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Transition from light diffusion to localization in
three-dimensional amorphous dielectric networks
near the band edge
Jakub Haberko 1,3, Luis S. Froufe-Pérez 2,3 & Frank Scheffold 2✉

Localization of light is the photon analog of electron localization in disordered lattices, for

whose discovery Anderson received the Nobel prize in 1977. The question about its existence

in open three-dimensional materials has eluded an experimental and full theoretical ver-

ification for decades. Here we study numerically electromagnetic vector wave transmittance

through realistic digital representations of hyperuniform dielectric networks, a new class of

highly correlated but disordered photonic band gap materials. We identify the evanescent

decay of the transmitted power in the gap and diffusive transport far from the gap. Near the

gap, we find that transport sets off diffusive but, with increasing slab thickness, crosses over

gradually to a faster decay, signaling localization. We show that we can describe the tran-

sition to localization at the mobility edge using the self-consistent theory of localization based

on the concept of a position-dependent diffusion coefficient.
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Bandgap formation and strong Anderson localization (SAL)
of classical waves are both considered general wave phe-
nomena where the mechanism leading to the exponential

attenuation of wave transport can be understood in terms of
interference of scattered waves. In a periodically repeating
environment, scattering of waves from Bragg planes can be
associated with the opening of a photonic bandgap (PBG)1–3.

The SAL mechanism is usually explained by the constructive
interference of multiply scattered waves propagating along time-
reversed loops, which increases the return probability and eventually
leads to a breakdown of wave diffusion4–6. In contrast to PBG for-
mation, the transition to SAL in disordered media strongly depends
on dimensionality. In one and two dimensions, there are no truly
extended states, and waves in disordered media are always localized
for sufficiently large systems sizes7–11. Only in three dimensions,
wave localization shows a phase transition, and localized states
appear below the ‘mobility edge’. The threshold for localization can
be estimated by the Ioffe-Regel criterion k·ℓ ~1, where ℓ denotes the
transport mean free path and k the wavenumber12–14. The Anderson
transition in three dimensions is a fascinating phenomenon that until
now has eluded a full theoretical and experimental understanding. It’s
relevance is not restricted to transport of photons or electrons, but it
can also be applied in acoustics, or any kind of coherent wave pro-
pagation15. Moreover, a full understanding and control over the wave
fields in complex media offer a plethora of opportunities for appli-
cations in imaging, sensing, and photonics6. However, an experi-
mental observation of SAL for electromagnetic vector waves in three-
dimensional systems has not yet been achieved, even though several
claims to its existence were made16–18 but soon after were put in
question19,20 and later refuted21. At about the same time it was found
theoretically that SAL of electromagnetic vector waves is absent in
random ensembles of point scatterers, irrespective of their scattering
strength22. Thus, in a 2016 perspective article, Skipetrov and Page21

declare a “Red light for Anderson localization” of light and Maret
et al.23 ask “Can 3D light localization be reached in ‘white paint’”
at all?

The advent of amorphous PBG materials over the last dec-
ade24–29 has opened a new pathway toward the design of strongly
photonic dielectric materials. It has also prompted fundamental
questions concerning the relationship between the Anderson
localization transition and the transition to a full bandgap.
Recently, we proposed a transport phase diagram for two-
dimensional hyperuniform disordered PBG materials with a SAL
regime near the PBG30 and conjectured that these findings could
be generalized to three dimensions24–27,30,31. Early pioneering
work by John suggested the possibility of finding SAL in dis-
ordered crystalline structures near the bandgap2,32,33, an idea
supported more recently by the numerical studies of Conti and
Fratalocci33. Imagawa et al. reported an increase of the inverse
participation ratio near the bandgap of an amorphous diamond
structure, which might indicate the presence of localized states34.
This previous work provides a rationale for the existence of a SAL
regime in the vicinity of a bandgap of an amorphous photonic
material, which we are going to investigate in our work.

To this end, we study the transport properties of electro-
magnetic vector waves in realistic digital representations of three-
dimensional hyperuniform silicon networks numerically. We
find evidence for the anomalous light transport near the band
edge, signaling the onset of Anderson localization at a mobility
edge and a broad frequency window where light is localized
before the bandgap fully develops.

Results
Strong Anderson localization of waves. The discussion of what
defines SAL is very detailed and rich, and for a comprehensive

review, we refer to the literature5,13,21,32,35–38. A working defi-
nition for finite-sized systems, proposed by Cherroret and Ski-
petrov, is that ‘SAL is an interference wave phenomenon in a
medium of a finite size that would give rise to truly localized
states if the medium were extended to infinity’38. The transition
to SAL in three dimensions is usually described in the framework
of the self-consistent (SC) theory39. It treats localization by
introducing a position r! dependent wave diffusion coefficient
Dð r!Þ, which decays to zero deep inside the medium5,38, due to
an increased return probability of multiple scattering paths. At
the mobility edge, for a semi-infinite medium, one finds the
simple algebraic forms DðzÞ ¼ Dð0Þ

1þz=ξc
and in the localized regime

DðzÞ ¼ Dð0Þ expð�2z=ξÞ where z denotes the distance from the
surface. The localization length ξ becomes finite at the critical
point while D(z) <DB already when approaching the mobility
edge, where DB= cℓ/3 denotes the standard Boltzmann diffusion
constant. D(0) continues to drop gradually as the localization
threshold is crossed40. For slabs of finite thickness L, the trans-
mittance T(L) shows two distinct regimes: initially, it decays
diffusive as ~L−1 which is followed by an exponential decay
~e−L/ξ. Precisely at the transition, SC theory predicts a critical
power-law scaling T ~ L−2 instead of the exponential decay.

We point out that the (SC) theory is an approximate theory,
and different variants have been proposed in the literature5,38,41.
As discussed in ref. 38, in its original form, it is strictly valid only
for k ⋅ ℓ ≫ 1. The fact it can describe certain phenomena at the
mobility edge and in the localized regime is somewhat fortuitous
and not fully understood. However, progress toward a better
microscopic understanding has been reported recently38,42.
Moreover, almost all theoretical and numerical studies were
carried out assuming scalar waves and point scatterers randomly
distributed in space, i.e., using white-noise Gaussian statistics14. It
is not self-evident that the conventional SC theory40, can explain
the transport of vector waves in spatially correlated, densely filled
dielectric materials with a bandgap. First of all, the transport ℓ and
the scattering mean free path ℓs are not the same for scatterers of
size ~λ, and the wave is propagating in some effective medium
with a wavenumber keff11,30. If and how this affects the predictions
by SC theory is currently not known. As a consequence of the
approximate nature of the SC theory, in particular, when applied
to realistic representations of dielectric materials, we must assume
that there is no perfect one-to-one relationship between the
macroscopic transport properties, such as the localization length ξ
and microscopic quantities like k= 2π/λ and ℓ. We, therefore,
denote with (kl) the localization parameter, which we assume is
similar and proportional but not necessarily identical to k⋅ℓ. For
simplicity, we also assume (kl)c≡ 114, and we have tested that
using slightly different values for the localization threshold does
not significantly affect our findings.

In summary, in our study the localization parameter (kl) sets
the macroscopic properties in the SC theory, such as ξ/ℓ= 6(kl)2/
(1− (kl)4) for (kl) < 1 and D(0), with D(0)=DB(1− (kl)2) for
(kl)≫ 140. The relationship to the microscopic parameter ℓ is
established via (kl) ∝ k⋅ℓ modulus a prefactor of order one that
also takes account of the uncertainty with respect to ℓ/ℓs and the
effective wavenumber keff≳ k. We note that the predictions by SC
theory are only meaningful in the limit ξ/ℓ≫ 1. For example
ξ/ℓ > 5 for ðklÞ 2 ½34 ; 1Þ.

Transport in a photonic bandgap. A photonic crystal with a full
PBG displays a vanishing density of states (DOS) in the gap.
Transport through a finite-sized slab is due to tunneling, char-
acterized by an exponential attenuation with a decay length LB,
called the ‘Bragg length,’ typically on the order of one unit cell,
in high refractive index photonic crystals43,44. For frequencies
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outside the gap, or for specific directions in the presence of an
incomplete gap, photonic crystals are transparent, before the
onset of diffraction43. Perfect crystals show neither photon dif-
fusion nor localization. In his celebrated 1987 paper, John sug-
gested that three-dimensional photonic crystal lattices with
moderate disorder may exhibit strong localization of photons2, an
idea supported more recently by numerical studies33. Amorphous
PBG materials are disordered but the spatial distribution of
dielectric material is highly correlated, which can also lead to the
opening of a full PBG. The genuine disorder, however, implies
that these materials display strong scattering for frequencies
outside the gap, or if the gap is incomplete for all frequencies,
with the notable exception of transparency in stealthy hyper-
uniform materials in the long-wavelength limit45,46, which we do
not address here. Strong scattering outside the gap opens the
possibility for the existence of SAL transport regimes, even in the
absence of defect states30.

Optical transport simulations and density of states (DOS). We
study the transport of waves in three-dimensional hyperuniform
silicon photonic network structures, refractive index n= 3.6,
derived from the center positions of an assembly of 10,000 ran-
domly close-packed spheres, diameter a, as described earlier47,48.
The design protocol consists of mapping the seed pattern into
tetrahedrons by performing a Delaunay tessellation. Then, the
centers of mass of the tetrahedrons are connected, resulting in a

tetravalent network structure of interconnected rods with the
desired structural properties. The diameter of the rods sets the
space-filling fraction ϕ, Fig. 1a, c. The length a is the typical short-
range structural length scale of the network, which for a crystal
would be the lattice constant. The seed point pattern is hyper-
uniform, but not stealthy, meaning that the isotropic structure
factor vanishes asymptotically in the limit S(k) → 0 for k → 0
where k= 2π/λ denotes the wavenumber in vacuum. Practically
identical network structures have been considered by Liew et al.
in a study of the optical DOS26 (see also Supplementary Figs. 2
and 3). They report a substantial depletion of the DOS, by more
than two orders of magnitude, over a significant range of fre-
quencies, indicating the presence of a bandgap for different values
of ϕ. In the present study, we consider networks with a filling
fraction of ϕ= 0.28, shown to display the most pronounced
photonic properties in their study26.

For the optical transport simulations, we apply the finite differences
time-domain (FDTD) approach, implemented by the MIT Electro-
magnetic Equation Propagation (MEEP)49. It is considered to be one
of the most potent simulation techniques to study electromagnetic
wave transport. In a single MEEP-simulation run, a broadband pulse
of linearly polarized light, with an electric field vector parallel to one
of the sides of the simulation box, is incident on the sample, as
illustrated in Fig. 1a. We obtain the full spectrally resolved infor-
mation about the optical transmittance T(a/λ, L), Fig. 1b. We present
all spectra in terms of the reduced frequency ν0 :¼ a=λ ¼ νa=c
where λ, ν, and c denote the wavelength, frequency and speed of light
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Fig. 1 Numerical simulations of optical transport properties. a Cross section of a three-dimensional FDTD (MEEP) simulation box containing a
hyperuniform silicon (n= 3.6) network structure, thickness L= 6a. A light wave, linearly polarized along the x-axis, is launched on the leftside and
propagates along the z-axis. The photonic network structure is terminated with perfectly matched layers (PML) at both sides of the box along the
propagation axis. PMLs act as absorbers. The source (SRC) and detector (MON) are placed at a distance approximately ~a from the sample, which is held
in vacuum. Periodic boundary conditions are applied along x and y directions. b Triangles: transmittance spectrum T(a/λ) for a slab of thickness L= 18a for
a filling fraction ϕ= 0.28. The optical transport data is compared to numerical calculations of the density of states (DOS) (squares). The bandgap-center
frequency is ν0Gap ¼ a=λGap ¼ 0:478 and the width Δν is indicated by the shaded area. c Three-dimensional rendering of a hyperuniform network structure,
edge length 6a and filling fraction ϕ= 0.28. The size of the structure used in the simulation is 18a × 18a × L with L≤ 18a, which is repeated periodically in (x,
y) direction to construct the slab geometry. d In the gap the transmittance decays exponentially and ln T collapses on a master curve when plotted in
reduced units L/LB. LB≤a denotes the Bragg length and it is found to be smallest near the gap-center frequency ν0Gap ¼ 0:478, see also Supplementary Fig. 1.
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in vacuum5. We obtain results for slabs of thickness L= 0.3a–18a
and average the simulations results over 6 (thick slabs) to 15 (thin
slabs) independent configurations of the network structure. We note
that the networks are structurally isotropic47 and therefore, all
incident polarization states on average lead to the same results.

To obtain the normalized photonic DOS we use the supercell
method3, implemented in the open-source code MIT Photonic
Bands (MPB)50, Fig. 1b. Due to computational limitations, we
have generated equivalent, but smaller seed patterns with periodic
boundary conditions applied. To this end, we are using a packing
algorithm developed by Skoge et al.51.

Fitting procedure. The transmittance spectrum Tðν0; LÞ depends
on a number of a priori unknown parameters. Extracting all these
parameters from a global fit to SC theory is not stable and prone
to overfitting. To overcome this problem, we first determine
parameters that do not scale with ν0, such that eventually, Tðν0; LÞ
predicted by SC theory, depends only on the one parameter (kl).
Once this is achieved, the predictions by SC theory and diffusion
theory can be compared without fitting bias.

We test the presence of three transport regimes: (1) evanescent
transport ln ½Tðν0; LÞ� � �L=LB in a PBG with a Bragg length LB
~ ℓ. (2) Diffusive transport with DðzÞ � const: and (3) SAL, as
described by the SC theory with (kl)≲ 1 and ξ≫ ℓ. We proceed as
follows. (1) We start by looking for the signature of an evanescent
decay in the gap. (2) Next, we consider frequency intervals far
below and above the gap, where the predictions for T(L) from
classical diffusion theory are sufficient to describe the data. This
is the case whenever L≫ ℓ and DðzÞ � const: From this fit
we extract the angle averaged reflection coefficient R. (3) Next we
identify the position(s) of the mobility edge(s) ν0c, where
klð Þ ¼ klð Þc � 1, by fitting the data with SC theory treating both
(kl) and and ℓ as adjustable parameters. From this fit we find the
anchor points ν0c where klð Þ ¼ 1. Together with k ¼ 2π=λ ¼
2πν0=a, this provides us with the proportionality between k ⋅ ℓ
and (kl). (4) Now, that we have fixed all other parameters, we will
attempt to describe the entire data set for Tðν0; LÞ by SC theory
with only one adjustable parameter ðklÞ½ν0�.

Density of states and tunneling through the gap. Our numerical
calculations of the DOS reveal a full bandgap for frequencies in the
interval ν0 2 ½0:47; 0:49�, Fig. 1b (see also Supplementary Meth-
ods). Our results for the gap-center position and the width of the
gap are in good agreement with an earlier study by Liew. et al.
using a different method but applied to a practically identical
system at ϕ= 0.28 volume filling fraction26, see also Supplemen-
tary Fig. 2. Indeed, for ν0 2 ½0:47; 0:49�, where the DOS is zero, we
find that T(L) decays exponentially with LB < a, Fig. 1d. The decay
length rises toward the band edges and is smallest around the
center frequency ν0Gap. This observation is consistent with tun-
neling of evanescent waves through the whole sample of thickness
L3,44. We find that the evanescent regime appears to extend over a
slightly broader range of frequencies compared to the bandgap.
We will address this point again at the end of this section.

Transmittance in the multiple scattering regime. Standard
diffusion theory describes transmission through samples whose

thickness L is much larger than the mean free path ℓ and thus
T ~ ℓ/L≪ 1. Since the size of our simulation box is limited to L ≤
18a, we also have to include data for slabs with thicknesses on the
order of a few ℓ, in particular far from the gap where the trans-
mittance T can be closer to one. To be able to describe the
transition from ballistic to diffusive transport as well as to SAL we
follow an approach developed by Durian and coworkers. Their
theory, which is based on the telegrapher equation, takes into
account ballistic transmission, lower order scattering as well as
diffusive multiple scattering of light. Their theory accurately
predicts TL→0= 1 for thin samples, while diffusion theory fails in
this limit. In the methods section we explain how to consistently
merge Durian’s approach52 with the SC theory of localization and
we obtain:

T ¼ z0 þ DB=D 0ð Þ
2z0 þ ~L=‘

1� e�L=‘
� �

�
~L=‘

2z0 þ ~L=‘
e�L=‘ þ η L=‘ð Þ

2z0 þ ~L=‘
þ e�L=‘;

ð1Þ
where ~L, D 0ð Þ and η depend on L; ‘ð Þ as well as the localization
parameter klð Þ. z0 denotes the extrapolation length in diffusion
theory. We note that merging Durian’s theory with SC theory is
unproblematic. The improvements of the former affect thin slabs
L ~ ℓ while the latter only affects thick slabs L > ξ≫ ℓ. In essence,
Eq. (1) provides a proper interpolation scheme between the two
limiting cases. In the absence of SAL, for klð Þ ! 1, we recover
Durian’s results for T L=‘; z0ð Þ with ~L � L, DB/D(0)= 1
and η L=‘ð Þ ¼ 0. Then, for L≫ ℓ, Eq. (1) reduces to the common
expression for diffuse transport T L � ‘; z0ð Þ ¼ 1þz0

2z0þL=‘.

When deriving Eq. (1) we did not distinguish between the
scattering and the transport mean free path and only use one ℓ for
the mean free path. By considering an extended version of the
model, taking into account the scattering anisotropy parameter g,
as described in ref. 52, we have verified that these simplifications
do not adversely influence the quality of our fit. Moreover, we
neglect specular reflections at the interface of the order of a few
percent at most.

In diffusion theory, the extrapolation length z0 is linked to the
angular averaged specular reflectivity R via z0 ¼ 2

3
1þR
1�R. We

determine R directly from a fit to the data using a least-squares
fitting procedure. Since the transmittance varies by several orders
of magnitude and we are interested in the behavior in different
regimes, we choose the natural logarithm of the transmittance as
the function to fit. For a given frequency we define:

S �
XN
i¼1

ln TFDTD Lið Þð Þ � ln T Lið Þð Þ½ �2; ð2Þ

as the sum of squares to be minimized. T Lið Þ is defined according
to Eq. (1). The index i runs over the N= 15 data points from
L/a= 2.7 to L/a= 18, see Table 1. We note that ℓ sets the optical
thickness in terms of the characteristic length a in our system:
L/a= L/ℓ × ℓ/a. We first fit Eq. (1) to the numerical data,
assuming the absence of localization or klð Þ ! 1. Our analysis
covers the entire frequency range considered, ν0 2 ½0:3; 0:6�
treating both R and ℓ as adjustable parameters. Figure 2a shows
the frequency dependence of S and the values of Rðν0Þ we obtain.
Far from the gap-center frequency ν0 � ν0Gap

��� ���≳ 0:1 we find small

S values signaling excellent agreement between diffusing theory
and data, as shown in Fig. 2b. The good fit suggests a classical
transport regime controlled by ballistic transmission, low order
scattering, which eventually evolves to become diffusive for L≫ ℓ.
In the same frequency range we find R= 0.66 ± 0.05 to be
approximately constant, corresponding to z0≃ 3.25 ± 0.5. We
repeat the fit keeping R= 0.66 fixed and the goodness of the fit is

Table 1 Values of Li/a used used in all fitting procedures.

i Li/a

1, 2, 3, 4, 5, 6, 7, 8, 9, 10,
11, 12, 13, 14, 15

2.7, 3.0, 3.6, 4.8, 6.0, 7.2, 8.4, 9.6, 10.8,
12.0, 13.2, 14.4., 15.6, 16.8, 18.0
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the same, Fig. 2a. For comparison, we have calculated the internal
reflection coefficient from an effective medium interface neff=
1.42 (for ϕ= 0.28) to vacuum and find a very similar value R ≃
0.73, which demonstrates the consistency of our fitting procedure
(for details see Supplementary Methods and Supplementary
Fig. 4). We note that around ν0 ¼ a=λGap � 0:45 the fit is very
poor and the fitted values of ℓ and R become meaningless.

Self-consistent theory of localization. To assess the breakdown
of wave diffusion near the band edge, we compare our numerical
data to the SC theory of localization. For slabs of finite thickness L
we can calculate D(z) for a given value of klð Þ40. To illustrate the
dependence of the diffusion coefficient on z, in Fig. 3 we plot the
D as a function of z/L for different values of L/ℓ and klð Þ. As
expected, for klð Þ greater than one the diffusion coefficient shows
a weak dependence on both the total size of the system and the
position. On the contrary, deep in the localization regime, D(z)
decays exponentially away from the boundaries. Exactly at the
localization transition for klð Þ ¼ 1, the diffusion coefficient is
strongly reduced in the center of the slab but the decay
remains nonexponential.

We integrate D(z) to obtain ~L ¼ R L
0 DB=DðzÞ dz and the

function η L=‘ð Þ. For klð Þ values larger than one, SC theory
gradually approaches the prediction by diffusion theory and the
quality of the fit becomes insensitive to the choice of klð Þ. As
shown in Fig. 4a, b the S values of both diffusion theory and SC
theory become comparable for ν0 < 0:4 and ν0 > 0:51, signaling a

diffusive transport regime. When approaching the gap from lower
(or higher) frequencies, the fit with SC theory, however, leads to
substantially smaller S values, indicating localization. From the
two-parameter fit we find a lower frequency mobility edge (kl)
= 1 at ν0c;l ¼ 0:412 (ℓc,l/a= 0.513) and a higher frequency
mobility edge at ν0c;h ¼ 0:506 (ℓc,h/a= 0.242), Fig. 4c, d. Using
these anchor values for the mobility edge, (kl) and ℓ are linked via
the relation ðklÞ ¼ ‘=‘c ´ ν

0=ν0c. With (kl)≡ 1 at the mobility
edge, we find k ⋅ ℓ= 1.33 for ν0c;l ¼ 0:412 and k ⋅ ℓ = 0.77 for
ν0c;h ¼ 0:506. We note that we use these two separate proportion-
ality constants (1.33, 0.77) for the comparison between theory
and numerical data in the higher and lower frequency branch. In
all cases, we perform a least-squares fit to ln T according to Eq.
(2). We have considered other tests, such as χ2, but these other
tests are often based on assumptions that are probably not met in
our case. It is for example well known that ln T does not
necessarily obey Gaussian statistics in the SAL regime30.

Next, we attempt to describe the data with SC theory over the
full range of frequencies ν0 using a single adjustable parameter
(kl), as a measure of the distance to the critical point at (kl)= 1.
We find excellent agreement between SC theory and the data over
the entire range ν0≠½0:45; 0:5�, i.e., outside a central frequency
interval in or near the full bandgap, Figs. 5 and 6. The
observation of such a single-parameter scaling is the key finding
of our work. In the regime where (kl)≲ 1.2 SC theory describes
the data substantially better than diffusion theory and we can
describe the data across the critical transition from light diffusion
to localization. In the low-frequency branch, between the mobility
edge ν0c;l ¼ 0:412 and the band edge ν0 ’ 0:47, the sample

0.30 0.35 0.40 0.45 0.50 0.55

5

10

15

20a

1 10

0.1

1.0

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1b

R = 0.66

R and adjustable

0.35 0.45 0.55

0.2

0.4

0.6
R

�′ < 0.383

�′ ∈ [0.383, 0.535]
�′ > 0.535

�′

L/

T
 (

L
/ )

S

Fig. 2 Comparison to diffusion theory. a Error of the least squares of the fit
of Eq. (1), in the absence of SAL ((kl) → ∞), to the data with R and ℓ as
adjustable parameters (triangles). In the frequency range marked with red
and blue full circles, we find R= 0.66 ± 0.05 or z0≃ 3.25 ± 0.5, both in the
higher and lower frequency branch (inset). Full circles: results from least-
squares fitting when setting R= 0.66 constant. b Far from the gap, for
ν0≠½0:383;0:535�, transport is diffusive and all data for T(L/ℓ) can be
collapsed on a master curve given by Eq. (1) (yellow line) with ~L ¼ L and
z0= 3.25(R= 0.66). Red (blue) full circles refer to the same data at
frequencies lower (higher) than ν0Gap shown in (a). Data for L < 2.7a, not
taken into account for the fitting procedure, are marked with gray symbols.

0 0.2 0.4 0.6 0.8 1
z/L

10–36

10–30

10–24

10–18

10–12

10–6

100

D
(z

)

0

0.1

0.2

0.3

0.4

0.5

0.6

D
(z

)

0.86

0.88

0.90

0.92

D
(z

)

L = 2
L = 20
L = 200

a

b

c

Fig. 3 Position dependence of the diffusion coefficient in the SAL regime.
D z=L
� �

for klð Þc ¼ 1, L/ℓ= 2 (black), L/ℓ = 20 (red) and L/ℓ= 200 (blue).
a kl= 2.6; b kl= 1; and c kℓ= 0.6.

NATURE COMMUNICATIONS | https://doi.org/10.1038/s41467-020-18571-w ARTICLE

NATURE COMMUNICATIONS |         (2020) 11:4867 | https://doi.org/10.1038/s41467-020-18571-w | www.nature.com/naturecommunications 5

www.nature.com/naturecommunications
www.nature.com/naturecommunications


remains localized over a large frequency interval, comparable or
larger in width than the bandgap, as shown in Fig. 5. In this
regime, the localization parameter drops from (kl)= 1 to about
(kl)= 0.85. In the high-frequency branch, the localized regime is
nearly degenerate and the sample rapidly enters the gap after
crossing the mobility edge from above for ν0 < ν0c;h. For ν

0 < 0:39
and ν0 > 0:52 the position dependence of D(z) is weak, for our
system sizes, and the predictions by SC theory and by diffusion
theory are indistinguishable.

Discussion
In summary, we could show that hyperuniform 3D silicon net-
works display different characteristic transport regimes for elec-
tromagnetic vector waves. Deep in the gap region, the
transmittance decays exponentially, indicating tunneling through
the entire sample. Outside the gap region, we observe a critical
transition from classical diffusion to wave localization controlled
by a single parameter (kl). We have shown that in this regime, our
numerical data can be described quantitatively by assuming a
position-dependent diffusion coefficient D(z) derived from the SC
theory of localization. Finding such an agreement is generally
understood as evidence for SAL of light. Moreover, our detailed
results about the transition to SAL in realistic digital repre-
sentations of dielectric networks can provide valuable guidance
for future experimental attempts to probe light localization.

Finally, we would like to add a remark concerning the break-
down of the description of wave transport by SC theory and the
opening of the gap. SC theory is a heuristic approach that pos-
tulates a position-dependent diffusion coefficient D(z) but does
not provide a microscopic explanation (which, under certain
conditions has been added later38). The concept of applying a
diffusion equation to describe transport over certain distances ξ
> ℓ breaks down as ξ/ℓ → 1. It it thus unclear whether evanescent
decay, Fig. 1d, and the correspondingly poor fit with SC theory,
within Δν0 ’ 0:01� 0:02 next to the band edge, is due to the
breakdown of SC theory or other emerging transport phenomena
in the vicinity of the gap, as suggested earlier in ref. 30. Moreover,
we find it interesting to speculate whether the SC theory could be
generalized to provide a unified theory for wave transport in

amorphous photonic materials encompassing the transition
between diffusive, localized, and bandgap regimes.

Methods
FDTD simulations. FDTD simulations were performed using the MEEP software49

and were run on a computer cluster. Throughout this work, the Poynting vector is
recorded on a monitor situated behind the structure. Transmittance is defined as
the ratio of the transmitted power to the incoming one and is calculated by dividing
the transmitted power (integral of the Poynting vector over the monitor) by the
power transmitted in a reference run (empty simulation box). The network
structures were generated using a custom-made code (MATLAB and Statistics
Toolbox, The MathWorks, Inc., Massachusetts, United States) based on the full
10,000 particle seed pattern taken from48. Equivalently, the sicipy.spatial open-
source library of Python can be used for this purpose. Using a clean cut we obtain
slabs of different thickness L ≤ 18a, which were then imported to MEEP (see
Table 1 for the exact values of thickness). All units were set to μm and the sphere
diameter was set to a= 5/3 μm. We apply periodic boundary conditions in x-and
y-directions. Since we do not know the precise size of the simulation box used in
ref. 48, the periodic boundary conditions in MEEP will not exactly match the
original periodic boundary conditions employed when generating the pattern.
From our own band structure calculations we find that this can give rise to a few
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defect states in the gap. We do not expect these defect states to contribute to
transport in the diffuse or SAL regime, where the DOS is high, but they can
increase the transmittance in the gap for L ≫ LB due to tunneling between defect
states. We believe this is the main reason why TðLÞ> expð�L=LBÞ for L≫ LB in the
gap regime, see e.g., Fig. 6d. Since the gap regime is not in the focus of our study,
we have not explored this in more detail but plan to address this in future work,
using new seed pattern properly matched to the periodic boundary conditions of
the MEEP-simulation box.

The network was illuminated with a broadband pulse of linearly polarized light
with electric field vector parallel to one of the sides of the simulation box. The pulse
bandwidth was sufficient to cover vacuum wavelengths between 1 and 7 μm
corresponding to reduced frequencies ν0 2 ½0:24; 1:67�. Perfectly matched layers
(PML) were fitted at both ends of the simulation box and periodic boundary
conditions were applied perpendicular to the wave propagation direction. The
PML’s absorb all transmitted and reflected waves (regardless of incidence
direction) and prevent them from re-entering the simulation box. The PML
thickness was 7 microns, which ensured that all wavelengths shorter than this value
were suppressed. The spatial resolution was equal to 20 pixels per μm. Convergence
tests were performed to check the robustness of the simulation. It was verified that
increasing the spatial resolution by a factor of two did not considerably influence
the transmittance curves. Also the simulation time was selected in a way to yield
robust results. By placing an additional monitor between the source and the
network, we checked for flux conservation over the entire frequency interval of
interest.

Numerical implementation of the SC theory of localization. In the self-
consistent theory of localization, the standard diffusion equation is replaced by an
equation where the diffusion coefficient is nonlocal both in the space and time
domain. The renormalization of the diffusion coefficient accounts for the different
return probability when interference effects are considered in the multiple scat-
tering regime38. We are considering a slab geometry and continuous wave illu-
mination at a given carrier wave frequency. The simplified geometry, invariant in
the plane parallel to the slab, leads to a set of SC equations for the diffusion
constant dependence and the diffusion equation Green’s function g z; z0ð Þ in the
direction z perpendicular to the slab surfaces (lying between z= 0 and z= L). Here
we work in reduced units, where all lengths are scaled by the mean free path ℓ. The
diffusion coefficient D zð Þ is normalized by the Botzmann diffusion coefficient DB.
Taking the Fourier transform in the x, y plane, parallel to the slab boundaries, we

reach at the diffusion equation:

� ∂

∂z
D zð Þ ∂

∂z
g q; z; z0ð Þ

� �
þ q2D zð Þg q; z; z0ð Þ ¼ δ z � z0ð Þ; ð3aÞ

g q; z ¼ 0; z0ð Þ � z0D z ¼ 0ð Þ ∂
∂z

g q; z; z0ð Þ
����
z¼0

¼ 0; ð3bÞ

g q; z ¼ L; z0ð Þ þ z0D z ¼ Lð Þ ∂
∂z

g q; z; z0ð Þ
����
z¼L

¼ 0: ð3cÞ

This result together with the self-consistent equation for the diffusion
coefficient

D zð Þ ¼ 1þ 3

klð Þ2
Z q2max

0
d q2
� �

g q; z; zð Þ
" #�1

; ð4Þ

determines the transport properties of our system for all values of the parameters.
In the above equation the cut off is given by qmax ¼ 1=3ðklÞ2c . The latter depends on
the chosen value (kl)c with (kl)= (kl)c at the mobility edge.

We solve the set of self-consistent equations by recursively solving Eq. (3) in a
first step for all positions of the source z0 and transversal wavenumbers q. The
solution of the Green function is then plugged into Eq. (4) to correct for the z-
dependent diffusion coefficient D zð Þ which is inserted back to Eq. (3) until
convergence is reached. We choose a discretization scheme where all the
considered positions z and wavenumbers squared q2 are evenly spaced. Depending
on the values of the parameters (kl), (kl)c, and total length L, we need to take a step
Δz≡ h ranging from 0.02 to 0.2 and between 300 and 600 steps in q2 to achieve a
relative precision in D zð Þ of the order or 10−4 in 5–50 recursion steps.

Taking the second order finite differences approximation for the derivatives in
Eq. (3) leads to a tridiagonal system of equations which has to be solved for each
value of the wavenumber q and position of the source. Obviously, changing the
position of the source amounts to changing the independent term of the system of
equations and hence all equations for a given value of q can be solved at once
through the inverse of the corresponding tridiagonal matrix. We choose the Lapack
function DGTSV to get the inverse since it is simple to use and universally
accessible while efficient enough for our purposes53. Specifically, if we take a
discretization zi ¼ h i� 1ð Þ, for i= 1,⋯, n. And naming Di � D z ¼ zið Þ,
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D0
i � dD z¼zið Þ

dz , the diagonal terms of the system of equations read

diag1 ¼ 1þ h
z0D1

; ð5aÞ

diagi¼2; ���; n�1 ¼ Di 2þ h2q2
� �

; ð5bÞ

diagn ¼ 1þ h
z0Dn

; ð5cÞ

the subdiagonal terms are

subdiagi¼1; ���; n�2 ¼
D0
iþ1h

2
� Diþ1; ð6aÞ

subdiagn�1 ¼ �1: ð6bÞ
Analogously, the superdiagonal terms are

superdiag1 ¼ �1; ð7aÞ

superdiagi¼2; ���; n�1 ¼ �D0
ih
2

� Di: ð7bÞ

Since the sources are located in the interior of the slab, the points at which the
source is located are z0i¼2; ���; n�1 ¼ h i� 1ð Þ. The independent term vector Ti for the
source at zi is Tið Þj ¼ hδi;j .

Once the numerical solution is obtained for all the source positions, the value of
g zi; zið Þ is available for i= 2, ⋯, n− 1. The g z1; z1ð Þ and g zn; znð Þ are obtained by
second order accuracy extrapolation of the solutions g zi; zið Þ to the boundary. The
full solution is then used to calculate the integral in Eq. (4) by 3/8 Simpson’s rule.
The updated value of the diffusion coefficient D zð Þ is used in the next step of
recursion. The algorithm stops when the logarithm of an update of D zð Þ differs by
<10−4 from the previous value at all the points in the discretization. The seed D zð Þ
used to start the recursions is set to 1. In all cases (kl)c= 1.

Transmission through a slab. In the following, we describe how to consistently
merge SC theory with the theory by Lemieux et al.52. The contribution that is
affected by SC theory is the total diffusive transmittance Td (see also54). We
compute it considering that the sources of diffuse intensity are continuously dis-
tributed across the slab with an intensity proportional to the ballistic intensity
Ib ¼ exp �zð Þ. To simplify the notation, in this section, we work in reduced units
where all lengths are normalized to ℓ and D(z) is normalized to DB. The diffusive
transmittance, neglecting boundary reflectivity of a few percent, is hence

Td ¼
Z L

0
TSCT zð Þe�zdz; ð8Þ

where TSCT zð Þ is the diffuse transmittance for a source at z ¼ z0 (see Supple-
mentary Material, Eqs. (S5)–(S17), for details), explicitly we have

Td ¼
Z L

0

z0 þ
R z
0

1
D xð Þ dx

2z0 þ ~L
e�zdz; ð9Þ

with

~L �
Z L

0

1
D xð Þ dx: ð10Þ

The first term (z0 in the numerator) can be explicitly integrated:Z L

0

z0
2z0 þ ~L

e�zdz ¼ z0
2z0 þ ~L

1� e�L
� �

: ð11Þ

The second term in Eq. (9) is more involved since D zð Þ is not known a priori,
the integral to be solved is

I � 1

2z0 þ ~L

Z L

0
e�z

Z z

0

1
D xð Þ dxdz; ð12Þ

that can be formally integrated by parts using u zð Þ � R z
0

1
D xð Þ dx and dv zð Þ � e�zdz.

Hence

I ¼ 1

2z0 þ ~L
�e�L=‘~Lþ

Z L

0
dz

e�z

D zð Þ
� �

: ð13Þ

The second term in the rhs of Eq. (13) can again be formally integrated by parts
using u zð Þ � 1=DðzÞ, dv zð Þ � e�zdz to giveZ L

0
dz

e�z

D zð Þ ¼
1

D 0ð Þ 1� e�L
� �þ Z L

0

e�z

D zð Þ
dln D zð Þ½ �

dz
dz: ð14Þ

Collecting results, we have

Td ¼ z0 þ 1=D 0ð Þ
2z0 þ ~L

1� e�L
� �� ~L

2z0 þ ~L
e�L þ η Lð Þ

2z0 þ ~L
; ð15Þ

where

η Lð Þ �
Z L

0

LN zð Þ
D zð Þ e�zdz ; and LN zð Þ � d ln DðzÞð Þ½ �

dz
: ð16Þ

Finally, adding the ballistic transmittance e−L, we obtain Eq. (1) for the total
transmittance:

T Lð Þ ¼ z0 þ 1=D 0ð Þ
2z0 þ ~L

1� e�L
� �� ~L

2z0 þ ~L
e�L þ η Lð Þ

2z0 þ ~L
þ e�L: ð17Þ

It is worth noticing at this point that in the limit of standard diffusion theory,
D zð Þ ¼ 1 (i.e. the diffusion coefficients coincides with the standard DB= cℓ/3) and
η Lð Þ ¼ 0, since LN zð Þ ¼ 0).

Data availability
The data of T(L/a) shown in the paper, either obtained from FDTD calculations or from
the self-consistent theory of localization (SC theory) are provided in the online repository
(https://doi.org/10.5281/zenodo.3968424). These and all other data sets used in the study
can be generated from the codes uploaded to the repository, or can be obtained from us
upon reasonable request.

Code availability
The codes used to produce the results of this study are included in the repository https://
doi.org/10.5281/zenodo.3968424 and described in the main text or the supplementary
material. With respect to third party codes, such as the open-source codes MPB and
MEEP, we refer to the original publications, see refs. 49–51. Links to the original third
party sources are provided in the README.txt files in the repository.
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