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We develop a framework for studying state division and unification, and as a case study we focus on modelling 
the territorial patterns in imperial China during periods of unity and upheaval. As a modelling tool we employ 
discrete dynamical systems and analyse two models: the logistic map and a new class of maps, which we name 
ren maps. The critical transitions exhibited by the models can be used to capture the process of territorial division 
but also unification. We outline certain limitations of uni-modal, smooth maps for our modelling purposes and 
propose ren maps as an alternative, which we use to reproduce the territorial dynamics over time. As a result 
of the modelling we arrive at a quantitative measure for asabiyyah, a notion of group solidarity, whose secular 
cycles match the historical record over 1800 years, from the time of the Warring States to the beginning of the 
Ming dynasty. Furthermore, we also derive an equation for aggregate asabiyyah which can be employed in other 
cases of interest.

1. Introduction

Lorenz discovered chaos in its modern mathematical sense when he 
analyzed a set of ordinary differential equations derived from a model of 
thermal convection (Lorenz, 1963). Ever since, chaos theory has been 
a focal point of research in dynamical systems, with sustained efforts 
to apply its insights in the case of social phenomena (Kiel and Elliott, 
1996; Robertson and Combs, 2014), but finding robust patterns has 
proven challenging. Nevertheless, significant progress has been made in 
modelling social dynamics using ordinary differential equations, in par-

ticular for ancient societies (Brander and Taylor, 1998; Roman et al., 
2017; Kuil et al., 2016; Roman et al., 2018; Anderies, 1998; Roman and 
Palmer, 2019), but discrete systems or maps have rarely been employed 
despite showing rich dynamical behaviour, including chaotic behaviour 
in one dimension (May, 1976; Feigenbaum, 1978). We present a math-

ematical framework for modelling alternating periods of stability and 
disorder using discrete dynamical systems. Our focus is on reproducing 
the territorial changes seen throughout the imperial period 221 BCE-

1912 CE of Chinese history. The history of China has known a number 
of periods of increased stability, such as during the Han (206 BCE-220 
CE), Tang (618 CE-907 CE) and later dynasties (Gernet, 1996; Dardess, 
2010) as well as turbulent times, which was the case during the pe-

riod of the Sixteen Kingdoms (304 CE-439 CE) or of the Five Dynasties 
and Ten Kingdoms (907 CE-979 CE). The change of dynasties and the 
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alternating cycle between periods of stability and upheaval has led to 
several theories attempting to explain these historical patterns, a well-

known example being the dynastic cycle (Meskill, 1965; Elvin, 1973).

We investigate if the transition between the different periods can 
be modelled as bifurcations of discrete maps. We analyse and compare 
two models, assessing their strengths and weaknesses in capturing the 
features present in the historical data that tracks the areas of the ter-

ritories controlled by the different dynasties (Taagepera, 1979, 1997; 
Song, 1994; Tan, 1982). Furthermore, starting from the models, we aim 
to quantify the degree of asabiyyah (Khaldun, 1958), a notion of group 
solidarity that been used to explain state breakdown (Turchin, 2018), 
and determine its long-term trend over time. We use the simplified writ-

ing “asabiya”, which is common in the mathematical treatments of the 
topic (Turchin, 2018).

In section 2 we review the mathematical models of the dynastic cy-

cle, the majority of which focus on demographic aspects of the regime 
change. In section 3 we introduce the two models that we consider: 
the logistic map (May, 1976), which is representative of all uni-modal, 
smooth maps, and a new class of maps, which we refer to as ren maps, 
named after the Chinese symbol. We explicitly model the historical 
record using ren maps, which we show can provide a coarse descrip-

tion of the evolution of the system. The transition between order and 
disorder in the historical record is modelled as a transition between a 
stable fixed point, corresponding to the dominant dynasty of a peace-
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ful era, and a chaotic regime (in a mathematical sense), where multiple 
competing factions are present.

The structure of the models suggests a way to quantify the degree of 
social solidarity, or asabiya, seen throughout history of imperial China 
and in section 4 we propose an equation for asabiya that contrasts with 
prior research. We also analyze and compare our estimate of asabiya 
with population data (Zhao and Xie, 1988). Related trends emerge 
which indicate the presence of a feedback mechanism between terri-

torial integrity, population dynamics and the extent of social solidarity.

2. Literature review

Given the vast literature pertaining to the Chinese dynastic cycle, we 
only review work with similar methods and scope as our own, namely: 
that develops a mathematical model, aims to conceptually or numer-

ically match the model to Chinese history or provide a mathematical 
definition for otherwise qualitative concepts (e.g., asabiya).

Certain mathematical models have been developed to quantify hy-

pothesized mechanisms underlying the dynastic cycles. A common 
framework for the models is to divide the population into farmers, ban-

dits and rulers. If the population is too large compared to available food, 
then peasants can turn to banditry and with the reduction in farmers 
and increased theft, revenue from taxation is strained, making it dif-

ficult to finance the army and civil service (Yu-Ch’uan, 1936; Meskill, 
1965; Skinner, 1985). Thus, the dynasty can fall, and population de-

crease substantially. With a reduced population, then a new dynasty 
can appear, and the process is started again.

Early work (Usher, 1989) build a model that aims to capture the 
above pattern but also adds the neoclassic economic assumption of 
utility maximization. The model is specified by 14 equations, but no 
numerical values are specified for the parameters, nor is any solution to 
the equations compared with real data. Later work (Chu and Lee, 1994) 
formalizes a similar narrative into several utility-maximizing, econo-

metric models with different assumptions on how population changes. 
The predictions of the models are compared with historical data on pop-

ulation growth (Zhao and Xie, 1988), and one model performs notably 
well. The general dynamic of bandits and farmers within the model is 
akin to predator-prey interactions, and the findings overall support the 
hypothetical causal relations of the dynastic cycle as described above. 
Recent work (Chan and Laffargue, 2016) has also employed economic 
modelling through utility maximization.

Other work (Feichtinger and Novak, 1994) modelled historical re-

lationships as a differential game, where a periodic Nash equilibrium 
is possible, with wealth oscillating between the state and the bandits. 
A different model (Feichtinger et al., 1996), that does not account for 
any explicit decision making, proposes a system of ordinary differen-

tial equations (ODEs) that model the dynamics of farmers, bandits and 
rulers. The model structure is analogous to food-chains in ecology, with 
the farmers acting as prey, bandits as predators and rulers as super-

predators, that exploit both “species”. More recent work (Saeed and 
Pavlov, 2008) has also developed an ODE model; in contrast to prior 
research, the model accounts for the constrained capacity that is being 
appropriated between alternative uses.

The work in (Usher, 1989; Chu and Lee, 1994; Feichtinger and 
Novak, 1994; Chan and Laffargue, 2016) relies on the assumption of 
utility maximization by the individuals in the population, which has 
faced criticism on general grounds (Rubinstein, 1998; Urbina and Ruiz-

Villaverde, 2019), and in the particular case of modelling the dynastic 
cycle where “a sociologically more sophisticated approach is needed 
that would build upon collectively held norms and collectively made de-

cisions” (Turchin, 2018, p. 138). Later contributions (Feichtinger et al., 
1996; Saeed and Pavlov, 2008) focus on developing dynamical models 
using a more heuristic approach, but limit themselves to a theoretical 
analysis (e.g., analyzing attractor states) and do not attempt a com-

parison with historical data for empirical validation. In addition, the 
emphasis on popular rebellion as a mechanism causing state collapse 

is problematic because peasants are not adequately armed, trained or 
organized to bring down the state. Rather, factional fighting between 
elites can led to state collapse and facilitate popular rebellions, which 
are often led by members of the elite (Goldstone, 2016).

A growing volume of recent research has focused on analyzing the 
impact of climate change on the dynastic cycle and on the demographic 
trends in Chinese history (Zhang et al., 2005, 2006; Fan, 2010; Lee and 
Zhang, 2010; Fan, 2015; Chen, 2015; Wei et al., 2015; Yin et al., 2016). 
This work complements the Malthusian perspective on population pres-

sure and provides evidence of important exogenous drivers on societal 
development. Our results do not exclude such exogenous contributions 
to societal dynamics but our main emphasis has been on determining 
the relationship between dynastic configurations and difference in ter-

ritory (Yang, 1954).

In the present work we depart from farmer-bandit-state framework 
and focus on modelling territorial dynamics and comparing it with 
global demographic trends, but not pertaining to specializations of the 
population. Furthermore, we aim to quantify the degree of asabiya and 
how it evolves over time in the case of the Chinese dynasties. Simi-

lar work has been done (Turchin, 2018) which builds an ODE model 
of territorial changes and asabiya growth that aims to quantify qualita-

tive insights on the interplay between these two variables. The model is 
illustrative in nature and is not applied to any case study. But an exten-

sion of the model that incorporates spatial dynamics is also developed 
and uses a grid of 21x21 cells, with two equations for each cell. Asabiya 
in each cell follows the Verhulst logistic equation (Bacaër, 2011) in the 
frontier regions and decays exponentially otherwise. The model pro-

duces patterns similar to historical trajectories of polities in Central and 
East Asia between the 6th and 13th centuries.

We propose an alternative framework for modelling the territorial 
evolution. The mathematical structure we employ in our models are 
one-dimensional discrete dynamical systems, also known as iterated 
functions or maps. These can show rich dynamical behaviour, including 
chaotic behaviour in one dimension. By considering different maps and 
comparing their attractor states, our goal is to fit the historical record 
(Taagepera, 1979, 1997; Song, 1994; Tan, 1982), aiming to reproduce 
periods of fragmentation and unification. We then determine the levels 
of asabiya from the fit of the model to the historical record and de-

duce a general, mean-field equation governing the macro-evolution of 
asabiya for the Chinese dynasties. Thus, the equation for asabiya is in-

ferred from the archaeological record and not a starting point of the 
model, but rather an outcome.

3. Discrete maps

To motivate the introduction of a new chaotic map for modelling 
territorial divisions, we first discuss the logistic map (May, 1976) and 
its limitations. In Fig. 1(a) we can see the graph of the iteration function 
for the logistic map:

𝑥𝑛+1 = 𝜆𝑥𝑛(1 − 𝑥𝑛) (1)

The bifurcation diagram of the logistic map (1) in Fig. 1(c) illustrates 
how discrete maps can be useful in modelling the fragmentation of a 
state. The unique branch that exists for 𝜆 < 3 can be associated to one 
undivided territory, while the subsequent branches can represent the 
different factions that emerge. In our case, the values 𝑥𝑛 of the map cor-

respond to the area of the territory, but other quantitative measures can 
be used depending on the available data, such as population, number of 
cities, army size or any other additive metric for the characteristics of a 
polity.

Ideally, at any given point in time, the number of branches should 
correspond to the number of existing polities and the value of each 
branch should correspond to the area of a territory. While such an 
exact fit would be desirable, it is difficult to find a model with all 
the necessary properties to achieve this. For the logistic map, but also 
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Fig. 1. The iteration function, bifurcation diagram and Lyapunov exponent for the logistic map (1) (left column) and the ren map (2) (right column).

for smooth uni-modal maps, there are two main features that prove 
problematic, each relating to a Feigenbaum constant (Feigenbaum, 
1978).

The first property is the fact that the ratio between the width of a 
branch and the width of one of its two sub-branches tends a constant 
𝛼 ≃ 2.5029 (Feigenbaum, 1978). This means only certain territorial ar-

eas can emerge from the bifurcation that are related according to this 
scaling relationship. This limits the model’s versatility and prohibits the 
application of the model to diverse sets of data.

To explain to second problematic feature, assume 𝜆 is drawn at ran-

dom according to a uniform distribution from the interval [1; 4]. Then 
we would expect that the range of values of 𝜆 for which two branches 
appear to be proportional to the time in the historical record for which 

two major polities existed. And a similar property should hold for any 
number of branches. But, each succeeding period doubling occurs after 
intervals of decreasing length, with the intervals between each bifur-

cation decreasing in length by a factor that tends towards the constant 
𝛿 ≃ 4.6692 (Feigenbaum, 1978). Hence, periods with several co-existing 
states (e.g., four) should exist for a relatively small fraction of time, 
which is inconsistent with the historical record.

To overcome some of these limitations, we propose a model based 
on a map that does not fall in the same universality class as the logistic 
map. The map we consider is the following:

𝑥𝑛+1 = 𝜆|1 −√|𝑥𝑛|| (2)

3
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Table 1. The different periods of Chinese history ordered chronologically and classified according to 
their territorial integrity (Meskill, 1965; Taagepera, 1979, 1997; Song, 1994; Gernet, 1996; Dardess, 
2010; Von Glahn, 2016). The average duration of a historical period in the imperial era is approxi-

mately 350 ± 50 years.

Period Time range Duration (years) Type

Western Zhou 1045 BCE - 771 BCE 274 Unified

Spring and Autumn Period 771 BCE - 476 CE 295 Intermediate

Warring States and the Qin Dynasty 476 BCE - 206 CE 270 Divided

Han Dynasties 202 BCE - 220 CE 422 Unified

Period of Disunion and Sui Dynasty 220 CE - 618 CE 398 Divided

Tang Dynasty 618 CE - 907 CE 289 Unified

Five Dynasties and Ten Kingdoms, Tripartition 907 CE -1271 CE 364 Divided

Yuan Dynasty and Ming Dynasty 1271 CE - 1636 CE 365 Unified

Qing Dynasty 1636 CE – 1912 CE 276 Unified

The graph of the iteration function for is shown in the Fig. 1(b) and 
resembles the Chinese character ren, which means “person”.1 The func-

tions 𝜆|1 − |𝑥|𝜇| where 𝜇 < 1 have similar graphs and to the best of our 
knowledge they are not known in the mathematics literature under any 
specific name. In this paper we refer to the maps with these iteration 
functions as ren maps, and we use this name when referring to example

(2).

Fig. 1(d) shows the bifurcation diagram for the ren map (2), and 
two main types of attractors can be seen: a stable fixed point is reached 
for 𝜆 < 𝜆𝑐 = 4∕3, and chaos for larger values of 𝜆, as the Fig. 1(f) of the 
Lyapunov exponent confirms. The ren map is thus in a different univer-

sality class than the logistic map and the scaling properties pertaining to 
the Feigenbaum constants for smooth maps to not apply. The dichoto-

mous nature of the bifurcation diagram of the ren map makes it well 
suited for modelling the territorial dynamics of the Chinese dynasties, 
which have oscillated between periods with a single dominant dynasty, 
and periods with multiple competing factions, see Table 1.

While our proposed map (2) addresses some limitation of the logistic 
map (1), there remains one problematic aspect: half of the values in the 
chaotic orbits are above the maximum value on the fixed-point branch. 
The logistic map was originally applied to study population oscillations 
(May, 1976), in which case the interpretation allows for larger values 
after a bifurcation. But, in our interpretation this means states can sep-

arate into components larger than the original entity, which appears 
inconsistent. Nevertheless, the separated polities could invade or unite 
with other territories and exceed the size of the original state. While 
in reality there are geographical and political limitations to this, the 
model does not a prior exclude such possibilities. For example, the up-

per bounds of the chaotic orbits in Fig. 1(d) allows for the possibility of 
significant fractions of Asia and beyond to be conquered, which histor-

ically has been the case with the Mongol Empire (Taagepera, 1997).

The fixed points for the ren map (2) are given by:

𝑥 = 𝜆

(
1 +

𝜆−
√
𝜆(𝜆+ 4)
2

)
(3)

The fixed point branch ends at 𝜆𝑐 , which can be determined using (3)

and solving the equation |𝑓 ′(𝑥)| = 1 → 3𝜆2 + 8𝜆 − 16 = 0, where 𝑓 is 
the iteration function. If a single dominant, unified territory exists at a 
given time of area 𝑥, then the value of 𝜆 can be easily inferred:

𝜆 = 𝑥

1 −
√
𝑥

(4)

where 𝑥 has been scaled such that it can match a value on the single, 
fixed-point branch in Fig. 1(d).

1 In addition, Confucian philosophy associates the notion of ren with empathy 
and “how two people should treat one another”.

4. Results

In the case of biological models, the value 𝑥𝑛 of a map represents 
the uniquely existing value at index 𝑛 that represents the number of 
discrete time steps. This means that the attractor exists and at each 
time instance we measure one value approximating one point on the 
attractor. To apply chaotic maps to territorial division a different inter-

pretation is necessary due to multiple co-existing polities over any given 
time period. In fitting equation (2) to historical data, there is a degree 
of freedom that needs to be set: the scaling of the index 𝑛 with time 𝑡. 
Namely, the discrete index 𝑛 can represent, decades, years, months or 
even days. As long as the timescale of the discrete time step of the in-

dex 𝑛 is sufficient small compared to the finest temporal resolution in 
the data set, this is enough to mimic simultaneity in the real data.

Hence, provided the time step is small enough compared to the 
timescales in the data, then we can effectively consider multiple points 
on the chaotic attractor to occur in the same time-frame. Hence, be-

cause the time resolution of the data is not fine enough to discern yearly 
information, but at most at a timescale of several years, then as an 
idealization we can assume that multiple points on the attractor are ac-

cessible over the short term. We assume that both the scaled territorial 
area 𝑥 and 𝜆 depend on time:

𝑥𝑡+1 = 𝜆𝑡|1 −√|𝑥𝑡|| (5)

where 𝑡 takes on discrete year values. Then, at any given time a unique 
𝑥𝑡 value exists but is not directly accessible via measurement due to low 
time resolution of the data. Nevertheless, over longer time intervals 
of several years a spread of value is observable corresponding to the 
different polities.

Thus, in interpreting the fit of model (5) to the archaeological record 
we should consider its values bracketed in time intervals of several 
years. This allows us to meaningfully interpret multiple existing points 
on the attractor in the same time interval. We note that the (scaled) area 
does not adjust instantaneously to the steady state. As long as the dis-

crete time step 𝑛 of the map 𝑥𝑛 corresponds to a small enough real time 
step (e.g., one year), then within the timescales of the data (typically 
decades) the map’s orbit can approximate the attractor.

To recover the trends in the historical record that are highlighted 
in Table 1, we determine the evolution of the 𝜆 parameter over time. 
For simplicity, we consider an approximation over continuous time 𝜆(𝑡)
and recover the discrete 𝜆𝑡 version by restricting to yearly values. Given 
the ren map (2) and its bifurcation diagram in Fig. 1(d), we make the 
natural assumption that the periods of unity in Table 1 correspond the

lower values of 𝜆 (left of the bifurcation), while periods of division and 
instability correspond to higher values of 𝜆 (right of the bifurcation). 
Hence, we expect that the more unified a territory is the smaller the 
value of 𝜆 is (the further away it is from the bifurcation). Due to this 
reasoning, we consider the minima of 𝜆 to correspond to the maximum 
area of the stable dynasties. Using equation (4), the parameter 𝜆 can be 
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Fig. 2. (Top) The evolution of 𝜆 (dotted) that we determined according to the data sources (Song, 1994; Taagepera, 1979, 1997). The 𝜆 for the dynasties (dots) 
indicates a single dominant dynasty in the stable periods (Han, Tang, Ming, Qing) and several in the chaotic periods. The Warring states period, the Period of 
Disunion, the period after the fall of the Tang and the Tripartition, all correspond to values of 𝜆 in the chaotic regime, above 𝜆𝑐 = 4∕3 (dashed line). (Bottom) The 
corresponding evolution (grey dots) of the ren map in model (5) for 𝜆 values determined above. We compare the prediction from (5) with the maximum area for the 
dynasties (black dots) throughout their lifespan (solid line). The evolution of 𝜆 and the corresponding map values according to model (5) show a departure from the 
archaeological record starting with the Ming or Qing dynasties.

determined uniquely for each historical period with a stable, dominant 
dynasty.

Figs. 2(a), (b) show the evolution of the parameter 𝜆 given the 
historical record (Song, 1994; Taagepera, 1979, 1997) of territorial 
changes of the Chinese dynasties during the imperial period 221 BCE-

1912 CE. In Figs. 2(c), (d) the areas have been divided by a common 
factor of 𝐴 = 3500 × 104 km2 to fall within the range of values of the 
fixed-point branch in Fig. 1(d) and the values for the corresponding 
𝜆 are determined using equation (4). The factor 𝐴 is determined using 
equation (4) by mapping the largest territorial expanse in the data set to 
be 90% of 𝜆𝑐 . The historical information does not provide a fine-grained 
evolution of territorial evolution but only captures significant changes 
over time. Nevertheless, it is sufficient to obtain an overall trend of the 
major transitions from periods of unity to disunity.

The oscillatory behaviour in 𝜆 is to be expected due to the inherent 
seasonality of the data, see Table 1. Finding an equation for the evolu-

tion of 𝜆 requires addressing three aspects: (a) the periodicity, (b) the 
phase (or time) shift and (c) the evolution of the amplitude. Regarding 
aspects (a) and (b), the historical data (Taagepera, 1979, 1997; Song, 
1994) is largely univocal. As Table 1 shows, the characteristic timescale 
of a stable or chaotic regime is between 300 to 400 years with an av-

erage of 350 years and a standard deviation of 50 years. This implies a 
period 𝑇 of 700 to 800 years, and the best fit we achieve is for 𝑇 = 725
years (the time span between the start of a stable regime and the next 
stable one).

The time shift is chosen such that the minima of 𝜆 occur when 
the stable dynasties achieve maximum area, dates on which the data 
sources (Taagepera, 1979, 1997; Song, 1994) are consistent. The only 
point of significant divergence in the data is regarding (c), the am-

plitude of oscillations, which depends on the territorial extent of the 
different dynasties. The general form we posit for the parameter 𝜆 over 
time is:

𝜆(𝑡) = 𝑐 + 𝑒−𝛾𝑡 sin [𝜔(𝑡− 𝑡0)] (6)

where the sinus function captures an oscillatory behaviour, the expo-

nential decay can account for changes in amplitude and 𝑐 is a constant. 
We see that 𝜆 oscillates over time below and above the critical value, 
depending on the territorial integrity of the dynasties in each historical 
period, and depending on the data source the amplitude of the oscilla-

tions either decreases over time, as in Fig. 2(a), or stays constant, see 
Fig. 2(b). For 𝜆(𝑡) in Fig. 2(a) we determined the following parameter 
values: 𝑐 = 1.29, 1

𝛾
= 1250 years, 𝜔 = 2𝜋

𝑇
where 𝑇 = 725 years and 𝑡0 = 145

years. For Fig. 2(b) the parameters 𝑐, 𝜔 and 𝑡0 are the same, but 𝛾 = 0.

5. Discussion

As Fig. 2 shows, the ren map (2) gives a coarse model for the terri-

torial dynamics with two main types of regimes: stable dynasties, mod-

elled as stable fixed points and unstable periods, modelled as chaotic 
attractors. The pattern in Fig. 2(a) from one data source (Song, 1994) 
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reflects a general tendency over time towards imperial unity (Dardess, 
2010), while the in Fig. 2(b) the data (Taagepera, 1979, 1997) indi-

cates a unchanging cycle. Nevertheless, there are commonalities and 
equation (6) is general enough to capture both patterns.

The behaviour of 𝜆 in Figs. 2 (a), (b) can be interpreted in light of 
the bifurcation diagram in Fig. 1(d), with 𝜆 oscillating above and below 
the critical value 𝜆𝑐 = 4∕3. How can we interpret the values of the map 
𝑥𝑛 in (5)? If we consider 𝑠𝑛 to be (scaled) area of the dominant dynas-

ties in Figs. 2 (c), (d), we can then see that 𝑥𝑛 − 𝑠𝑛 gives an estimate of 
the total area of the competing polities. When 𝑥𝑛− 𝑠𝑛 = 0, then there are 
no competing polities and 𝑥𝑛 gives the largest area of the dominant dy-

nasty. Towards the end of a major dynasty, there are several competing 
forces and the main dynasty is losing territory, with 𝑥𝑛 − 𝑠𝑛 increasing 
and reaching a maximum just before a period of division starts, as can 
be seen in Figs. 2(c), (d). While the fit for the early stable dynasties 
is reasonable, the chaotic regimes and later dynasties require further

discussion.

During periods of unrest, the appearance of polities and their dis-

solution was a continuous process and their boundaries were often 
changing (Lattimore, 1951; Gernet, 1996). Furthermore, the delimita-

tion of the different territories is not exact, and sources differ in their 
estimation (Song, 1994; Taagepera, 1979, 1997). Based on historical 
contingencies, in any given period, a different number of factions of 
different sizes could have emerged and the historical record might have 
looked vastly different. As such, focusing on a precise number of poli-

ties and determining an exact area for each of them is not necessarily 
consistent with the volatile nature of politics and warfare over time.

Given that territorial boundaries were often shifting and states ap-

pearing and disappearing, modelling the unstable periods as chaotic is 
reasonable. Polities of any given size could have appeared which is re-

flected in the dense mass of points of the chaotic attractor, see Fig. 1(d) 
and Fig. 2 (c), (d). In Fig. 2 (c), (d) the minimum values of the ren 
map correspond to the largest territorial extent of the major dynasties 
enjoyed at their most stable time. In Fig. 2 (c) the time periods corre-

sponding to the different dynasties have been included, while in Fig. 2

(d) the territorial evolution of the major dynasties is more fine grained 
and shows an antithetical relationship to the evolution of model (5). 
This is to be expected as a loss of territory is accompanied by increased 
instability, eventually leading to a period of division and turmoil.

Should more periods be considered stable? While certain short-lived 
periods of unity existed, such as during the Qin (221-206 BCE) or Sui 
(581-618 CE) dynasties, it is questionable if they are best represented 
by a stable fixed point of the map or a point on the chaotic attractor. 
Another possible point of contention is how to model the Song dynasty. 
Due to shifting boundaries and given the constant tensions with compet-

ing forces such as the Xi Xia and Liao, and later the Jin, we considered 
that the period is best modelled as part of a chaotic attractor.

We see from Fig. (2) that 𝜆 is low during periods of unity and stabil-

ity and high in unstable, chaotic periods, which implies an antithetical 
relationship with asabiya, which represents group solidarity. As such, 
we can define asabiya over time 𝑎(𝑡) as follows:

𝑎(𝑡) = 𝐶 − 𝜆(𝑡) (7)

where 𝐶 is an arbitrary constant. Because 𝜆(𝑡) is at a minimum when 
dynasties are most stable, equation (7) implies asabiya is at a maximum 
which accords with historical intuition. Thus, given the properties of 
𝜆(𝑡), 𝑎(𝑡) behaves as expected, high in periods of unity and decreasing 
during state fragmentation. Due to equations (6) and (7), we can write 
down the following equation for asabiya:

�̈�+ 𝑏�̇�+ 𝑘𝑎− 𝐹 = 0 (8)

which is the equation of a damped harmonic oscillator. The coefficients 
are 𝑏 = 2𝛾, 𝑘 = 𝜔2 + 𝛾2 and 𝐹 = 𝑘(𝐶 − 𝑐), which implies that the oscil-

lator is under-damped in Fig. 2(a) or undamped (𝑏 = 0) in Fig. 2(b). A 
better fit to the historical record can be obtained using equation (8)

by adding exogenous forcing terms on the right hand side, to capture 
factors and political decisions that deviate from the prior trend. Thus, 
deriving equation (8) opens the possibility to justify additional changes 
and parameters to equation (6).

The equation (8) for asabiya has been derived from the archaeologi-

cal record and depends on the properties of the ren map (2), specifically 
on how the transition to chaos occurs. The nature and derivation of the 
equation contrasts sharply with prior research that posited the Verhulst 
logistic equation (Bacaër, 2011) for asabiya (Turchin, 2018), which can-

not by itself generate oscillations as seen in the historical record.

The fit in Fig. 2 extends backwards in time and at least qualitatively 
matches what we expect for the Warring States period, namely a high 
value for corresponding to a chaotic regime. The evolution of 𝜆(𝑡) shows 
secular cycles (Turchin and Nefedov, 2009) consistent with the histor-

ical record for over 1800 years but diverges from it starting with the 
Ming dynasty in Fig. 2(a), and the Qing dynasty in Fig. 2(b). While 
these observations open a broad topic for discussion, we only note that 
the breaking of the patterns can be related to the markedly conserva-

tive nature of the Ming policies, and the long reign of Emperor Kangxi 
(1661-1722) that contributed to stabilising the Qing period.

On the other hand, why does the trend in 𝜆(𝑡) persist for 1800 years? 
Analysis of Chinese population data (Turchin, 2018) also reveals a char-

acteristic timescale for oscillations of 300 to 400 years, similar to our 
estimate from Table 1. In Fig. 3 we compare the evolution of 𝜆 with the 
population and a low order Fourier approximation, with frequencies 
comparable to 𝜔 in equation (6). We employed the Fourier approxima-

tion to determine long-term patterns in the data and to filter out noise. 
We see that population maxima / minima are reached in the periods 
when 𝜆(𝑡) has a markedly negative / positive slope. This implies asabiya, 
defined in equation (7), is increasing / decreasing at population maxima 
/ minima, which is consistent with historical intuition. Furthermore, it 
suggests there is a second-order feedback process (Turchin, 2018) relat-

ing the population and changes in asabiya, similar to how the concavity 
of a function relates to its second derivative.

Thus, the oscillatory, persistent pattern in 𝜆 can be attributed 
to multiple feedback mechanisms operating over the long-term and 
that involve population dynamics, state apparatus, territorial changes 
and other factors posited by structural demographic theory (Turchin 
and Nefedov, 2009; Goldstone, 2016). In addition, sunk-costs effects 
(Janssen et al., 2003) can contribute to long-term societal developments 
and transition from stability to division or collapse. While an extended 
model incorporating multiple feedback loops is desirable, this is beyond 
the scope of the present paper and is the aim of future work.

6. Conclusions

In the present work, we have aimed at providing a framework for 
modelling state fragmentation and unification using certain mathemat-

ical methods, namely discrete maps. As such, we discussed one of the 
most well-known maps, namely the logistic map and how bifurcations 
can model state divisions, along with some limitations that all smooth 
maps share. Due to these constraints, we proposed a model from a new 
class of maps, which we refer to as ren maps, that can provide a more 
robust, coarse description of territorial dynamics.

The focus of our modelling has been on reproducing the archaeolog-

ical records (Taagepera, 1979, 1997; Song, 1994; Tan, 1982) regarding 
territorial changes for the Chinese dynasties. We reproduced the archae-

ological record regarding the territorial extent of the dynasties using the 
ren map, which, depending on a parameter 𝜆, shows transitions to order 
/ chaos in line with historical data. Given the antithetical nature of the 
parameter to the degree of territorial unity, we then defined asabiya as 
a constant minus 𝜆 (the constant is an arbitrary reference level). From 
this definition, we determined an equation of asabiya, which is that of a 
harmonic oscillator, and can be damped or undamped. This finding con-

trasts with prior work that modelled asabiya starting from the Verhulst 
logistic equation (Turchin, 2018).
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Fig. 3. The population data (Zhao and Xie, 1988) (solid line) is divided by 𝑃 = 50 million people and the 3rd order Fourier series approximation (dashed line) is 
computed. We compare the evolution of 𝜆 (dotted line) with the population trends.

The historical pattern of asabiya shows secular cycles (Turchin and 
Nefedov, 2009) consistent with 1800 years of Chinese history, from 
the Warring State periods to the beginning of the Ming or Qing dynas-

ties, depending on the date sources used (Song, 1994; Taagepera, 1979, 
1997). Furthermore, by comparing the evolution of 𝜆 with population 
data (Zhao and Xie, 1988), we see a pattern emerging where the largest 
changes in asabiya occur at extreme values of the population. Overall, 
we contribute to the literature that uses dynamical systems to model so-

cietal developments by extending existing methods that rely on ODEs 
(Roman et al., 2017, 2018; Roman and Palmer, 2019) to discrete maps.
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