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Abstract
Species distribution models (SDMs) are commonly used to model the spatial structure 
of species in the marine environment, however, most fail to account for detectability 
of the target species. This can result in underestimates of occupancy, where nonde-
tection is conflated with absence. The site occupancy model (SOM) overcomes this 
failure by treating occupancy as a latent variable of the model and incorporates a 
detection submodel to account for variability in detection rates. These have rarely 
been applied in the context of marine fish and never for the multiseason dynamic oc-
cupancy model (DOM). In this study, a DOM is developed for a designated species of 
concern, cusk (Brosme brosme), over a four-season period. Making novel use of a high-
resolution 3-dimensional hydrodynamic model, detectability of cusk is considered as 
a function of current speed and algae cover. Algal cover on the seabed is measured 
from video surveys to divide the study area into two distinct regions: those with can-
opy forming species of algae and those without (henceforth bottom types). Modeled 
estimates of the proportion of sites occupied in each season are 0.88, 0.45, 0.74, and 
0.83. These are significantly greater than the proportion of occupied sites measured 
from underwater video observations which are 0.57, 0.28, 0.43, and 0.57. Individual 
fish are detected more frequently with increasing current speed in areas lacking can-
opy and less frequently with increasing current speed in areas with canopy. The re-
sults indicate that, where possible, SDM studies for all marine species should take 
account of detectability to avoid underestimating the proportion of sites occupied at 
a given study area. Sampling closed areas or areas of conservation often requires the 
use of nonphysical, low impact sampling methods like camera surveys. These meth-
ods inherently result in detection probabilities less than one, an issue compounded by 
time-varying features of the environment that are rarely accounted for marine stud-
ies. This work highlights the use of modeled hydrodynamics as a tool to correct some 
of this imbalance.
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1  | INTRODUC TION

The use of species distribution modeling as a tool for scientists 
and environmental managers has seen a substantial increase in the 
last three decades, driven by a growing demand for knowledge of 
species’ ranges and facilitated by increasingly powerful computing 
resources (Barbosa & Schneck, 2015). Species distribution models 
(SDMs) mathematically represent the relationship between species 
records and features of the environment, often with the intention 
of predicting suitable ranges for the target species (Franklin, 2010). 
Depending on the aims of an investigation and the type of data col-
lected, several approaches are available to researchers. For many 
applications where surveys have been planned in advance of statis-
tical analysis, standard methods such as generalized linear models, 
generalized additive models, and random forest are frequently used 
to model occurrence and abundance data (Elith et al., 2011).

However, given the time and cost of performing a systematic 
survey, especially in the marine environment, researchers often 
use archived datasets to perform modeling investigations (Araújo & 
Guisan, 2006). In many cases, these datasets only contain records 
on species presence, resulting in a situation where no absence data 
are available (Elith et al., 2011). For this reason, presence- only mod-
els such as MaxEnt (Phillips, Anderson, & Schapire, 2006) have been 
developed that do not require absence data, but rather generate a 
large number of pseudo- absences from the study area (Phillips et al., 
2006).

While each approach outlined above has advantages, both fail 
to address the issue of detectability (Monk, 2014). Both approaches 
assume that detection probability is invariant, that is, that the target 
species is perfectly observed whenever it is present (Yackulic et al., 
2013). This is often not the case when studying cryptic species and 
is an important consideration in the marine environment when sam-
pling methods often do not result in direct observation of the study 
environment, for example, when using trawl or camera surveys 
(Monk, 2014). In a review of 108 articles that used MaxEnt, Yackulic 
et al. (2013) found that only 14% mentioned detection probability. 
This failure to address detectability introduces error to estimates of 
occurrence for the species being modeled and can result in errone-
ous reporting of covariate effects (Guillera- Arroita, Lahoz- Monfort, 
MacKenzie, Wintle, & McCarthy, 2014).

Site occupancy modeling (SOM) allows occupancy and detect-
ability to be analyzed hierarchically as two separate processes, ac-
counting for the problem of imperfect detection (MacKenzie et al., 
2002). Monk (2014) provides a good overview of the need to adopt 
this class of model in the marine environment; while available for a 
similar period as MaxEnt, the SOM has received much less attention 
(e.g., Coggins, Bacheler, & Gwinn, 2014) in marine ecology investi-
gations. The multiseason occupancy model (or dynamic occupancy 
model for its Bayesian counterpart (DOM)) allows occupancy, de-
tection, local colonization, and extinction to be accounted for across 
several sampling seasons (MacKenzie, Nichols, Hines, Knutson, & 
Franklin, 2003). Seasons refer to primary sampling periods within 
which the population is assumed closed but between which the 

population can be subject to local extinction and colonization. The 
model assumes that at least one site has been visited more than once 
within a sampling period and that the true occupancy state is im-
perfectly observed, that is, it is a latent variable of the model. As 
such, the model can be thought of as a nonstandard GLMM with 
a binary random effect equal to 1 where the site is occupied by 
the target species and 0 where it is not (Kéry, 2010). Each of the 
four probabilities within the DOM (initial occupancy, colonization, 
extinction, and detection) can be modeled as a function of a set of 
covariate data or set as constant across sites within a given sample 
period (MacKenzie et al., 2003; Royle & Kéry, 2007). Where covari-
ates are used to model probabilities, these must represent variability 
in the environment along temporal scales relevant to the phenom-
enon under study. Extinction and colonization effects, for example, 
require seasonally varying covariates. By contrast, detection effects 
require covariates that vary over much shorter temporal scales, al-
lowing differences in detectability to be discerned within relatively 
short sampling periods. One possible reason why these models have 
not received as much attention in the marine environment as they 
have for terrestrial studies is the prohibitive cost of marine sampling. 
In order to satisfy the assumptions of the dynamic occupancy model, 
repeat visits are required within each of a number of seasons to col-
lect both response and environmental data.

Covariates used for modeling that have been collected in situ at 
the time of making species observations are often assumed to better 
describe observed patterns in species distributions (Franklin, 2010). 
Recent research has shown, however, that this is not always the case 
and that modeling studies can benefit from a combination of in situ 
sampling and remote sensing data (Niedballa, Sollmann, Mohamed, 
Bender, & Wilting, 2015). Moreover, Newton- Cross, White, and 
Harris (2007) demonstrated that remotely sensed or computer gen-
erated data can be more effective than data collected in situ for ac-
curately predicting the occurrence of some terrestrial based species. 
Again, this is important in the marine environment where sampling 
is often expensive and time- consuming compared to terrestrial 
studies. As such, marine researchers often have to rely on remote 
sensing (Brown, Sameoto, & Smith, 2012) and modeled data (Rattray, 
Ierodiaconou, & Womersley, 2015) to supplement in situ sampling. 
These latter datasets often come in the form of hydrodynamic mod-
els that mathematically represent tidal and wave forcing of the ma-
rine environment (Gunn & Stock- Williams, 2013). While widely used 
in engineering and physical oceanography (e.g., Chen et al., 2011; 
McMillan & Lickley, 2008), their use in marine ecological investiga-
tions has been limited. This is likely due to the expense, in terms of 
time and computational power, of setting up a hydrodynamic model 
that accurately reflects conditions at spatial and temporal scales rel-
evant to ecological processes and organism behavior.

This investigation aims, for the first time, to create a dynamic 
occupancy model to demonstrate the effectiveness of such an ap-
proach for a temperate marine fish species in a closed fishing area. 
The study generates unbiased estimates of occupancy and com-
pares these to occupancy estimates obtained by survey methods 
alone. Inputs to the dynamic occupancy model comprise observed, 
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derived, and simulated data. Observed data include observations 
of the target species, algae cover, and geomorphological complex-
ity from video surveys; derived data include depth measured using 
multibeam echosounder (MBES) data, and terrain attributes derived 
from the MBES depth data. Additionally, the study makes novel use 
of current velocities simulated using a high- resolution hydrodynamic 
model to demonstrate the utility of including these data in fisheries 
monitoring investigations.

2  | METHODS

2.1 | Analysis overview

This study takes a multifaceted approach to producing a dynamic 
occupancy model (DOM) for a species of temperate marine fish at a 
remote rocky outcrop in the central Gulf of Maine. The model was 
specified in a Bayesian framework to account for a small amount of 
separation in the detection data and to allow the use of a finite sam-
ple estimator that generates more accurate estimates of occupancy 
for a small sample size (Royle & Kéry, 2007). The analysis used data 
observed or derived from two primary datasets: a series of nonin-
vasive underwater video surveys collected over four sampling sea-
sons and a MBES survey conducted for the Gulf of Maine mapping 
initiative (SAIC, 2005). Observations of the response, cusk, were 
made using the video footage. During each video survey, detec-
tions of cusk were recorded along with the time of the observation. 

Simultaneous observations of algae cover and morphological com-
plexity were made from the video footage, to be later used as ex-
planatory variables. Separately, the digital elevation model extracted 
from the MBES data was used for three purposes: (a) to derive ter-
rain attributes to assess morphological complexity over the study 
site; (b) to create a surface of algae cover over the study site based 
on empirical extinction depths; and (c) as an input to a standalone 
hydrodynamic model. The hydrodynamic model was used to esti-
mate bottom current conditions at the study site, from which two 
outputs were generated (a) point estimates of time- varying bottom 
current speed at each of the video locations surveyed for cusk and 
(b) time- varying surfaces of current speed for the entire study area. 
Once all primary data had been processed, the DOM was created. 
Model coefficients for the significant terms in the detection sub-
model of the DOM (observed algae cover and bottom current point 
estimates) were obtained and used to generate the final outputs. 
This was achieved by predicting the model coefficients over the 
algae cover surface and bottom current surfaces created above, cre-
ating spatio- temporally varying predictions of detection probability 
for the study area. Each step of the analysis is described in full in the 
following sections (Figure 1).

2.2 | Candidate species and area

The candidate species for this investigation is cusk (Brosme brosme, 
Lotidae); a cryptic, bottom dwelling species found in the eastern and 
western Atlantic Ocean and designated a species of concern by the 

F IGURE  1 Flow diagram for analyses described in the methods. Solid lines represent the flow of information to create the dynamic 
occupancy model, and dashed lines represent the flow of information for producing the output probability surfaces in Figure 6
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National Oceanic and Atmospheric Administration (NOAA) National 
Marine Fisheries Service (NOAA 2009). In the western Atlantic, cusk 
are found from Nova Scotia in Canada to New Jersey in the USA and 
typically stay in deeper waters (>100 m) in these areas. Within the 
Gulf of Maine, however, they are typically found in shallower water 
owing to the relatively shallow depths of the internal Gulf (Bigelow & 
Schroeder, 1953). While relatively little is known about their specific 
life history and ecology (Davies & Jonsen, 2011), it has been noted 
that cusk prefer structured habitat and use kelp forests, boulder 
piles, and rock crevices as refugia (Auster & Lindholm, 2005; Hare 
et al., 2012). In addition, they are considered to be weak swimmers 
(Bigelow & Schroeder, 1953), so make an ideal species for study on 
how their behavior is affected by variability in movements of the 
water column. The species also has a small home range (Dultz, 2013), 
making it suited to the assumptions of the dynamic occupancy model.

Data for the investigation were collected at Cashes Ledge in the 
central Gulf of Maine, approximately 170 km northeast of Boston 
(Figure 2a). The Ledge has been closed to bottom tending fish-
ing gears since 2002 (Sherwood & Grabowski, 2016) and supports 
large resident populations of several commercially important fish 
species (Grabowski, McGonigle, & Brown, 2010). The site displays 
a tripartite zonation of macroalgae around the summit with each of 
the three zones reaching record depths for boreal- subarctic waters: 
leathery macrophytes to 40 m, foliose red algae to 50 m, and crus-
tose algae to 63 m (Vadas & Steneck, 1988). The Ledge comprises 
morphologically complex granite shoaling at 10 m water depth, with 
sand and gravel deposits appearing around 60 m and silt dominated 
habitats below 80 m. To the east and west, the site is flanked by rel-
atively deep basins (<220 m) dominated by sands, fine silt, and clay 
(Uchupi & Bolmer, 2008).

2.3 | Data collection and covariate generation

Underwater video surveys were conducted at 14 sites on Cashes 
Ledge by the Gulf of Maine Research Institute using a drop camera 
in summer 2006 and spring, summer, and autumn 2007. Sites are de-
fined here as compact geographical areas wherein samples are less 
than 30 m apart and features of the abiotic environment are homog-
enous. Sampling was stratified by depth to include two shallow sites 
(<20 m), six intermediate sites (20–40 m), and six deep sites (>40 m). 
During each sampling season, a maximum of three replicate surveys 
were conducted at each site, with an average of two. Camera units 
were deployed and left in situ for up to 1.5 hr during each survey, 
recording the time in and position of the camera. The camera was 
mounted on the sampling equipment such that the field of view was 
parallel to the seabed; no directional controls were in place, so the 
azimuthal direction varied between samples. For full camera set up 
see Grabowski et al. (2010). Any samples where the camera equip-
ment landed with the camera facing into the water column and 
therefore unable to view the seabed were discarded and not used 
in any further analyses. After checking each sample for positional 
accuracy, videos were examined noting the time on the video any 
cusk were observed. For videos where cusk were present, the video 

time was combined with the survey start time to obtain the exact 
time of the observation. Where cusk were absent in a video, a time 
was randomly sampled from the length of the video to obtain a time 
for the null observation.

In addition to the observations of cusk, the videos were used 
to qualitatively assess fine- scale morphological complexity (high, 
moderate, low) and algae density. Algae density was used to classify 
the study area into areas of two different bottom types according 
to algae cover, henceforth bottom type: areas with canopy forming 
species and areas with no canopy forming species. Sampling ef-
fort was defined simply as the length of bottom time in each video. 
Depth for each observation was obtained from 5 m resolution MBES 
data collected for the Gulf of Maine Mapping Initiative (SAIC 2005). 
Morphological complexity was derived from the MBES data using 
the relative deviation from the mean value (RDMV) as recommended 
by Lecours, Devillers, Simms, Lucieer, and Brown (2017) in a 3 × 3 
cell moving window. A breakdown of the mean, minimum, and maxi-
mum values for each of the depth strata sampled is in Table 1.

F IGURE  2  (a) Location of 14 sites sampled for cusk at 
Cashes Ledge. Gray triangles are from the hydrodynamic model 
computational mesh, the full domain of which is in (b) along the 
location of Cashes Ledge in the Gulf of Maine. CB is Cashes Basin, 
AB is Ammen Basin
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2.4 | Hydrodynamic model

Hydrodynamics were assessed using a coupled wave- current model 
produced using MIKE by DHI (Danish Hydraulic Institute, 2014). 
The current model solves the three- dimensional incompressible 
Reynolds averaged Navier- Stokes equations, while the wave model 
solves a fully spectral wind- swell formulation. The models are cou-
pled to include wave- current interactions and are solved using a 
finite volume method over a flexible mesh that allows higher resolu-
tion in areas of interest (Danish Hydraulic Institute, 2014).

The domain for the model (Figure 2b) incorporated the Gulf of 
Maine from Tor Bay to Rhode Island and extends seaward off the 
continental shelf to allow the Gulf to respond freely to tidal forcing 
(McMillan & Lickley, 2008). Forcing was supplied to the model as 
spatially and temporally varying surface elevation from the DTU10 
0.125° global tidal model (Cheng & Andersen, 2010). Calibration of 
the model was achieved by adjusting the value of bed resistance 
over a series of 13- month simulations (one- month warm- up, 12- 
month usable data). After each calibration simulation, harmonic 
analysis was conducted for 67 sites within the Gulf of Maine for 
comparison against empirical data from Moody et al. (1984). Where 
disagreement between known and modeled data was unacceptably 
large, values of bed resistance were iteratively adjusted to fine- tune 
the harmonics.

Once the model harmonics were calibrated to maximally cor-
respond to empirical data, the computational mesh was refined to 
increase resolution at Cashes Ledge. Here, the maximum horizontal 

resolution was 135 m with an average horizontal resolution of 220 m. 
In addition to refining the model mesh, atmospheric forcing was in-
troduced to the model using the National Centres for Environmental 
Prediction (NCEP) Climate Forecast System Reanalysis (CSFR) 
6- hourly, 0.5° global weather model (Saha et al., 2010, 2011). Model 
validation was subsequently conducted on the refined mesh model 
by hindcasting periods of time not included in the calibration mod-
els. Validation included the assessment of model outputs against 
measured wind, wave, and current data. The model was considered 
validated when outputs were minimally different to measured data. 
All model runs were performed with a time step of 20 min to allow 
validation against measured data.

Full details of the model setup, calibration, and validation can be 
found in the Supporting Information Appendix S1. Once the model 
had been validated, current speeds were extracted from the water- 
seabed interface layer to capture current variations on the bottom. 
Times for the observations of cusk were then matched to the tem-
porally closest value of current speed. Visualization of temporal vari-
ability in current magnitude and direction was achieved using a tidal 
ellipse created using MATLAB (Xu, 2002). The ellipse was derived for 
a point in open water 100 m from the summit in order to capture the 
movement of water without influence from local topography.

2.5 | Dynamic occupancy model

The model was specified using notation from Royle and Kéry 
(2007) where ψt is the probability of initial occupancy at time 
period t, ϕt is the probability that a site remains occupied be-
tween t and t + 1, γt is the probability that a site is colonized 
between t and t + 1, and p is the probability of detection. During 
data exploration boxplots revealed a high degree of collinearity 
between RDMV and fine- scale complexity observed in the video 
data. Fine- scale complexity was excluded from further analyses; 
it is a categorical variable so including it would require estima-
tion of more model parameters. Covariates tested for ψt were 
depth, fine- scale morphological complexity, RDMV, maximum 
current speed throughout the sampling season (CurMax) and 
CurMax2. Depth, fine- scale complexity, and RDMV as several 
studies have shown the importance of depth and seabed rough-
ness for cusk habitat selection (Davies & Jonsen, 2011; Hare 
et al., 2012; Knutsen et al., 2009); CurMax and CurMax2 to test 
for any limiting effect of hydrodynamic forcing on cusk habitat 
selection. Covariate effects were not included for ϕt or γt and 
were therefore assumed to be the same for all sites within each 
sampling period (MacKenzie et al., 2003; Royle & Kéry, 2007). 
Covariates included for p in the detection submodel were cur-
rent speed, sampling effort, and bottom type. Current speed 
as cusk are weak swimmers whose movement is likely to be af-
fected by movements of the water column; sampling effort as 
the longer the camera is in the water, the more likely it is that a 
fish will be observed in any given sample; bottom type as canopy 
forming species are likely to obscure vision and therefore affect 
detectability of cusk.

TABLE  1 Mean, maximum, and minimum for each of the 
covariates falling within the depth strata sampled

Covariate Stratum Min Mean Max Number

Depth Shallow −23 −17 −11 —

Medium −43 −33 −25 —

Deep −57 −49 −39 —

Current 
speed

Shallow 0.05 0.11 0.17 —

Medium 0.03 0.09 0.19 —

Deep 0.01 0.09 0.2 —

CurMax Shallow 0.21 0.22 0.24 —

Medium 0.16 0.19 0.23 —

Deep 0.16 0.19 0.22 —

RDMV Shallow 0.14 0.56 1.39 —

Medium 0.06 0.31 0.36 —

Deep 0.08 0.25 0.67 —

Algae 
cover: 
none

Shallow — — — 0

Medium — — — 10

Deep — — — 45

Algae 
cover: 
canopy

Shallow — — — 21

Medium — — — 36

Deep — — — 0

Note. Values for algae cover are reported as counts, as these are categor-
ical variables. “—” indicates no relevant data available.
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Covariate effects for each submodel were transformed using a 
logit link function, and all continuous covariates were standardized 
before analysis. In order to simplify model specification two models 
were assessed, one without (A) and one with (B) covariates for ψ, 
both of which included covariates for p.

Specification for ψ in model B:

where βi are the regression coefficients, RDMV is the relative devia-
tion from the mean value, and current max is the maximum current 
speed at the site in any of the sampling seasons.

Specification for p in models A and B:

where current is the current speed at the time of sampling for 
cusk, none is the bottom type with no canopy forming algae, and 
Current|none is the interaction between current speed and the bot-
tom type with no canopy forming algae.

2.6 | Model validation and outputs

Goodness of fit (GOF) for each model was assessed using Bayesian 
p- values; for each draw of the MCMC algorithm, new data were 
simulated given the set of parameters estimated by the model, and 
Pearson residuals were calculated for each observed and simulated 
data point. The Bayesian p- value is the proportion of times the 
simulated residual is greater than the observed residual, with values 
closer to 0.5 indicating better fit (Kéry, 2010).

For the k covariates in each model, importance was tested 
using binary inclusion variables wk ~ Bernoulli(0.5). Averaging over 
the posterior distribution of wk gives the probability that term k 
belongs in the model, with values closer to 1 indicating a higher 
inclusion probability. The inclusion variable for interaction terms 
was defined as the product of itself, and the component inclusion 
variables as recommended by Kruschke (2014) ensuring the inter-
action was only assessed when the lower order terms were in-
cluded. Covariates and interactions were kept in the model when 
their inclusion variable had a posterior mean greater than 0.5 
(Coggins et al., 2014).

All logit scale coefficients were given weakly informative t- 
distribution priors (μ = 0, σ = 1.566, v = 7.763) as recommended 
by (Dorazio, Gotelli, & Ellison, 2011), while all nonvarying proba-
bilities (ϕ, γ) were given uniform priors from 0 to 1. Sensitivity of 
the posterior distribution of parameter estimates was assessed 
following Dorazio et al. (2011) using three prior distributions 
recommended for logistic regression; Jeffreys prior (Firth, 1993), 
t- distribution with μ = 0, σ = 2.5, v = 7; those of Gelman, Jakulin, 
Pittau, and Su (2008), t- distribution with μ = 0, σ = 2.5, v = 1; and 
those of Dorazio et al. (2011), as detailed above. Identifiability 
of parameter estimates was assessed by plotting and calculating 
the amount of overlap between the prior and posterior distri-
butions. These were considered identifiable if the overlap was 
below 35% (Garrett & Zeger, 2000; Gimenez, Morgan, & Brooks, 

2009). The MCMC algorithm was set up with 5 chains, each sam-
pling 50,000 draws. The first 10,000 draws were discarded as 
a burn- in period, and every tenth sample was stored for anal-
ysis. Chains were assessed visually for mixing and autocorrela-
tion, and convergence was assessed using the Gelman- Ruben 
diagnostic (Gelman & Rubin, 1992) with values less than 1.1 
considered converged. Occupancy was determined using a finite 
sample estimator that is recommended for a small number of 
nonrandomly selected sites (Royle & Kéry, 2007). This estimator 
allows a distinction to be made between estimates derived for 
parameters of the population and those derived for sites in the 
actual sample. The finite sample estimator reduces the variance 
of the point estimates generated for the sampled sites and is an 
additional benefit of fitting the model in a Bayesian framework 
(Royle & Kéry, 2007).

Continuous surfaces of modeled current speed were generated 
from the validated hydrodynamic model to visualize spatio- temporal 
variability of current speed along a tidal cycle at Cashes Ledge. 
Predictions of bottom type were made based on the extinction depths 
of various algae previously reported at the Ledge (Vadas & Steneck, 
1988). Surfaces of detection probability were then generated for the 
entire Ledge for the tidal cycle by predicting the occupancy model 
coefficients over the current speed and bottom type surfaces.

All statistical analyses and predictive mapping were carried out 
in the R environment (R Core Team 2015), and Bayesian inference 
was conducted in JAGS (Plummer, 2009).

3  | RESULTS

3.1 | Cusk observations and data exploration

Of 112 replicate surveys analyzed, 39 contained cusk and 73 did not. 
These correspond to 21 shallow samples, 46 intermediate samples, 
and 45 deep samples representing average depths of 17 m, 33 m, 
and 49 m, respectively. Analysis showed 57 video surveys were con-
ducted in the canopy forming region and 55 in the noncanopy form-
ing region.

Harmonic analysis of the hydrodynamic model reveals accu-
racy of 3.8 cm mean absolute deviation in amplitude and 4.6° in 
Greenwich phase lag for the M2 tidal constituent. Bottom current 
speeds at Cashes Ledge range from 0.01 ms−1 to 0.31 ms−1 through-
out the four sampling periods, with a maximum of 0.21 ms−1 while 
the camera equipment was deployed. The tidal ellipse and current 
rose show that maximum flow occurs in a north–south orientation 
along the semimajor axis of the ellipse (Figure 3). A short time lag of 
around 1 hr is observed in the arrival time of the tidal signal between 
the north and south of the Ledge (Figure 4).

3.2 | Model validation and outputs

Bayesian p- values were 0.58 for model A (Table 2, top) and 0.62 
for model B (Table 2, bottom). Sensitivity analysis showed no sig-
nificant effect of choice of prior on posterior distributions for all 

logit(� )=�1+�2 ⋅Depth+�3 ⋅RDMV+�4 ⋅CurrentMax+�5 ⋅CurrentMax
2

logit(p)=�1+�2 ⋅Current+�3 ⋅none+�4 ⋅Current|none
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parameters excluding those for the covariates for ψ in model B. The 
overlap of the posterior distributions of parameters in model A with 
their prior distributions ranged from 20% to 31%, with the highest 
amount of overlap for the estimate for sampling effort. All parame-
ters for this model were therefore considered identifiable. Inclusion 
variables for model A indicated that current speed, bottom type, 
and the interaction between current speed and bottom type should 
be included in the detection submodel (Table 2). Inclusion variables 
for model B indicate less than or equal to 50% probability that any 
covariates belonged in the occupancy submodel and again that cur-
rent speed, bottom type, and the interaction term between current 
speed and bottom type should be included in the detection sub-
model (Table 2).

Results for model A show that with increasing current speed, 
detection rates in the two bottom types diverge: increasing in the 
noncanopy forming region and decreasing in the canopy forming re-
gion (Figure 5a). At low current speeds (≈1 cm/s), the probability of 
detecting cusk is almost identical in both bottom types, and there is 
no credible difference in detection probability between 0 cm/s and 
around 5 cm/s among bottom types (Figure 5b and inset).

Predictions of detection probability reveal similar rates of de-
tectability in both bottom types at low and high tide (Figures 6.t1 
and  6.t39), while varying significantly between these times (Figures 
6.t10, 6.t20 and 6.t30).

Estimates of the proportion of sites occupied by the finite sam-
ple estimator are 0.88 (95% CI: 0.64–1.0), 0.45 (95% CI: 0.29–0.79), 
0.74 (95% CI: 0.50–1.0), and 0.83 (95% CI: 0.64–1.0) for seasons 1, 
2, 3, and 4, respectively. This compares to observed proportions 
of 0.57, 0.28, 0.43, and 0.57 for seasons 1, 2, 3, and 4, respec-
tively (Figure 7). Colonization probabilities for all sites are 0.52, 
0.77, and 0.55 for colonization between seasons 1–2, 2–3, and 
3–4, respectively. Extinction probabilities are 0.56, 0.44, and 0.15 
for extinction between seasons 1–2, 2–3, and 3–4, respectively; 
these probabilities are the compliment of ϕ in the parametrization 
described in the methods. Population growth is estimated at 0.56 
between season 1 and 2, 1.74 between season 2 and 3, and 1.15 be-
tween season 3 and 4. This represents a decrease in the number of 
occupied sites from summer 2006 to spring 2007, an increase from 
spring to summer 2007, and an increase from summer to autumn 

F IGURE  3 Tidal ellipse for a point in open water 100 m away 
from Cashes Ledge. The distance from the centroid to the arc of 
the ellipse is proportional to the current speed, and the direction 
of a vector radiating from the centroid to any point on the arc 
represents the direction any that point. The numbers on the arc 
correspond to the numbers on the tidal curve and in Figure 6

F IGURE  4 Example of difference in arrival time of tidal signal 
for three sites, one deep (1), one intermediate (3) and one shallow 
(2) at Cashes Ledge over one and a half tidal cycles throughout the 
summer 2006 sampling season. Time on the x- axis of the tidal curve 
(b) and current speed plot (c) are the same. The locations of the 
three sites are marked on the map (a)
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2007. JAGS code for the final model is given in the Supporting 
Information Appendix S2.

4  | DISCUSSION

The problem of bias introduced by failing to account for detectabil-
ity of mobile fish species when estimating their occupancy was ad-
dressed in this study. Using a dynamic occupancy model and treating 
the true occupancy state as a latent variable of the model, occu-
pancy estimates are significantly greater than occupancy assessed 
from observation alone. Taking account of imperfect detection, the 
difference in estimated and observed proportion of sites occupied 
by cusk range from 0.17 to 0.31. This highlights the need to incor-
porate detectability of the target species into species distribution 
modeling efforts (Rota, Fletcher, Evans, & Hutto, 2011).

4.1 | Cusk behavior

Cusk are slow moving weak swimmers (Bigelow & Schroeder, 
1953; COSEWIC 2003), and it is therefore not unreasonable to ex-
pect them to be influenced by hydrodynamic conditions. Outputs 
of model A show that, indeed, cusk detectability is affected by 

changes in current speed along a tidal cycle. Within the noncan-
opy forming regions of Cashes Ledge, the increase in detectability 
with increasing current speed can be thought of as a proxy for 
increased activity of cusk. This increase in activity is interpreted 
in one of two ways, either as cusk searching for morphologically 
complex environments as refuge, or as cusk using the movement 
of water as an opportunity to forage for food. Cusk have been 
observed to prey on cunner (Tautogolabrus adspersus; Auster & 
Lindholm, 2005), and cunner in turn have been observed to for-
age more on exposed surfaces near refugia with increasing current 
velocity (Auster, 1988, 1989).

Other than these prey, little is known about cusk diet in the west-
ern Atlantic. In European waters, however, stomach contents analy-
sis shows that cusk will eat a range of crustaceans and molluscs, both 
of which have been found in abundance in the shallower kelp dom-
inated regions at Cashes Ledge (Vadas & Steneck, 1988; Witman & 
Sebens, 1992). Within this canopy forming algae region, as current 
speed begins to increase, detection probability decreases quite 
rapidly. While marine fish have been shown to use kelp habitats as 
both refuge and foraging grounds (Holbrook, Carr, Schmitt, & Coyer, 
1990; Uhl, Bartsch, & Oppelt, 2016), the presence of canopy forming 
species of algae will encumber detectability, especially in relatively 
high flows or with high energy wave conditions (Rattray et al., 2015).

TABLE  2 Parameters estimated for coefficients for occupancy model A (without covariates for ψ) and model B (with covariates for ψ)

Model A GOF Gelman- Ruben MV

0.58 1.01 Credible Interval

Sub- model Parameter  Mean s.d. 2.50% 97.50% Inclusion probability

Detection Intercept −1.57 0.79 −3.27 −0.04 –

Current −1.26 0.59 −2.58 −0.19 0.66

Effort −0.37 0.75 −1.94 1.05 0.32

none 3.01 0.88 1.52 5.19 0.99

Current|none 1.77 0.71 0.44 3.32 0.79

Model B GOF Gelman−Ruben MV

0.62 1.01 Credible interval

Sub-model Parameter Mean s.d 2.50% 97.50% Inclusion probability

Detection Intercept −1.43 0.83 −3.17 0.2 –

Current −1.31 0.63 −2.67 −0.21 0.7

Effort −0.35 0.79 −1.97 1.09 0.34

none 2.85 0.93 1.3 4.98 0.99

Current|none 1.85 0.75 0.47 3.44 0.82

Occupancy Intercept 1.41 1.4 −0.93 4.55 –

Depth −1.66 1.55 −5.08 1.24 0.5

Complexity 0.99 1.66 −2.01 4.63 0.49

Current max 0.04 1.31 −2.53 2.64 0.4

Current max2 0.17 1.31 −2.42 2.78 0.39

Note. GOF is the Bayesian p- value, where values closer to 0.5 indicate better fit. Gelman- Ruben MV is the multivariate Gelman- Ruben convergence 
statistic, where values close to 1 mean the model has successfully converged. Current is the current speed at the time of observation of cusk, effort is 
sampling effort, none is regions with no canopy forming species of algae, current|none is the interaction between current and none, complexity is 
RDMV, current max is the maximum current speed during the sampling season.
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In previous studies of cusk habitat usage, the species has been 
recorded at much greater depths than those observed in this 
study (Davies & Jonsen, 2011; Hare et al., 2012; Nye, Link, Hare, 
& Overholtz, 2009). One explanation of the depths observed in 
this study is that the fish in this region are year round residents 
that have become accustomed to living at comparatively shallower 
depths. Bigelow and Schroeder (1953) note that cusk do not often 
move from bank to bank, and no seasonal spawning migrations have 
been noted for the species (COSEWIC 2003). The spawning season 
for cusk in the Gulf of Maine extends from April to July (Bigelow & 
Schroeder, 1953), and this might explain the large growth rate in the 
number of sites occupied between Spring 2007 and Summer 2007 
(sampling seasons 2 and 3 respectively) as fish become more active 
in search of a mating partner. These two time periods together take 
in portions of the spawning season for cusk; it is therefore possible 

that the later it is in the season, the more active the fish are in their 
search.

An assumption of the dynamic occupancy model is that within 
a primary sampling season the population remains closed, but can 
be open to local extinction and colonization between seasons 
(Kéry, 2010). Cusk are described as a “station keeping bottom” or 
“station keeping cover” species (Auster & Lindholm, 2005), and ev-
idence suggests that the home range of cusk is small (Dultz, 2013). 
Furthermore, cusk show strong affinity for complex habitats while 
avoiding substrata with no structure (Bigelow & Schroeder, 1953; 
COSEWIC 2003). Cashes Ledge is surrounded on all sides by a 
number of deep basins, most notably Ammen Basin to the east and 
Cashes Basin to the west (Figure 2), which consist of unconsolidated 
substrata (Uchupi, 1966; Uchupi & Bolmer, 2008). As such, the as-
sumptions of the model are satisfied; cusk remain on station and are 

F IGURE  5 Model outputs showing 
(a) final model for detectability of cusk 
at Cashes Ledge based on current speed 
and bottom type, colored bands are 
95% credible interval, (b) difference in 
detection probability between canopy 
forming and noncanopy forming regions. 
Where the 95% credible interval includes 
zero, there is no significant difference in 
detection probability
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kept on Cashes Ledge by expanses of nonfavorable habitat on all 
sides.

Throughout the four sampling seasons within this study, the 
same camera setup was used. No variability in detection probabil-
ity should therefore be expected due to gear differences. In inves-
tigations using camera surveys combined with fish traps to assess 
detectability using simultaneous data collection methods (Coggins 
et al., 2014), the approach of adding cameras to other gear types has 
been recommended (Bacheler et al., 2014). In the current study, the 
camera system was used in isolation, and given the limited field of 
view and a lack of control over orientation once on the seabed, de-
tection probabilities are expected to be and are less than one.

No significant effects were observed for any of the covariates 
tested in the initial occupancy submodel of model B. While it is likely 
that some covariates are missing from this submodel, due to the small 
sample size, it is not possible to add more terms without overfitting 
the model. The covariates that were included were of importance in 
two ways. First, they were important in terms of what has previously 
been reported as driving cusk habitat: depth and surface complexity 
(Hare et al., 2012). Secondly, maximum current speed and maximum 
current speed squared were included to test whether hydrodynam-
ics play a role not only in determining cusk behavior, but also in limit-
ing cusk habitat choice. Nevertheless, the main purpose of this study 

was to give consideration to the detectability issue in marine fish oc-
cupancy modeling. Given that the dynamic occupancy model is able 
to handle constant initial occupancy probabilities across all sites in 
the study domain, this lack of fit for the initial occupancy state does 
not present problems for inference about detectability.

4.2 | Recommendations for future studies

In this study, detection probability ranged from 0.59 to 0.88 in the 
noncanopy forming region and from 0.03 to 0.64 in the canopy 
forming algae region. These results are broadly comparable to de-
tection probabilities from other studies using camera surveys with 
other modeling approaches to detect marine fish (Bacheler et al., 
2014; Coggins et al., 2014). These detection probabilities are condi-
tional on cusk being present at the site being observed and also need 
to be considered in light of the fact that bottom time for the camera 
was relatively high in this investigation. It should also be noted that, 
for some species of fish, the presence of camera equipment on the 
seabed may encourage more curious individuals to investigate so 
may introduce some bias to the results (Stoner, Ryer, Parker, Auster, 
& Wakefield, 2008). In both models assessed in this study, the rela-
tionship between sampling effort and cusk detection was found to 
be insignificant. The term was left in the models, however, due to its 

F IGURE  6 Tidal curve (top), current speeds (middle) and predicted probability surfaces (bottom) along a full tidal cycle during the 
summer 2006 sampling season. Surfaces are predicted from the detection model outputs. Numbers of each panel in the gray boxes (t1–t39) 
correspond to the numbers on the tidal curve. The darker regions in t10 and t30 indicate the areas with canopy forming species of algae 
based on extinction depth for those species at Cashes Ledge, while the lighter regions are the areas with no canopy forming species of algae
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theoretical importance; one of the most important factors affecting 
the detection of any organism is the amount of effort put into trying 
to detect it. Especially when dealing with small sample sizes, insig-
nificant covariates should be left in models when they are theoreti-
cally important (Schuenemeyer & Drew, 2010).

While most of the spatial variability in detection probability can 
be explained by tidal phase, some small differences persist within 
each of the bottom types in Figure 6. These can be explained by 
local differences in current speed caused by water movement 
around topographic features on the seabed. Differences in detection 
probability created by these local variations in current speed in the 
deeper regions, and to a lesser extent in the shallow regions, are bet-
ter understood when flow direction and topography are considered. 
Given that the strongest flows indicated by the tidal ellipse occur in a 
northerly and southerly direction (Figure 3) and that the orientation 
of the Ledge is approximately SE–NW (Figure 4c), it follows that dif-
ferent areas of the Ledge will experience maximal flow at different 
stages of the tidal cycle. Similarly, minimum flow occurs at different 
times throughout the 12.4 hr M2 tidal period (Figure 3). This has an 
effect on the arrival time of the increase in current speed at differ-
ent locations throughout the study area (Figure 4b). Failing to take 
these local differences into consideration can have consequences 
when trying to plan similar surveys when the target species may 
be affected by flow rates. Such camera surveys are often the most 
suitable method for monitoring marine reserves and areas closed to 
mobile fishing gears as they are considered both cost effective and 

noninvasive (Bouchet & Meeuwig, 2015; DeCelles, Keiley, Lowery, 
Calabrese, & Stokesbury, 2017). The need to consider detectability 
is therefore paramount to obtaining unbiased results.

It is recognized that organisms living in marine environments 
exist in a multidimensional space, where even though they may live 
on the seabed, the constant flux of the water column plays an im-
portant role in shaping their distributions (Brown, Smith, Lawton, 
& Anderson, 2011). While the same is true in the terrestrial envi-
ronment (Jung, Kaiser, Böhm, Nieschulze, & Kalko, 2012), the data 
needed to describe the nature of the ocean are often harder to col-
lect or generate. Broad scale covariates used in marine investiga-
tions, such as temperature, current speed and direction, often come 
from depth averaged, or surface values of the covariate of concern. 
Additionally, if these covariates are not collected at the time of sur-
vey as is often the case, they need to be found as records elsewhere, 
or modeled using an appropriate method. Temperature, for exam-
ple, is known to affect the metabolism and behavior of marine fish 
(Biro, Beckmann, & Stamps, 2010; Remen et al., 2015), which can 
affect the detection probability. Including temperature in the hy-
drodynamic model used in the current study can only be achieved 
by specifying water densities as a function of temperature and sa-
linity. This presents significant challenges in coastal environments 
where highly variable surface conditions due to fresh water inputs 
cause errors in modeled hydrodynamics. As a result, temperature 
data were available only as low resolution depth averaged values, 
providing information important only to seasonal variations in tem-
perature. Any variability in cusk occupancy due to seasonal tempera-
ture variations would already have been captured in the occupancy 
model by the latent variables for gamma and phi. Nevertheless, the 
inclusion of temperature data in future studies could potentially pro-
vide more insight into variability in fish behavior and detection as 
a result of thermal stresses. Hydrodynamic information in this in-
vestigation came from a 3- dimensional hindcast model of wave and 
current conditions at Cashes Ledge and explained ecologically rele-
vant phenomena that may otherwise have been overlooked. While 
forecasting these types of data may not be a viable option for many 
researchers planning future studies, it is a recommendation of this 
study that an effort be made to consider the fine- scale variability of 
any feature of the environment that may impede detection of their 
target species.

5  | CONCLUSION

This study demonstrates a novel, multifaceted approach to pro-
duce a dynamic occupancy model for a species of concern in a 
closed area. It has generated estimates of occupancy that are 
considerably greater than occupancy measured from observa-
tion alone, for the first time using outputs from a high- resolution 
3- dimensional hydrodynamic model in such a modeling framework. 
While the need for species distribution models to consider the 
3- dimensional nature of the marine environment has been docu-
mented previously (Duffy & Chown, 2017), this study reinforces it 

F IGURE  7 Observed and median estimated proportions of sites 
occupied by cusk at Cashes Ledge during the four sampling periods; 
S1 (Summer 2006), S2 (Spring 2007), S3 (Summer 2007 and S4 
(Autumn 2007). Also shown are the 50% and 95% credible intervals 
for the posterior estimates of the proportion of occupied sites
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using modern statistical methods. Using the outputs, this investi-
gation has shown how the behavior of cusk changes in two differ-
ent environments as a function of current speed. This behavior has 
implications for the detectability of the species, which in turn has 
implications for the occupancy estimates. This imperative to con-
sider detectability in marine SDM studies is true not only for cusk, 
but for all species surveyed using noninvasive sampling methods. 
It holds especially true for areas where managers must use these 
methods to monitor stocks. Failing to recognize the limitations of 
models that do not account for imperfect detection will impact 
future estimates of abundance, potentially for many species. It is 
imperative that practitioners of future marine SDM applications 
consider the detectability of the species under study. In order to 
do this, they must first understand the processes that govern the 
fine scale, time- varying features of the environment that may af-
fect detectability, not just for the species in question but also for 
the specific habitat type being observed (Bacheler et al., 2014) in 
order to obtain unbiased estimates of occupancy in the marine 
environment.
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