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The interaction of acute myeloid leukemia (AML) blasts with the
bone marrow (BM) microenvironment provides potent protection
against both spontaneous apoptosis and chemotherapy.1 Similar
to normal hematopoietic stem cells (HSCs), AML blasts express
many of the same adhesion molecules such as CXCR4, VLA-4,
VLA-5 and CD44, which allow them to interact with the marrow
microenvironment. We and others have demonstrated in murine
models that CXCR4 inhibitors can mobilize AML cells from the BM
into the peripheral blood and enhance the anti-leukemic effects of
chemotherapy.2,3 We have also demonstrated in a previous phase
1/2 study that plerixafor, a small molecule inhibitor of CXCR4, can
be safely combined with chemotherapy in patients with relapsed
or refractory AML with encouraging response rates.4

Mobilization of HSCs by granulocyte-colony stimulating factor
(G-CSF) occurs through downregulation of mRNA and protein
levels of CXCL12, the ligand for CXCR4.5 For mobilization of
autologous HSCs, G-CSF acts synergistically when combined with
plerixafor and mobilizes higher numbers of CD34+ cells compared
with either agent alone.6,7 In AML, ‘priming’ with G-CSF concurrent
with chemotherapy may result in superior outcomes for patients
receiving induction therapy for AML.8 We hypothesized that
disruption of the interaction between leukemic blasts with the
marrow microenvironment using G-CSF in combination with
plerixafor would effectively mobilize and sensitize AML blasts to
chemotherapy.
In this phase 1/2 study (ClinicalTrials.gov NCT00906945), we

evaluated the combination of G-CSF and plerixafor in conjunction
with mitoxantrone, etoposide and cytarabine (MEC). Eligible
participants were adults, age 18–70 years old, with relapsed or
refractory AML. Subjects with a peripheral blood blast count of
⩾ 20 × 103/mm3, acute promyelocytic leukemia, active central
nervous system leukemia or who had been previously treated
with MEC chemotherapy were excluded from the study. The
primary endpoint in phase I was to determine the maximum
tolerated dose and in phase II was to determine the complete
response rate (CR+CRi) of plerixafor plus G-CSF in combination
with MEC in patients with relapsed or refractory AML. The phase I
was performed using a standard 3+3 design escalating to a
maximum plerixafor dose of 0.75 mg/kg/day. For the phase II, a
bivariate design was used in two stages to allow an interim
analysis of toxicity and response rates.9 Treatment consisted of
G-CSF 10 mcg/kg by subcutaneous injection daily on days 1–8.
Plerixafor was administered intravenously (IV) on days 3–8.
Chemotherapy consisting of mitoxantrone 8 mg/m2/day IV,
etoposide 100 mg/m2/day IV and cytarabine 1000 mg/m2/day
(MEC) was administered on days 4–8, ~ 4 h after administration of
plerixafor.
Thirty-five patients with a median age of 56 years (range 29–70)

were enrolled and treated on this study. The majority received
treatment for first relapse (n= 21, 60%) with 10 patients (29%)
having had a prior allogeneic hematopoietic cell transplantation
(Table 1). In the phase I, plerixafor was successfully escalated from
0.24 to 0.75 mg/kg/day in five dose cohorts. The plerixafor

0.75 mg/kg/day dose was brought forward in the phase II
expansion with a total of 20 patients treated in the first stage of
the phase II. After an interim analysis, we observed that 6 out of 20
patients treated at the phase II dose achieved a CR/CRi (30%),
which is less than the 7 out of 20 responses (35%) indicated in the
study design for proceeding with the second stage of the phase II.
As a result, the study was terminated for futility.
With a median follow-up of 34.6 months, the median overall

survival for all subjects was 7.6 months with a 1-year overall
survival of 37% (95% confidence interval: 21.2–53). The median
time to neutrophil recovery (ANC⩾ 1000/mm3) was 40 days (range
23–62) from the start of treatment (36 days from MEC). The
median time to platelet recovery (platelets ⩾ 100 K/mm3) was
32 days (range 30–62). Adverse events were typical of those
observed for patients with relapsed or refractory AML with the
most common non-hematologic adverse events of nausea (69%),
vomiting (37%), febrile neutropenia (57%), headache (40%),
fatigue (34%), fever (29%) and electrolyte abnormalities (hypo-
calcemia 37%, hypokalemia 31%) (Supplementary Table S1).

Table 1. Baseline patient characteristics (n= 35)

Patient characteristic

Age, median (range) 56 (29–70)

Gender
Male (%) 18 (51)
Female (%) 17 (49)

ECOG performance status
0 (%) 15 (43)
1 (%) 15 (43)
2 (%) 4 (11)
Missing (%) 1 (3)

Onset of AML
De novo (%) 23 (66)
Therapy-related (%) 12 (34)
Prior MDS/MPN (%) 4 (11)

Indication for treatment
Primary refractory (%) 10 (29)
First relapse (%) 21 (60)
Second relapse (%) 4 (11)

Prior unsuccessful salvage chemotherapy (%) 7 (20)
Prior allogeneic HCT (%) 10 (29)

Cytogenetics
Favorable (%) 3 (9)
Intermediate (%) 19 (54)
Poor (%) 13 (37)

WBC k/cumm (range) 2.5 (0.2–14.7)
BM blast % (range) 33 (0–96)

Abbreviations: AML, acute myeloid leukemia; BM, bone marrow; ECOG,
Eastern Cooperative Oncology Group; HCT, hematopoietic cell transplanta-
tion; MDS, myelodysplastic syndrome; MPN, myeloproliferative neoplasm;
WBC, white blood cells.
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Figure 1. AML blast mobilization and phenotype. (a) Clinical trial schema. Patients with relapsed or refractory AML received G-CSF 10 mcg/kg daily
for 8 days. Plerixafor (P) IV was administered on days 3–8. On days 4–8, Mitoxantrone 8 mg/m2/day, Etoposide 100 mg/m2/day and Cytarabine
1000 mg/m2/day (MEC) chemotherapy was administered 4 h after plerixafor. Peripheral blood samples were collected at baseline, after G-CSF only
on day 3 (pre-P) and at 2, 4, 6 and 24 h after IV plerixafor administration. Complete blood counts including total leukocytes and blast (CD45dim/
SSClow) counts were determined at each time point by flow cytometry. Mobilization of total CD45+ leukocytes (b) and CD45dimSSClo AML blasts (c)
to the peripheral blood over time after administration of a single dose of plerixafor at 0.24, 0.32, 0.42, 0.56 or 0.75 mg/kg. Mean fold changes from
baseline with SEM are shown. (d) Mobilization of total CD45+ leukocytes and CD45dimSSClo AML blasts to the peripheral blood over time from all
evaluable patients enrolled in the trial. Mean fold changes from baseline with SEM are shown. Statistical comparisons were performed using a
paired parametric Student’s t-test. (e) The expression of CXCR4 on peripheral blood AML blasts was determined by flow cytometry using anti-CXCR4
monoclonal antibody clones 12G5 and 1D9. Mean fold changes in CXCR4 relative mean fluorescent intensity (RMFI) from baseline with SEM are
shown. Statistical comparisons were performed using a paired parametric Student t-test. (f) Expression of clone 12G5 of CXCR4 (n=29), clone 1D9
of CD184 (n=29), CD114 (G-CSF receptor; n=17), CD49f (n=15) and Ki67 (n=10) on AML blasts. The RMFI or percentage of positive Ki67 cells with
SEM are shown. Statistical comparisons were performed using a paired parametric Student’s t-test. *Po0.05, **Po0.01 and ***Po0.001.
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To determine the effect of G-CSF and plerixafor on leukemic cell
mobilization, peripheral blood samples were collected at baseline,
after G-CSF only on day 3 (pre-P), and at 2, 4, 6 and 24 h after IV
plerixafor administration (Figure 1a). We were unable to detect a
dose–response relationship between plerixafor and leukemic
mobilization because of substantial interpatient variability in
mobilization and the limited numbers of patients analyzed
(Figures 1b and c). Peak mobilization of both total leukocytes
and AML blasts occurred ~ 4–6 h after the administration of
plerixafor on day 3 of G-CSF treatment and cell counts remained
elevated at 24 h after administration (Figures 1b and c). In 31
evaluable patients, total leukocytes and blast cell counts increased
a median of 2.4- and 3.5-fold, respectively, after 2 days of G-CSF
(Figure 1d). Circulating levels of both leukocytes and blasts were
further increased an additional 1.8- or 2.8-fold, respectively, at 6 h
after plerixafor administration on day 3 (Figure 1d). The
magnitude of AML blast cell mobilization was significantly greater
than the total leukocyte mobilization at all treatment time points.
Therefore similar to normal stem cell mobilization, plerixafor
augments the mobilization of AML blasts by G-CSF.
We measured the expression of CXCR4 on AML blasts in

response to administration of G-CSF and plerixafor using two
different mAb clones. Plerixafor inhibits the binding of clone 12G5
to CXCR4. In contrast, the 1D9 mAb binds to the N-terminus of
CXCR4 and is not affected by plerixafor. Similar to our previous
trial,4 we observed a decrease in 12G5 binding on AML blasts from
pretreatment to 6 h and an increase from 6 to 24 h toward
baseline, indicating transient CXCR4 blockade by plerixafor in vivo
(Figures 1e and f). In contrast, when CXCR4 was measured using
1D9, we found that there was an almost immediate (within 2 h)
and dramatic increase of surface CXCR4 expression after plerixafor
administration. Others and we have previously demonstrated that
this upregulation of surface CXCR4 is primarily due to the
plerixafor-mediated inhibition of CXCR4 internalization by its
ligand CXCL12.4,10

In addition to showing CXCR4 blockade by plerixafor in vivo, we
also observed downregulation of the G-CSF receptor (CD114) and
integrin alpha 6 (CD49f) on AML blasts by G-CSF (Figure 1f). In
contrast, we observed no significant cell surface modulation of
CD49d, CD62L, CD117 or CD135 on AML blasts following
treatment with G-CSF and plerixafor (data not shown). However,
we observed a slight but highly variable increase in the expression
of the cell proliferation marker Ki67 in AML blasts following 2 days
of G-CSF treatment (Figure 1f).
In this study, we sought to maximize blockage of the CXCL12/

CXCR4 axis through (i) addition of G-CSF, which downregulates
CXCL12 expression and acts synergistically with plerixafor in
normal stem cell mobilization; (ii) intravenous instead of
subcutaneous dosing of plerixafor to improve the kinetics of
administration; and (iii) dose escalation of plerixafor to maximize
CXCR4 blockade. Although we demonstrated the safety and
feasibility of combining G-CSF and plerixafor with chemotherapy,
combination therapy did not improve remission rates compared
with historical controls.
We believe that primarily two factors contributed to the failure

of G-CSF to enhance the efficacy of plerixafor in combination with
MEC salvage chemotherapy in our clinical trial. First, a high
proportion of patients with unfavorable prognosis were recruited
to the study in comparison with our previous study, which was
conducted at a single institution (Supplementary Table S2).
Second, stimulation of cells with G-CSF has been shown to
activate multiple signal transduction pathways that regulate the
proliferation, differentiation and survival of myeloid cells. We
believe that prosurvival signals mediated by G-CSF counteract
both (i) the ‘priming’ proliferative effect of G-CSF that increases
the susceptibility of leukemic cells to cell cycle-specific che-
motherapeutic agents and (ii) the pro-apoptotic effects of CXCR4
inhibition by plerixafor.

In our previous study of plerixafor with MEC, blast cell
mobilization was not associated with remission.4 We hypothesize
that inhibition of CXCR4-mediated prosurvival signaling is more
important than the physical detachment and mobilization of AML
blasts in enhancing the efficacy of MEC chemotherapy.
Plerixafor has a relatively short half-life of 4–5 h and is known to

be a weak partial agonist of CXCR4.11 As high CXCR4 expression is
a marker of poor prognosis in AML, plerixafor-mediated upregula-
tion of CXCR4 may undermine the intended anti-apoptotic effect
of CXCR4 blockade by also enhancing the re-homing of AML blasts
to the BM, thus reducing the efficacy of CXCR4 inhibitor-based
chemosensitization. A number of other CXCR4 inhibitors have
been developed for clinical use including other small molecule
inhibitors, antibodies and peptidomimetics. Compared with
plerixafor, many of these agents provide more potent and
sustained inhibition of CXCR4.12–14 These newer inhibitors also
can directly induce apoptosis of AML and other tumor cells line
in vitro which supports the assertion that antileukemic activity of
CXCR4 inhibitors may be in part independent of the
mobilization.15 We are currently exploring the use of these
alternative CXCR4 inhibitors, as well as inhibitors of other
pathways, which mediate tumor–stromal interactions in both
AML and other hematologic malignancies.
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