at
different error and missingness levels for simulated relationships from GBR founders. Error increases in panels going left-to-right. Missing data increase in panels going
top-to-bottom. Each point represents a pair of simulated individuals. Red = hap-IBD; green = KING; blue = IBIS.
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read whole-genome sequence data, both of which have extremely
high accuracy and lowmissing data rates, given high coverage and
high-quality samples. This study aimed to assess how genome-
wide relatedness methods and IBD segment methods perform
with dense genotyping data in the presence of integrity challenges
typically seen with forensic samples.

The initial analysis focused on assessing the performance of a
commonly used genome-wide relatedness measure (KING) and
two IBD segment methods (IBIS and hap-IBD). Of the many IBD
segment methods reviewed in this study, the focus was on two
methods to thoroughly benchmark: IBIS and hap-IBD. IBIS does
not require phasing, and in the forensics use case having very few
samples available, phasing could introduce an additional error
that would degrade the performance of IBD segment detection.
The software hap-IBD was chosen based on its independent
benchmarking against other highly cited and well-known IBD
segment methods because of its permissive licensing.

The analysis of classification accuracy and RMSE indicated
that missing data had scarcely any noticeable effect on the
performance of the tools evaluated. With zero genotyping
error, both IBD segment methods outperformed KING. With
no error, all methods showed no systematic bias while both IBD
segment methods showed substantially less variance than KING.
However, this increased performance was small, in that the
accuracy of KING was still relatively high—the absolute
difference in RMSE between KING and either IBD segment
method was small. In the typical use case of, for example,
missing persons’ identification where a sample is attempted to
be putatively placed into a pedigree containing close relatives
(i.e., first-, second-, and third-degree relatives), this increased
performance may be inconsequential. The ability of IBD segment
methods to accurately discriminate between more distant
relatives (e.g., fifth degree and beyond) where genome-wide
methods such as KING are only reasonably accurate to a third
or fourth degree has been demonstrated previously (Ramstetter
et al., 2017), and our results are consistent with those previous
observations. Although identification of very distant relatives
may be an aim of FGG (Greytak et al., 2019), which will be
discussed further in the following section, the use case here is the
accurate identification of close relationships. To this end, all
methods performed similarly well when no genotyping error
was present. This observation suggests that when using high-
quality reference samples on all individuals, the relatively low-
resource requirements of a method such as KING may be
preferable to other methods which may require phasing,
imputation, or other preprocessing. However, if identification
of more distant relationships is of interest, IBD segment methods
have a notable advantage over any genome-wide method.

The introduction of genotyping error changes these
aforementioned conclusions dramatically. All of the results
shown here clearly demonstrate that the genotyping error
causes a serious and apparently irrecoverable drop in accuracy
for both IBD segment methods far more than the drop in
accuracy seen with KING. The accuracy of hap-IBD falls to
the lowest possible classification accuracy and assigns nearly
all samples as unrelated when any error (≥1%) is introduced.
At 5% error and above, the performance of either of the IBD

segment methods is demonstrably diminished. The genotyping
error also affects KING and notably so at high error rates (5% and
especially 10%), but the reduction in accuracy is far less than what
is seen in either of the IBD segment methods. As such, this first set
of experiments clearly shows that the IBD segment methods
assessed here are extremely sensitive to any genotyping error
when used with default parameters. Furthermore, we simulated
data keeping true phase, which means that phasing errors were
not introduced by a phasing step on unphased data (which will be
required for practical FGG applications), mimicking the best-case
scenario for phasing. The reasonable ranges of more permissive
parameter settings were assessed in either of the IBD segment
methods used here to determine if the performance of these
methods could be rescued in the presence of the genotyping error
profiles expected with degraded forensic samples. Even the most
permissive (yet still reasonable) parameter combinations could
not rescue the performance of either of these methods. Any
further increase in the permissiveness of these parameters would
almost certainly result in false-positive IBD segments being
reported for cases where the error was not as high as
simulated here.

These observations have several notable implications for
the use of dense SNP genotype data in a forensics context. First
and foremost, the genotyping error that might be common in
low-input or degraded samples will almost certainly result in
missed relationship identification. This consequence is
particularly true if an IBD segment method is used when
the genotyping error is >1%. The genome-wide KING
method is more robust to the genotyping error but still
suffers from the underestimation of the kinship coefficient
between two samples when the error rate is high, and the
degree of this underestimation increases with closer
relationships. Perhaps more broadly notable, the findings
here have serious implications for the current state-of-the-
art in FGG. In FGG, DNA is extracted from the remains of an
unidentified person, or DNA is collected from an evidence
sample, from an unknown donor, which was left behind at a
crime scene. This DNA sample is subjected to dense
microarray SNP genotyping or whole-genome sequencing
and is typically uploaded into a third-party database such as
GEDmatch, where distant relatives are identified using IBD
segment methods (Greytak et al., 2019). The data here show
that IBD segment analysis approaches become unreliable
between 1 and 5% error, creating a risk that FGG will fail
to identify true relatives, and may falsely identify unrelated
individuals as candidate matches. Our simulations contained
the specified level of error in all samples, not just the query
sample; if all reference samples were of high quality but only
the query forensic sample was of lower quality, the
performance degradation may be mitigated to some degree.
However, here, we took a more challenging approach—with
poor-quality samples being compared to other poor quality
samples common in disaster victim identification or other
mass casualty events (Prinz et al., 2007; Watherston et al.,
2018; Bertoglio et al., 2020) to address a “worst-case scenario.”

Future research in this area should prioritize further
exploration and more extensive evaluation of IBD segment
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methods with a specific focus on those that have parameters
that allow more explicit fine-tuning of parameters relating to
IBD segment seeding and extension, with the goal of
identifying a method or algorithm for rescuing the
performance of IBD segment detection in the presence of
high error. Furthermore, the scope of the present study only
examined the performance of relative matching techniques
using called SNP genotypes, which could be from either
microarray SNP genotyping or from whole-genome
sequencing that have already gone through alignment and
variant calling to generate a VCF with called SNP genotypes.
Investigating methods that operate directly on genotype
likelihoods was out of the scope of the current study.
Recently published methods including NgsRelate
(Korneliussen and Moltke, 2015) and NGSremix (Nøhr
et al., 2021) operate directly on genotype likelihoods. Future
research should assess how these methods perform when
dealing with low-quality sequencing data from degraded or
low-quantity sequencing data.
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