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Colorectal cancer (CRC) is the third most common cancer type and the second cause of death worldwide. %e advancement in
understanding molecular pathways involved in CRC has led to new classifications based on the molecular characteristics of each
tumor and also improved CRC management through the integration of targeted therapy into clinical practice. In this review, we
will present the main molecular pathways involved in CRC carcinogenesis, the molecular classifications. %e anti-VEGF and anti-
EGFR therapies currently used in CRC treatment and those under clinical investigation will also be outlined, as well as the
mechanisms of primary and acquired resistance to anti-EGFR monoclonal antibodies (cetuximab and panitumumab). Targeted
therapy has led to great improvement in the treatment of metastatic CRC. However, there has been variability in CRC treatment
outcomes due to molecular heterogeneity in colorectal tumors, which underscores the need for identifying prognostic and
predictive biomarkers for CRC-targeted drugs.

1. Introduction

Colorectal cancer (CRC) is considered the third most
prevalent cancer and the second cause of death by cancer
worldwide [1]. In 2018, 1.8 million new CRC cases were
reported and 881,000 persons died of the disease, which
accounted for 6.1% and 9.2% of new cases and deaths, re-
spectively [2]. An increasing incidence trend of 2.5 million
cases has been predicted in 2035 [3].

Currently, the 5-year overall survival (OS) rate of CRC is
estimated at 64% for all stages in the United States, and this
seems to decrease to nearly 12% for metastatic CRC (mCRC)
[4, 5].

Surgery alone or in combination with chemotherapy and
radiotherapy in the adjuvant setting remains the main
treatment option in cases of early diagnosis, while surgery is
no longer effective for advanced stages that represent 25% of
CRCs cases [6]. Unfortunately, the efficacy of cytotoxic
therapies may be altered by the rapid evolution of drug
resistance and the occurrence of cancer recurrence [7].
Hence, developing other treatment options for CRC, es-
pecially for mCRC to increase its overall survival and reduce
its severity, is highly needed.

With the advancement in our understanding of carci-
nogenesis mechanisms and the underlying molecular
pathways, treatment of CRC, especially mCRC, has evolved
considerably over the past years, which was reflected by
using many chemotherapy combinations and integrating
novel targeted drugs into clinical practice.%is advancement
in chemotherapy and targeted drugs has led to significantly
improve OS to over 40 months for mCRC patients [8].

Cetuximab was the first targeted agent for CRC that has
been approved by the Food and Drug Administration (FDA)
in 2004, followed by bevacizumab in the same year. Since
then, many other targeted drugs for CRC have been brought
to market successively (Figure 1). Targeted agents currently
used for the treatment of CRC may be divided into three
categories: anti-Vascular Endothelial Growth Factor
(VEGF) such as bevacizumab, aflibercept, and ramucir-
umab; anti-Epidermal Growth Factor Receptor (EGFR)
antibodies such as cetuximab and panitumumab; and finally
multikinase inhibitors like regorafenib [9].

%e advancement in understanding molecular pathways
involved in CRC carcinogenesis has also led to many mo-
lecular classification systems. %e Cancer Genome Atlas
(TCGA) and the Consensus Molecular Subtype (CMS) are
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considered the main classifications. CMS classification has
been proposed after analyzing the pathological and mo-
lecular profile of CRC patients from many studies. In ad-
dition to its potential prognostic and predictive value, CMS
can also help to explain the CRC heterogeneity caused by
genetic and epigenetic mechanisms [10].

%e current review aims to provide an overview of
molecular pathways involved in CRC carcinogenesis, as well
as molecularly defined subtypes and their clinical implica-
tion. We will also summarize available and future CRC-
targeted agents and discuss anti-EGFR resistance
mechanisms.

2. Molecular Pathways in CRC

2.1. Inherited CRC. %e etiologies of CRC are either genetic
or environmental or both [11]. CRC is divided into he-
reditary and sporadic forms, with approximately 75–80% of
sporadic forms [12].

Approximately 5% of all CRC cases are caused by
inherited germline mutations in some key genes, leading to
colorectal carcinogenesis. Approximately 20% of the
remaining 95% of CRC cases present a positive family
history, which cannot account as a true hereditary form of
CRC. Many syndromes have been identified; the most
frequent syndromes are Lynch Syndrome (Hereditary
Nonpolyposis Colorectal Cancer (HNPCC)) and Familial
Adenomatous Polyposis (FAP) [13, 14].

Lynch Syndrome (HNPCC) is the most common he-
reditary CRC syndrome representing 2-3% of all CRC pa-
tients [14]. It is an autosomal dominant syndrome, caused by
germline mutations in DNAmismatch repair (MMR) genes,
which lead to amplifying the replication errors, increasing
rate, and the potential of malignancy. %ese genes included
MLH1, MSH2, PMS2, and MSH6 resulting in microsatellite
instability (MSI) when mutated [15].

Familial Adenomatous Polyposis (FAP) is an autosomal
dominant disorder, which is characterized by colorectal
adenomatous polyps, which ranged from hundreds to
thousands of polyps [16]. It is caused by germline mutations
in the adenomatous polyposis coli (APC) gene with a fre-
quency of 1% of all CRCs [14]. APC gene is a tumor

suppressor gene, coding for a protein that regulates the
cytoplasm degradation of β-catenin.%ese twomolecules are
essential components of the Wnt signaling pathway [17].

%ere are other rare forms of familial CRC including the
MYH-Associated Polyposis (MAP), which is an autosomal
recessive disorder caused by biallelic mutations in the MYH
gene. Tumors in this form are commonly microsatellite stable
and exhibit a high frequency of APC somatic mutations and a
low rate of loss of heterozygosity (LOH) [14]. Additionally, the
Hamartomatous polyposis syndromes that englobe the syn-
drome of PeutzJeghers (PJS), the syndrome of Juvenile Poly-
posis (JPS), and the syndrome of Cowden are autosomal
dominant syndromes caused by germlinemutations in STK11/
LKB1, BMPR1A/SMAD4, and PTEN, respectively [18].

More details about these hereditary CRC syndromes,
diagnosis, and management approaches have been well
reviewed by Kastrinos and Syngal [19].

2.2. Sporadic CRC. With respect to sporadic CRC, Fearon
et al. have suggested a colorectal carcinogenesis model that
correlated specific genetic landscapes with changing tissue
morphology, from adenomas to carcinomas [12, 20]. Ge-
nomic instability is considered an essential component of
this transformation process [14]. %ere are three main
categories of genomic instability in CRC. Chromosomal
instability (CIN), the most frequent representing 70–85% of
CRCs, is characterized by the accumulation of numerical or
structural chromosomal abnormalities (aneuploidy). FAP is
the inherited syndrome associated with these changes
[21, 22]. Another type of genomic instability is the MSI,
which is caused byMMR alteration [22]. With the increasing
knowledge with regard to the involvement of epigenetic
factors, particularly the promoter sequence methylation, in
the development of certain subsets of cancers and polyps, the
third pathway of genomic instability has emerged “CpG
Island Methylator Phenotype (CIMP+)” [22]. All these al-
terations are presented in detail hereinafter.

2.2.1. Chromosome Instability. CIN accounts for 65–70% of
sporadic CRCs. It is characterized by the high frequency of
LOH, subchromosomal genomic amplifications, and
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Figure 1: Targeted agent approved for colorectal cancer. EGFR: epidermal growth factor receptor; VEGF: vascular endothelial growth
factor.
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extensive chromosome imbalances (aneuploidy). In addition
to these karyotypic abnormalities, the accumulation of
particular mutations in some specific tumor suppressor
genes and oncogenes activates CRC pathogenesis [23]. %e
main genes which are mutated during this pathway are as
follows:

APC gene: It is a tumor suppressor gene located on
chromosome 5q21. APC functional protein plays an
important role in regulating differentiation, adhesion,
apoptosis, development, migration, and chromosomal
segregation. Mutations or loss of this gene have been
found in 40–70% of CRCs and were considered the
earliest genetic events in colorectal carcinogenesis
[24, 25].
APC protein is a part of a complex that phosphorylates
the β-catenin, which causes its ubiquitination and
destruction in the proteosome. Truncated APC protein
destabilizes the complex and increases the cytoplasmic
β-catenin level, which translocates to the nucleus and
activates the transcription of various genes involved in
tumor growth and invasion, by interacting with the
T-cell factor/lymphoid [24]. Half of CRC cases with
intact APC have activating mutations in the β-catenin
gene [26], which reflects the importance of the Wnt
pathway.
KRAS oncogene: %e frequency of KRAS proto-
oncogene mutations is estimated to range from 30 to
60% in CRCs and large adenomas. Most activating
mutations were found to be located in codons 12 and 13
of exon 1 [27]. Activation of K-Ras is known to affect
various cellular pathways that regulate cellular growth,
survival, proliferation, apoptosis, cytoskeleton organi-
zation, cell motility, differentiation, and inflammation
[14, 23].
Activation of the KRAS gene has been suggested to play
a significant role in the transition from adenoma to
carcinoma [28].
SMAD2, SMAD4, and DCC: %ese three genes are
located at chromosome 18q21. %e allelic loss of this
site has been found in 60% of CRCs [29]. DCC gene
encodes for a transmembrane receptor that promotes
apoptosis, whereas SMAD2 and SMAD4 are part of the
transforming growth factor-β (TGF-β) signaling
pathway, which regulates growth as well as apoptosis
[22, 30].
TP53: It is located on 17p13.1 and encodes for a tumor
suppressor protein p53 whose inactivation is usually a
late event in the CRC carcinogenesis process [31]. It is
widely known that p53 dysfunction is a universal
biomarker of human tumors and the loss of its function
has been reported in 4–26% of adenomas, 50% of
adenomas with invasive foci, and 50–75% of CRCs,
which define its role in the transition from adenoma to
carcinoma [23, 32].

%e CIN pathway is related to mutations in theAPC gene
or allelic loss at chromosome 5q (APC, MCC genes), fol-
lowed by Kirsten rat sarcoma viral oncogene (KRAS)

mutation, loss of 18q (DCC, SMAD2, and SMAD4 genes),
and finally, deletion of 17p, containing the famous tumor
suppressor gene TP53 [24].

2.2.2. Microsatellite Instability. Microsatellites are short
sequences with repeated nucleotides, which are distributed
across the entire human genome, and consist of mononu-
cleotide, dinucleotide, or higher-order nucleotide repeats
such as (A)n or (CA)n [33]. %ese microsatellites are es-
pecially motifs of mutation accumulations, due to the de-
creasing of DNA polymerase efficiency. %e most common
errors associated with microsatellites are base-base mis-
matches and insertion-deletion loops (IDLs) [33, 34].

MMR systems are charged to maintain genomic stability
by identifying and repairing base-pair mismatches that
occur during DNA replication. Mutator phenotype ac-
companied with MSI is a result of the MMR systems’ in-
ability to correct these errors. %ere are at least 7 proteins in
the mismatch repair systems: hMLH1, hMLH3, hMSH2,
hMSH3, hMSH6, hPMS1, and hPMS2, forming 5 protein
dimers, which are the MutSα (MSH2, MSH6), MutSβ
(MSH2, MSH3), MutLα (MLH1, PMS2), MutLβ (MLH1,
PMS1), and finally MutLc (MLH1, MLH3) [34, 35].

In order to test the MSI, there are two main methods:
immunohistochemistry (IHC) which serves for the detection of
the expression level of the four main MMR proteins (MSH2,
MSH6, MLH1, and PMS2) directly from the tumor tissue. Loss
of expression of at least one of these proteins means that the
tumor is deficient MMR (dMMR) and as a consequence MSI
[36]. %e second method is based on testing a DNA micro-
satellite panel. In this method, MSI-High (MSI-H) is defined
when 40% of the markers are unstable [36]. In 1998, a panel of
five microsatellite markers called the Bethesda panel has been
proposed for the first time by the “International Workshop on
Microsatellite Instability and RER Phenotypes in Cancer De-
tection and Familial Predisposition,” which includes two
mononucleotides (BAT25 and BAT26) and three dinucleotides
(D5S346, D2S123, andD17S250) [37]. Another panel called the
Pentaplex panel, composed of five mononucleotides markers,
has been proposed (BAT25, BAT26, NR21, NR24, and NR27),
due to the high sensitivity of mononucleotides markers
compared to dinucleotides. Based on the Pentaplex panel, two
types of tumors have been established: MSI (MSI-High) with at
least three unstable markers, and microsatellite stability (MSS)
with no instability, or the instability in one marker [36].

Approximately 15% of CRC patients show anMSI, 3% of
which are caused by germline mutations (Lynch Syndrome),
and 12% are due generally to sporadic hypermethylation in
the promoter of theMLH1 gene [38]. Most studies suggested
thatMSS tumors had a worse prognosis than those withMSI.
Additionally, a strong correlation has been found between
sporadic MSI and the existence of V600E BRAF mutation
[39, 40].

2.2.3. CpG Island Methylator Phenotype. Epigenetic regu-
lation of gene expressions is defined as heritable changes
without any alteration in the DNA sequence. %ese epige-
netic changes are found to play an important role in the
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carcinogenesis of many carcinomas including CRC and offer
an explanation of some phenotypes of this disease. Histone
modifications or DNA methylation are thought to be the
most common cause of epigenetic alterations [41].

CpG island methylation is a typical epigenetic event in
colorectal carcinogenesis, accounting for 20% in CRCs [42].
%e concept of CIMP in CRC has been originally reported in
1999 by Toyota et al. [43]. It occurs generally by DNA
hypermethylation at the 5′-CG-3′ (CpG) dinucleotide in the
promoter region, resulting in gene silencing and the func-
tion loss of some tumor suppressor genes such as MLH1,
APC, MCC, MGMT, and several others [44]. As the CIMP
refers to the presence of multiple hypermutated genes,
Weisenberger et al. have proposed a panel of five markers,
which are CACNA1G, IGF2, NEUROG, RUNX3, and
SOCS1. CIMP+ was defined by the methylation of 3 to 5
markers and CIMP- by the hypermethylation of 0 to 2 loci
[45]. Other studies classified tumors to CIMP-high (CIMP-
H) and CIMP-low (CIMP-L) or CIMP-0 [46].

Clinically, CIMP-H CRCs have been associated with
female sex, older age, right-sided tumor location, and ad-
vanced stage. At the pathologic level, CIMP-H tumors
showed higher rates of tumor-infiltrating lymphocytes,
Crohn-like infiltrates, perineural, lymphovascular invasion,
and higher levels of Fusobacterium nucleatum. With regard
to molecular characteristics, this tumor subtype was shown
to exhibit a higher prevalence of BRAF and PIK3CA mu-
tation (OR: 20.17 (95% CI: 13.54–30.05); 1.61 (95% CI:
1.24–2.10), respectively) and more likely to have higher MSI
status (OR: 10.95 (95% CI: 8.49–14.13)). Additionally, there
was an inverse association of CIMP-H tumors with TP53
and KRAS mutations, and no association has been reported
with APC mutation [42].

Why CIMP is consistently associated with BRAF muta-
tions has long been a debated question. In 2019, Tao et al.
provided compelling evidence that solved this long-standing
question suggesting that through the aging-like acquisition of
DNA methylation, BRAF mutated cells may survive by sup-
pressing senescence and activating stem cell pathways [47].

3. Molecular Classification of CRCs and
Associated Features

3.1.Molecular Subtypes ofCRC. As we reviewed earlier, there
are three major mechanisms of genetic instability in CRC:
CIN, MSI, and CIMP. Many studies have tried to establish a
molecular classification for CRCs, but these did not lead to a
single systematic classification [48].

A systematic molecular pathological classification has
been proposed by %e Cancer Genome Atlas (TCGA) in
2012 [49] and another one by the Consensus Molecular
Subtype (CMS) Consortium in 2015 [50].

Despite the heterogeneity of CRCs, the ancient classi-
fication by TCGA has divided CRCs into two subtypes,
which are characterized by a specific morphology and
molecular alteration.

(i) %e hypermutated cancers, representing 16% of
CRCs. %ree-quarters of this group have a high MSI

as a result of dMMR, and the other one-quarter
corresponds to ultramutated cancers with poly-
merase-ε (POLE) mutations.

(ii) %e nonhypermutated cancers, which account for
84% of CRC cases.%e tumors of this group areMSS,
which harbors a higher frequency of alterations in
somatic DNA and common mutations in APC,
TP53, KRAS, SMAD4, and PIK3CA genes [48, 49].

In 2015, an international consortium has analyzed a
large-scale data sharing, aiming to establish a new and
universal molecular classification and facilitate its clinical
implication. %e panel experts evaluated six CRC subtyping
algorithms from six studies [51–56] and also the data of
TCGA, to develop a novel classification of four CMS groups
(Figure 2) [50].

(i) CMS1 (microsatellite instability immune, 14%):
Almost all patients with MSI were regrouped in this
group, characterized by hypermutated profile, es-
pecially in MLH1 gene, and high level of BRAF
mutations. CMS1 patients have a strong immune
activation, reflected by a high level in gene ex-
pression, associated with a diffuse immune infiltrate
and upregulation in immune response pathways
(PD1 activation, NK cells, %1 cells, and cytotoxic
T-cell infiltration signatures) [50]. %is immune
activation is a new feature of MSI CRCs [57]

(ii) CMS2 (canonical, 37%): It includes patients with
higher CIN, which have a high level of somatic copy
number alterations (SCNAs). Conversely to CMS1,
CMS2 showed a strong upregulation of WNT and
MYC downstream targets and epithelial differenti-
ation. Compared with other groups, CMS2 exhibits
more frequently copy number gain in oncogenes and
copy number losses in tumor suppressor genes [50]

(iii) CMS3 (metabolic,13%): It is characterized by dysre-
gulation of many metabolic pathways (glucose pen-
tose, nitrogen, fatty acid, etc.), CINwith fewer SCANs,
higher prevalence of CIMP-low, and higher KRAS
mutations compared with other groups. Almost 30%
of CMS3 was hypermutated, which results in more
MSI samples compared with CMS2 and CMS4 [50]

(iv) CMS4 (mesenchymal, 23%): Higher CIN and in-
creased level of SCNAs, with strong expression of
epithelial-to-mesenchymal transition (EMT) genes
and activation of TGF-β signaling. CMS4 over-
expresses more commonly proteins that are im-
plicated in stromal infiltration and angiogenesis and
exhibits higher expression level of mesenchymal
protein pathways [50]

Finally, there were tumors with mixed features (13%)
that possibly represent either a transition phenotype or
intratumoral heterogeneity [50].

3.2. Clinical and Prognostic Associations of the CMSs.
CMS1 has been found to be significantly more common in
females with higher histological grades and right-sided
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lesions, conversely to CMS2 tumors which are more fre-
quently left-sided. CMS4 is diagnosed often at advanced
stages compared with other subtypes [50].

By analyzing data from patients enrolled in the
PETACC-3 clinical trial [58], Guinney et al. [50] concluded
that CMS can be used as a prognostic factor [59], and this
was also supported by other studies [60–65]. However, as no
targeted therapy regimens are available for primary CRC,
stratifying tumors using CMS as a prognostic tool needs
further evaluation [66]. In a recent large monocenter cohort
study including 308 CRC tumors, Purcell et al. concluded
that although CMS alone does not surpass TNM staging in
terms of prognostication, their combination seems of in-
terest [66]. CMS3 tumors showed lower OS of stage 2 CRCs
than other subtypes, whereas stage 2 patients with a good
prognosis exhibited immune activation and upregulation of
tumor suppressor genes [66].

After analyzing data from the PETACC-3 clinical trial,
CMS4 is reported to have the worst OS and relapse-free
survival (RFS) in response to fluorouracil (FU)/leucovorin
(LV) and irinotecan adjuvant regimen. CMS1 tumors have
also a very poor survival rate after relapse, conversely to CMS2
that tends to have superior survival rates after relapse [50].

An in vitro study by Sveen et al. reported a strong
response to EGFR and human epidermal growth factor
receptor 2 (HER2) inhibitors for the CMS2 group, while
CMS1 and CMS4 demonstrated higher sensitivity to
HSP90 inhibitors [67]. CMS1 has shown worse PFS and
OS in response to anti-EGFR therapy, whereas CMS2
showed particularly better PFS and OS compared with
other groups [68]. %is was supported by analyzing data
from CALGB/SWOG 80405 phase III trial, which found
more OS benefit after anti-VEGF than anti-EGFR
treatments for the CMS1 group (P< 0.001) [60]. How-
ever, patients in the CMS2 group treated with cetuximab
were found to have better OS compared to those treated
with bevacizumab (P � 0.0046) [60]. Additionally, anal-
ysis of data from the FIRE-3 trial showed significantly
better OS for CMS4 group after cetuximab plus FOLFIRI
treatment compared to bevacizumab plus FOLFIRI in
wild-type RAS mCRC [61].

4. Targeted Therapy in Metastatic CRC

5-fluorouracil (5-FU) was the first chemotherapy regimen
used for the treatment of advanced CRC. After many failed
combination regimens to improve its response rate, leu-
covorin has shown for the first time an advantage over 5-FU
alone in terms of tumor response rate in 1992 [69].
%ereafter and over the past two decades, other drugs have
shown more improvement in terms of survival, either with
5-FU or alone, such as irinotecan, capecitabine, and oxali-
platin [70]. With the understanding of molecular pathways
in CRC, a number of targeted biologic therapies have been
approved by the FDA. %e first ones were the monoclonal
antibodies (mAbs) targeting VEGF (bevacizumab) and the
EGFR (cetuximab and panitumumab). %e advancement in
chemotherapy and targeted drugs has led to significantly
improve overall survival to over 40 months for mCRC
patients [8].

4.1.Antiangiogenic InhibitorsTargetingVEGFor ItsReceptors.
Angiogenesis is a mechanism that allows the creation of new
blood vessels from preexisting ones to supply cancerous
cells. It plays a crucial role in tumor initiation, growth, and
metastasis [71]. For a long time, targeting the angiogenic
pathway has been considered an important approach for
cancer therapy. Although more than 40 molecules have been
found to play an important role in blood vessel recruitment,
most studies have focused on VEGF and its receptors [70].
VEGF signaling pathway is a key contributor in the process
of angiogenesis, and high levels of VEGF ligands and its
receptors activity were shown to be related to poor prognosis
in CRC and other cancers [72–74].

Bevacizumab is the first anti-VEGF drug that has been
approved by the FDA in 2004 for the treatment of patients
with mCRC, initiating its use as standard first-line treatment
in combination with chemotherapy. Bevacizumab is a hu-
manized monoclonal antibody that binds to VEGF-A,
preventing its binding on its receptors. According to a phase
II clinical trial of Kabbinavar et al., bevacizumab with FU
and LV, in the first line of mCRC treatment, was found to
improve significantly the progression-free survival (PFS)
and response rate (RR) compared to FU/LV plus placebo
(PFS: 9 vs. 5.2 months; hazard ratio (HR), 0.005; P< 0.001;
RR: 40% vs. 17%; P � 0.029) but did not improve the median
OS (21.5 vs. 13.8 months; P � 0.137). %e optimal dose of
bevacizumab was 5mg/kg [75]. In a phase III trial, signif-
icant improvement in OS was demonstrated with irinotecan,
FU and LV (IFL), and bevacizumab compared to IFL plus
placebo (20.3 vs. 15.6 months; HR, 0.66; P< 0.001) [76].
Other clinical trials have tested new combinations with
bevacizumab in mCRC and showed a significant improve-
ment in OS or PFS in first-line setting such as LV calcium,
FU, and oxaliplatin-4/capecitabine and oxaliplatin (FOL-
FOX-4/Xelox), FU, LV, and irinotecan (FOLFIRI) and
capecitabine [77–79]. Bevacizumab with FOLFIRI showed a
better PFS andOS compared to bolus FU/LVwith irinotecan
(mIFL) and oral capecitabine with irinotecan (capeIRI) [80].
In the second-line setting, bevacizumab was tested with
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molecular 
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14% of CRCs
MSI immune subtype

CMS 2

37% of CRCs
canonical subtype

CMS 4 

23% of CRCs
mesenchymal subtype

CMS 3

13% of CRCs
metabolic subtype

Figure 2: Consensus molecular subtypes classification of colorectal
cancer. CMS: Consensus Molecular Subtype; CRCs: colorectal
cancers; MSI: microsatellite instability.
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FOLFOX-4 and was shown to improve the median PFS and
the RR compared to FOLFOX-4 alone (PFS: 7.3 vs. 4.7
months; HR, 0.61; P≤ 0.0001; RR: 22.7% vs. 8.6%;
P≤ 0.0001) [81]. %e ML18147 phase III clinical trial con-
cluded that the continuation of bevacizumab with switching
second-line-based chemotherapy improved significantly OS
compared to chemotherapy alone or bevacizumab alone
[82]. Based on the positive results of these studies, the use of
bevacizumab with fluoropyrimidine-oxaliplatin or fluo-
ropyrimidine-irinotecan chemotherapy has been approved
by the FDA as a second line for mCRC in 2013.

After bevacizumab, three other antiangiogenic agents
have been approved for mCRC: aflibercept, regorafenib, and
ramucirumab.

Aflibercept (also known as VEGF Trap, AVE0005) is a
recombinant fusion protein that acts as a receptor, binding
to human VEGF-A, VEGF-B, and placental growth factor
(PGF). It is composed of extracellular domains of human
VEGF receptors 1 and 2, fused to the Fc portion of human
immunoglobulin (Ig)G1. Aflibercept has a high-affinity li-
gand trap and prevents these ligands to bind to their en-
dogenous receptors [83]. VELOUR phase III trial showed
that treatment with FOLFIRI and aflibercept conferred a
significant benefit in terms of OS and PFS compared with
FOLFIRI and placebo (OS: 13.5 vs. 12.1 months; HR, 0.82;
P � 0.0032; PFS: 6.9 vs. 4.7 months; HR, 0.76; P< 0.001)
[84]. Based on the positive results of this clinical trial,
aflibercept has been approved after oxaliplatin failure as a
second-line treatment in combination with FOLFIRI in
mCRC patients by the FDA in August 2012 and by the
European Medicines Agency (EMA) in February 2013.

Regorafenib is an oral multikinase inhibitor that inhibits
angiogenic tyrosine kinases (vascular endothelial growth
factor receptor 1 to 3 (VEGFR1-3), platelet-derived growth
factor receptor (PDGFR- β), and fibroblast growth factor
receptor (FGFR1)). It also blocks BRAF and oncogenic
receptor tyrosine kinases (RTKs), such as RETand KIT [85].
%e CORRECT phase III trial showed that treatment with
regorafenib conferred a significant improvement in OS
compared with the placebo arm, for mCRC that was re-
fractory to standard therapy (6.4 vs. 5 months; HR, 0.77;
P � 0.0052) [86]. Based on this trial, regorafenib has been
approved by the FDA in September 2012 for the treatment of
mCRC patients who have been treated previously with
fluoropyrimidine-, oxaliplatin- and irinotecan-based che-
motherapy, an anti-VEGF therapy, and an anti-EGFR
therapy if KRAS wild type.

Ramucirumab is a monoclonal human antibody that has
a high affinity to VEGFR-2, the essential receptor of the
VEGF angiogenic signaling pathway. %e RAISE phase III
clinical trial has found that ramucirumab plus FOLFIRI as
second-line treatment of mCRC improved significantly OS
compared with FOLFIRI plus placebo (13.1 vs. 11.7 months,
HR, 0.84; P � 0.0219) [87]. Based on these results, ramu-
cirumab (Cyramza) in combination with FOLFIRI has been
approved by the FDA as a second-line option for mCRC on
April 24, 2015.

Other small multitargeted receptor tyrosine kinase in-
hibitors (RTKIs) are under investigation for mCRC

treatment, such as Famitinib which targets VEGFR2,
PDGFR, and c-Kit [88], as well as Fruquintinib and
Cediranib which inhibit VEGF1-3 receptors [89, 90]. %e
main antiangiogenic RTKIs agents, which are under clinical
investigation in mCRC, were summarized in Table 1.

4.2.Anti-EGFRInhibitors. Epidermal growth factor receptor
(EGFR/ERBB1) is a member of the erythroblastosis onco-
gene B (ERBB) family, which also consists of three other
receptors, HER2 (ERBB2), HER3 (ERBB3), and HER4
(ERBB4) [91]. Ligands such as EGF, TGFα, Amphiregulin
(AREG), and Epiregulin (EREG) activate EGFR by binding
to its extracellular domain, leading to the activation of the
tyrosine kinase domain in the cytoplasm, which stimulates
two major signal-transduction pathways, RAS/RAF/MEK/
ERK (mitogen-activated protein kinase (MAPK)) pathway
and PI3K/AKT pathway. %ese two intracellular pathways
play key roles in cell proliferation, survival, and migration
[92, 93].

%ere is great evidence that ERBB family members have
an important role in the initiation and survival of several
solid cancers. Over the last years, many studies have shown
the importance of constitutive activation of the EGFR
pathway in cancer cell proliferation, stopping apoptosis, and
activating metastasis [94–96]. %is activation may occur
through receptor overexpression and ligand-dependent and
independent mechanisms [93]. After the research of Masui
et al. in 1983 that provided evidence on the activity of anti-
EGFR drugs against epidermoid carcinoma cell growth in
vivo [97], many studies and clinical trials focused on two
classes of anti-EFGR agents, which are the anti-EGFR
monoclonal antibodies (cetuximab and panitumumab) and
the small-molecule EGFR tyrosine kinase inhibitors [92].

Cetuximab is an anti-EGFR monoclonal antibody mAb
(recombinant immunoglobulin G1 (IgG1)), which has been
approved by the FDA in 2004, for the treatment of mCRC in
combination with irinotecan after irinotecan-based refrac-
tory chemotherapy, or as a single agent for mCRC patients
who are intolerant to irinotecan. %is approval was based
essentially on an open-label, randomized trial that showed a
significant improvement in terms of RR and PFS for
cetuximab with irinotecan, compared to cetuximab alone, in
patients who were refractory to irinotecan-based chemo-
therapy (RR: 22.9 vs. 10.8%; P: 0.007; PFS: 4.1 vs. 1.5;
P< 0.001) [98].%e CRYSTAL phase III clinical trial showed
that cetuximab with FOLFIRI as a first line of treatment
increased the RR by 10% (adjusted odds ratio (OR): 1.40;
P � 0.004) and reduced the risk of mCRC tumor progression
by 15% (HR, 0.85; P � 0.048) compared to FOLFIRI alone,
and this benefit has been limited to KRAS wild-type groups
(RR: 59.3% vs. 43.2% (OR, 1.9); PFS: 9.9 vs. 8.2; HR, 0.68;
P � 0.02). No improvement in OS has been reported in this
study, similarly to the previously mentioned trial [99].
Consequently, cetuximab in combination with FOLFIRI has
been approved by the FDA for KRAS wild-type mCRC
patients as a first-line treatment. FOLFOX4 has been tested
in phase II of OPUS clinical trial and showed an im-
provement in overall response rate (ORR) and a lower risk of
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disease progression in patients with KRAS wild-type disease
treated with cetuximab, as compared to those who received
FOLFOX4 alone (ORR� 61 vs. 37%; OR: 2.54; P � 0.011;
PFS: 7.7 vs. 7.2 months; HR, 0.57; P � 0.0163, respectively)
[100]. A pooled analysis of the CRYSTAL and OPUS ran-
domized clinical trials has shown that combining cetuximab
to chemotherapy (FOLFIRI or FOLFOX4) in patients with
KRAS wild-type disease improved significantly OS (HR,
0.81; P � 0.0062), PFS (HR, 0.66; P< 0.0001), and ORR (OR,
2.16; P< 0.0001), compared with chemotherapy alone. In
contrast, BRAF mutation status did not show any significant
difference in response to cetuximab, but it was a negative
prognostic biomarker [101].

Recently, on April 8, 2020, the FDA approved encor-
afenib in combination with cetuximab for the treatment of
mCRC with a BRAF V600E mutation, after prior therapy.
%is approval was based on the phase III BEACON CRC
study, which showed an improvement of median OS for
mCRC patients with BRAF V600E treated with cetuximab
and encorafenib compared to cetuximab alone (8.4 vs. 5.4
months; HR, 0.6; P< 0.001) [102]. In the second-line setting,

the phase III EPIC study has shown that cetuximab and
irinotecan improved significantly PFS and RR and resulted
in a better quality of life, after oxaliplatin and fluoropyr-
imidine failure, compared with irinotecan alone [103].
Additionally, cetuximab alone was shown to improve OS
and PFS, in wild-type KRAS patients who failed all other
treatments, compared with best supportive care (BSC) alone
(9.5 vs. 4.8 months; HR, 0.55; P< 0.001 and 3.7 vs. 1.9
months; HR, 0.40; P< 0.001, respectively) [104].

Panitumumab is also an anti-EGFR monoclonal anti-
body. Conversely to cetuximab, it is a fully human IgG2,
which has shown reduced immunogenic reactions and high
affinity and specificity for the EGF receptors [105]. In phase
III clinical trial, panitumumab and BSC showed a significant
improvement in PFS for mCRC patients who had progressed
after standard chemotherapy, compared with those receiving
BSC alone [106]. PRIME phase III study has shown that
panitumumab with FOLFOX4 as the first line of treatment
for patients with wild-type KRAS mCRC improves signifi-
cantly PFS compared with FOLFOX4 alone (10 vs. 8.6
months; HR, 0.8; P � 0.01) [107]. As a second-line

Table 1: Antiangiogenic RTKIs agents under clinical trials investigation in mCRC.

Drugs Target Number of
participants Setting Treatment

Primary
outcome
measures

Phase Identifiers

Vatalanib
(PTK787/ZK
222584)

VEGFR1-3,
FGFR1-3,
PDGFRα-β

1168 1st line mCRC Oxaliplatin/5FU/
Leucovorin± vatalanib

PFS
III

NCT00056459

855 2nd line mCRC OS NCT00056446

Nintedanib
(BIBF1120)

VEGFR1-3,
FGFR1-3,
PDGFRα-β

768 Refractory
mCRC BSC±Nintedanib PFS/OS III NCT02149108

54 Refractory
mCRC mFOLFOX6±Nintedanib PFS III NCT01362361

Semaxanib
(SU5416) VEGFR2 710 1st line mCRC Leucovorin and

Fluorouracil± Semaxanib OS III NCT00004252

Brivanib VEGFR2/
FGFR1 750

mCRC kRAS
wild-type
(refractory)

Cetuximab±Brivanib OS III NCT00640471

Sunitinib PDGFR-β,
VEGFR2, 768 1st line mCRC FOLFIRI± Sunitinib PFS III NCT00457691

Fruquintinib VEGFR1-3 416 3rd line mCRC Fruquintinib vs. placebo OS III NCT02314819
Cediranib
(AZD2171) VEGFR1-3 1814 1st line mCRC Beva + folfox vs.

beva +Cediranib PFS II/III NCT00384176

Sorafenib
VEGFR1-3
PDGFR-β
BRAF

101 2nd line mCRC FOLFOX6/
FOLFIRI± Sorafenib PFS II NCT00889343

Vanucizumab VEGF-A
Angiopoietin-2 197 1st line mCRC mFOLFOX6+ beva vs.

mFOLFOX6+Vancizumab PFS II NCT02141295

Famitinib VEGFR2-3, c-
Kit, PDGFR 154 3rd line

advanced mCRC Famitinib vs. placebo PFS II NCT01762293

Axitinib VEGFR1-3 70
1st line

maintenance
therapy

Axitinib alone after FOLFOX/
beva in 1st line PFS II NCT01490866

Apatinib VEGFR2 54

Refractory
mCRC

progressed after
2nd line

Apatinib alone PFS II NCT03190616

mCRC: metastatic colorectal cancer; 5FU: 5-fluorouracil; FOLFOX: oxaliplatin in combination with 5-fluorouracil and folinic acid; FOLFIRI: irinotecan in
combination with 5-fluorouracil and folinic acid; BSC: best supportive care; Beva: bevacizumab; PFS: progression-free survival; OS: overall survival; VEGFR:
vascular endothelial growth factor receptor; FGFR: fibroblast growth factor receptor; PDGFR: platelet-derived growth factor receptor.
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treatment, panitumumab with FOLFIRI has shown signif-
icant improvement in terms of PFS, compared with FOL-
FIRI alone for mCRC patients without KRAS mutations (5.9
vs. 3.9 months; HR, 0.71; P � 0.004) [108]. In 2006, the FDA
approved panitumumab as a single agent for the treatment
of mCRC KRAS wild-type after chemotherapy regimens
failure, and in 2014, it was approved in combination with
FOLFOX for patients with wild-type KRAS mCRC in the
first-line setting.

5. Resistance to Anti-EGFR Therapy

Generally, resistance to targeted drugs englobes primary (de
NOVO or innate) and secondary resistance (acquired re-
sistance) [109]. Patients with primary resistance exhibit gene
mutations, allelic loss, or gene overexpression, which in-
activate or reduce the effectiveness of the drug targets. As an
example, RAS, BRAF, and PIK3CA mutations and loss of
PTEN and HER2 overexpression have been involved in the
primary resistance to anti-EGFR therapy [110]. It has been
shown that 40% of all mCRC patients will derive benefit
from these agents [111]. Hence, identifying predictive bio-
markers of response to anti-EGFR mAbs is of utmost im-
portance. With regard to secondary resistance, the
underlying mechanisms are the acquired EGFR (S492R)
mutation, genetic alterations of RAS, BRAF, HER2, and
MET, and the selection effect of preexisting subclones that
confer primary resistance to anti-EGFR mAbs. %ese
mechanisms and others have been reviewed by Misale et al.
and Zhoa et al. [112, 113].

5.1. Primary Resistance. RAS mutations: the frequency of
KRAS gene mutations is estimated at 40% in all CRCs. %ese
mutations were shown to directly activate the MAP kinase
signaling pathway, leading to anti-EGFR mAbs resistance
[70]. Mutations located on exon2 (codon 12 or 13) were
considered the first and the most important predictive
biomarker for the nonresponse to anti-EGFR mAbs. %ese
alterations represent 85–90% of KRAS mutations in CRC,
and approximately 40% of mCRC patients were found to be
mutation carriers [113, 114]. Based on the results of many
studies that reported a nonbenefit from anti-EGFR mAbs
and shorter PFS, OS, and RR for patients with KRAS exon2
mutations compared with wild-type patients [104, 115–117],
the use of anti-EGFR mAbs has been limited by the FDA in
2009 to KRAS exon 2 wild-type mCRC patients [118].
Moreover, other KRAS mutations in exon 3 (codons 59 and
61) and exon 4 (codons 117 and 146) and mutations of the
NRAS isoform (exons 2, 3, and 4) were identified in 15–20%
of KRAS exon 2 wild-type patients and were found to be
related to low PFS and OS in patients treated with cetuximab
and panitumumab [119–122]. Of note, not all patients with
wild-type RAS respond to anti-EGFR treatment; that is why
research and identification of other biomarkers are of ut-
most importance.

BRAF mutations: BRAF is a downstream effector, which
is directly regulated by RAS. Mutations in the BRAF gene
represent 5–9% of CRCs and may lead to direct activation of

the RAS/RAF/ERK pathway [123]. V600E is considered the
most commonly reported mutation in BRAF, accounting for
more than 95% of all identified mutations. %is mutation
causes direct activation of the MAP kinase pathway, leading
to resistance to anti-EGFR mAbs [124]. Many studies re-
ported that BRAF V600E has been associated with poorer
PFS and OS in patients treated with anti-EGFR mAbs
[125, 126]. However, a meta-analysis of eight randomized
controlled trials by Rowland et al. concluded that there is
insufficient evidence to consider BRAF as a predictive
biomarker of benefit from anti-EGFRmAbs therapy for RAS
wild-type mCRC, as there was no statistically significant
difference in OS and PFS between RAS wild-type/BRAF
wild-type and RAS wild-type/BRAF mutant [127].

PIK3CA mutations and PTEN loss: PI3K-AKT-mTOR
signaling pathway is also known to be activated by EGFR,
leading to cell proliferation, cell growth, and apoptosis
suppression in CRCs [128]. Mutations on PIK3CA, which
represent 10–18% of CRCs, can lead to direct activation of
the PI3K/AKT pathway and cause resistance to anti-EGFR
mAbs [113]. Mutations in exons 9 and 20 account for 80% of
all PIK3CA mutations and result in its activation and the
activation of its downstream signaling pathway [129]. A
study by Sartore-Bianchi et al. including 110 mCRC-treated
patients reported that PIK3CA mutations conferred signif-
icant clinical resistance to cetuximab and panitumumab
[130]. Another large retrospective consortium analysis study
showed that only PIK3CA exon 20 mutations have been
associated with lower RR, PFS, and OS as a response to
cetuximab plus chemotherapy compared with wild types,
whereas exon 9 mutations showed no effect [131]. A meta-
analysis by Mao et al., which included 576 mCRC patients,
found that the objective response rate to anti-EGFRmAbs in
the KRAS wild-type group was lower in patients with
PIK3CA exon 20 mutations, but this difference was not
significant due to the limited sample size. However, this
study suggested that PIK3CA exon 20mutations may predict
the resistance to anti-EGFRmAbs in KRAS wild-type mCRC
patients [132].

PTEN is considered a suppressor gene, due to its role in
the negative regulation of AKT. %erefore, loss of PTEN
expression or function leads to persistent activation of the
PI3K-AKT-mTOR signaling pathway, which results in
permanent cell proliferation and growth [133]. Some studies
have found that PTEN can be a useful predictive biomarker
for the response to anti-EGFR mAbs therapy, particularly in
the KRAS wild-type [134–137]. In contrast, other studies did
not find a significant difference in response to anti-EGFR
therapy between PTEN-positive and PTEN-negative groups
[138–140]. To confirm the role of PTEN in anti-EGFR re-
sistance, other large clinical studies are warranted.

Level of EGFR ligand expression: in addition to
studying the downstream EGFR signaling pathway in anti-
EGFR resistance, the upregulation has also been investi-
gated in some studies, especially in an intact downstream
EGFR pathway [141–144]. In an exploratory cetuximab
monotherapy clinical trial, cetuximab efficacy has been
found to be related to KRAS wild-type and high gene
expression levels of AREG and EREG in mCRC patients
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[145], whereas other clinical trials confirmed that AREG
and EREG expression levels have predictive power to anti-
EGFR therapy only for KRAS wild-type patients [142, 146].
A recent study that analyzed tumor tissue of 688 patients
participating in FIRE-1, CIOX, and FIRE-3 clinical trials
has confirmed that AREG high level is a positive prognostic
biomarker for anti-EGFR therapy in mCRC. AREG high
level was significantly associated with high OS and PFS
compared to a low level (26.2 vs. 21.5 months; P � 0.007)
(10.0 vs. 8.1 months; P � 0.001), respectively [141]. EGFR
ligand’s high expression level can be related to tumors’
dependence on the EGFR signaling pathway, which ex-
plains its predictive power in mCRC, but it can also occur
as a consequence of epigenetic regulation [147].

STAT3: STAT3 is a transcription factor belonging to the
STAT family. It is an essential component of the JAK/STAT
signaling pathway, which is activated by EGFR and other
receptors [148]. Phosphorylated by JAK, STAT3 plays an
important role in cell proliferation, survival, and apoptosis
activities [113, 149]. Persistent STAT3 activation may have a
key role in anti-EGFR therapy resistance in mCRC. A ret-
rospective study by Dobi et al. reported a significant im-
provement in time to progression (TTP) and OS for negative
phospho-STAT3 compared to positive phospho-STAT3
group (TTP: 6.3 vs. 5.4 months; P< 0.01; OS: 13.1 vs. 9.4
months; P � 0.02), among 94 mCRC patients who were
treated with cetuximab and chemotherapy in the second-line
setting or beyond [150]. Another study by Ung et al. indi-
cated a key role of STAT3 in promoting resistance to anti-
EGFR treatment and showed that STAT3 activity can be
inhibited by the anti-EGFR inhibitors in wild-type K-RAS
colon cancer cell lines, suggesting that anti-EGFR therapy
combined with STAT3 inhibitors may provide a therapeutic
benefit for mCRC patients [151].

5.2. SecondaryResistance. Acquisition of KRAS mutation: as
we mentioned previously, the RAS/RAF signaling pathway
plays an important role in primary resistance to anti-EGFR
mAbs in mCRC, but it has also been involved in acquired
resistance [152]. A report by Diaz et al. found that 38% of
KRAS wild-type patients who received panitumumab had
KRAS mutations in their sera, occurring after five or six
months of the treatment [153]. Interestingly, a mathematical
model from this study showed that resistance mutations in
KRAS were present in a clonal subpopulation within the
tumors before initiating panitumumab therapy [153]. An-
other study reported that 55% (6/11) of patients who de-
veloped cetuximab or panitumumab resistance harbored
secondary k-RAS mutations, and 9% (1/11) had K-RAS
amplification [154]. KRAS variants were detectable in
plasma of cetuximab-treated patients 10 months before
radiographic documentation of disease progression [154].

EGFR S492R mutation: Montagut et al. were the first to
report in 2012 that EGFR S492R mutation confers acquired
resistance in mCRC patients treated with cetuximab, but not
in those who were treated with panitumumab. In their study,
20% of patients who showed resistance to cetuximab har-
bored EGFR S492R mutation [155]. Later, a larger cohort

study including 505 mCRC KRAS exon 2 wild-type patients
suggested that EGFR S492R mutation was not involved in
primary resistance to cetuximab [156]. In the ASPECCT
study, a randomized controlled phase III trial, EGFR S492R
mutation was detected, after analyzing liquid biopsies, in
16% of patients treated with cetuximab compared to 1% in
those receiving panitumumab [157].

Amplification of HER2: HER2 can activate the RAS/
RAF/ERK and PI3K/AKT pathways through its hetero-
dimerization with EGFR and HER3, which are all members
of the ERBB receptors tyrosine kinase family. For this
reason, HER2 is considered a potential biomarker for the
sensitivity to anti-EGFR therapy [91]. Studies using patient-
derived xenografts showed that HER2 amplification or the
overexpression of heregulin ligand leads to cetuximab re-
sistance especially in KRAS and BRAF wild-type cancers
[158, 159]. %ese findings have been supported by clinical
data from a large retrospective cohort study by Martin et al.
showing that HER2 gene copy numbermay confer resistance
to anti-EGFR therapy in KRAS wild mCRC type [160].
HER2 amplification may also be involved in primary re-
sistance, but considering its low frequency (2% of mCRC
patients), it is mainly considered a mechanism of secondary
resistance to anti-EGFR [113].

MET amplification: mesenchymal-epithelial transition
factor (c-MET) is a tyrosine kinase receptor, which is
encoded by the protooncogene MET. Binding to its ligand
the hepatocyte growth factor (HGF), c-MET induces cell
proliferation, growth, survival, and angiogenesis, through
the activation of PI3K/AKT, RAS/RAF/ERK, STAT3, and
nuclear factor-κB (NF-κB) signaling pathways [161]. Liska
et al. have confirmed the importance of MET activation in
restoring the MAPK and AKT pathways during anti-EGFR
therapy in CRC cell lines [162]. In both in vitro and in vivo
settings, Bardelli et al. demonstrated that METamplification
confers acquired resistance in patients who were KRAS wild-
type during anti-EGFR therapy. Importantly, findings from
this study supported using blood tests to monitor the
emergence of MET amplification in patients undergoing
anti-EGFR therapies, as the amplification of the MET locus
has been present in circulating tumor DNA before any
clinical evidence of relapse [163]. Another study by Troiani
et al. showed that TGF-α overexpression induces the EGFR-
MET interaction leading to subsequent MET pathway ac-
tivation and METacquired resistance and suggested that the
inhibition of MET expression restores the sensitivity to
cetuximab in CRC cell lines [164]. Nonetheless, MET am-
plification occurs only in 1% of unselected mCRC patients
[163, 165], making it a weak predictive biomarker of primary
resistance to anti-EGFR therapy in mCRC [113].

%e subclone selection: the notion of secondary resis-
tance not only consists of the development of newmutations
during the therapy but can also include the selection of a
low-frequency subclone that conferred primary resistance
under the target therapy pressure [166]. To determine
whether the acquired resistance to cetuximab in mCRC
patients is due to novel mutations or the selection of pre-
existing subclones, Misale et al. compared gene copy number
and the mutational profile of parental and resistant cell lines
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Table 3: TKIs targeting EGFR pathway under clinical investigation.

Drugs Target Setting Treatment Phase Identifiers
Erlotinib EGFR 2nd line k-RAS WTmCRC Erlotinib + panitumumab± irinotecan II NCT00940316

Neratinib EGFR/HER2 KRAS/NRAS/BRAF/
PIK3CA wild-type mCRC

Neratinib +Trastuzumb vs.
Neratinib +Cetuximab II NCT03457896

Sapitinib
(AZD8931)

EGFR/
HER2/3

Recurrent or metastatic
CRC AZD8931 + FOLFIRI II NCT01862003

Tucatinib HER2 HER2 positive CRC Tucatinib + trastuzumab II NCT03043313

Lapatinib
(GSK572016)

EGFR/
HER2/erk-1/

2

2nd line advanced or
mCRC Lapatinib + capecitabine II NCT00574171

Vemurafenib BRAF
(V600E)

BRAF V600E mutation and
advanced CRC FOLFIRI +Cetuximab +Vemurafenib II NCT03727763

Dabrafenib BRAF
(V600E)

BRAF V600E mutation
mCRC Dabrafenib + trametinib + spartalizumab II NCT03668431

Encorafenib (LGX-
818)

BRAF
(V600E) MSS/BRAF V600E mCRC Encorafenib +Cetuximab + nivolumab I/II NCT04017650

BMS-908662 BRAF Mutant BRAF mCRC BMS-908662 + cetuximab I/II NCT01086267
Binimetinib
(MEK162) MEK1/2 RAS positive mCRC Binimetinib +mFOLFIRI I NCT02613650

Cobimetinib MEK1 Locally advanced and
metastatic CRC Cobimetinib +Atezolizumab vs. Regorafenib III NCT02788279

Trametinib MEK1/2 RAS/RAF mutant and TP53
WT mCRC Trametinib +HDM201 I NCT03714958

Selumetinib
(AZD6244) MEK1/2 2nd line k-RAS BRAF

mCRC Selumetinib + irinotecan II NCT01116271

Alpelisib (BYL719) PI3K BRAF mutant mCRC Alpelisib +Cetuximab vs.
BYL719 +Cetuximab + LGX818 I/II NCT01719380

Buparlisib
(BKM120) PI3K Wild-type RAS advanced or

metastatic CRC Panitumumab +BKM120 I/II NCT01591421

Gedatolisib
(PF05212384) PI3K/mTOR mCRC Gedatolisib + FOLFIRI vs.

FOLFIRI + Bevacizumab I/II NCT01937715

Nab-rapamycin
(ABI-009) mTOR 1st line advanced or

metastatic CRC ABI-009 + FOLFOX+bevacizumab I/II NCT03439462

Everolimus
(RAD001) mTOR 2nd line mCRC Irinotecan +Cetuximab±Everolimus I/II NCT00522665

Table 2: mAbs targeting EGFR pathway under clinical investigation.

Drugs Target Setting Treatment Phase Identifiers

Trastuzumab HER2 HER2-positive wild KRAS
mCRC

Trastuzumab + Lapatinib or Pertuzumab II NCT03225937
Trastuzumab+Tucatinib NCT03043313

Pertuzumab HER2 2nd line of advanced or mCRC Pertuzumab + cetuximab I/II NCT00551421
MEHD7945A
(Duligotuzumab)

EGFR/
HER3 2nd line K-Ras wild-type mCRC MEHD7945A+FOLFIRI vs.

Cetuximab + FOLFIRI II NCT01652482

SYM004 EGFR mCRC K-Ras WT acquired
resistance to Anti-EGFR mAbs SYM004 vs. BSC II NCT02083653

CPGJ 602 EGFR 2nd line mCRC KRAS WT CPGJ 602 vs. Cetuximab I NCT03356158

Futuximab EGFR Chemotherapy-refractory
mCRC Futuximab vs. SYM004 II NCT03549338

SCT 200 EGFR Wild-type RAS and RAF mCRC SCT200 II NCT03405272
Dalotuzumab (MK-
0646) IGF-1R Wild-type KRAS mCRC Dalotuzumab+Cetuximab + irinotecan II/III NCT00614393

Ganitumab (AMG-
479) IGF-1R Mutant KRAS mCRC AMG-479 + FOLFIRI vs. FOLFIRI alone II NCT00813605

Cixutumumab (IMC-
A12) IGF-1R 2nd line mCRC kRAS wild-type Irinotecan and Cetuximab± IMC-A12 II NCT00845039

mAbs: monoclonal antibodies; mCRC: metastatic colorectal cancer; FOLFIRI: irinotecan in combination with 5-fluorouracil and folinic acid; BSC: best
supportive care; HER: human epidermal growth factor receptor; EGFR: epidermal growth factor receptor; IGF-1R: insulin-like growth factor 1 receptor;
KRAS: Kirsten rat sarcoma viral oncogene.
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[154]. %is study found that KRAS G13D mutation and
KRAS amplification were present in parental cells with low
frequency, which supports the theory of subclonal selection
[154]. However, other mutations including KRAS G12R and
EGFR S492R have been identified only in resistant cells
[154, 156], which corroborates that some mutations may
occur only during the EGFR mAbs treatment.

5.3. Overcoming Resistance to Anti-EGFR @erapy. In order
to overcome resistance to cetuximab/panitumumab in
mCRC patients, research studies have been focusing on
widening therapeutic choices by testing new monoclonal
antibodies against EGFR receptors (Duligotuzumab,
Futuximab, etc.), as well as those against HER2, HER3, and
IGF-1R receptors (Table 2). Using tyrosine kinase inhibitors
to target the EGFR receptor and its downstream pathway is
another promising active research area (Table 3).

6. Conclusion

%e advancements in molecular technologies in recent de-
cades, especially sequencing techniques, have led to a better
understanding of the genomic landscape of CRC and hence
increased dramatically our knowledge about the carcino-
genesis process. %is unprecedented information has been
directly harnessed to establish molecular classifications that
provide deeper insights into the biology of CRC. Available
evidence suggests that the CMS classification might have a
predictive and prognostic value, and also it can help to guide
drug development and application.

%e molecular understanding of CRC carcinogenesis has
also led to developing targeted drugs such as anti-VEGF
mAbs, anti-EGFR mAbs, and multikinase inhibitors, which
improved the survival rates of mCRC patients. However,
emerging primary or secondary resistance to current targeted
therapies, especially to anti-EGFR mAbs, remains a major
problem in clinical practice. Understanding resistance
mechanisms, identifying new biomarkers and other targetable
pathways is of paramount importance to optimize therapeutic
choices and improve survival for resistant patients.
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OS: Overall survival
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Table 3: Continued.

Drugs Target Setting Treatment Phase Identifiers
ONC201 AKT/ERK MSS mCRC ONC201 +Nivolumab I/II NCT03791398

MK2206 AKT WT k-RAS/mutated
PIK3CA mCRC MK2206 II NCT01186705

TTI-101 STAT3 Advanced CRC TTI-101 I NCT03195699

Ruxolitinib JAK/STAT3 RAS mutant advanced CRC
and pancreatic cancer Ruxolitinib + trametinib I NCT04303403

mCRC: metastatic colorectal cancer; FOLFIRI: irinotecan in combination with 5-fluorouracil and folinic acid; MSS: microsatellite stability; FOLFOX:
leucovorin calcium, fluorouracil, and oxaliplatin; KRAS: Kirsten rat sarcoma viral oncogene; WT Kras: wild-type Kras; HER: human epidermal growth factor
receptor; EGFR: epidermal growth factor receptor; BRAF: v-raf murine sarcoma viral oncogene homolog B1; PIK3: phosphatidylinositol 3-kinase; mTOR:
mammalian target of rapamycin. JAK: Janus kinase; STAT3: signal transducer and activator of transcription 3.
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PJS: Peutz Jeghers
POLE: Polymerase-ε
RFS: Relapse-free survival
RR: Response rate
RTKs: Receptor tyrosine kinases
SCNAs: Somatic copy number alterations
TCGA: %e cancer genome atlasTGF:
TGF: Transforming growth factor
TTP: Time to progression
VEGF: Vascular endothelial growth factor
VEGFR: Vascular endothelial growth factor receptor
XELOX: Capecitabine (xeloda) and oxaliplatin.
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