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zona pellucida as freezing carrier to store few sperm. Desai et al.11,12 
adopted the cryoloop to cryopreserve testicular and epididymal sperm. 
Subsequently, Huang Weihua et al.13 reported cryopreservation of few 
spermatozoa using vitrification method without adding cryoprotectants. 
These studies yet had their pros and cons  –  existence of foreign 
proteins in zona pellucida may cause biological contamination, use of 
cryoloop costs too much (several cryoloops are needed for testicular 
and epididymal sperm), and open freezing straws without adding 
cryoprotectants may lead to liquid nitrogen pollution. This study aims 
to investigate a new enclosed mirco‑straw (LSL straw, which is made 
of an outer metal shell and an inner tube) for cryopreservation of rare 
human spermatozoa, improving the security and quality of freeze‑thaw 
sperm, thus contributing to undergoing ICSI treatment cycle with 
cryopreserved sperm for oligozoospermic or azoospermic patients.

MATERIALS AND METHODS
Sperm sample
Semen samples of 22 healthy donors (ages ranged from 22 to 30 years, 
mean, 24.6 ± 4.2 years) were randomly collected from Shanghai Human 
Sperm Bank, Ren Ji Hospital, School of Medicine, Shanghai Jiao Tong 
University. Semen was obtained by masturbation after an abstinence 
of 2–7 days. Then, a routine semen analysis was performed according 

INTRODUCTION
Intracytoplasmic sperm injection (ICSI) is currently a most effective 
treatment procedure for severe male factor infertility such as severe 
oligozoospermia or azoospermia if any sperm can be found in ejaculate or 
testicular biopsy specimens or epididymal sperm aspiration.1–3 At present, 
for clinical routine ICSI patients, the pregnancy rate per ICSI cycle was 
about 40%–45%.4,5 However, in some couples with severe male factor 
infertility, ICSI treatment cycle may be canceled due to no motile sperm 
found from semen or testicular biopsy specimens.6 Some patients need 
2nd ICSI cycles with repeated sperm retrieval due to failed previous cycles. 
Repeated operations may not only bring psychological pressure and 
economic burden to male patients but also lead to the testicular damage, 
the epididymal fibrosis, irreversible testicular atrophy, spermatogenic 
function degradation, and even the loss of endocrine function which 
needs exogenous testosterone replacement therapy.7,8 Thus, a reliable 
and safe procedure for few spermatozoa cryopreservation was urgently 
required for oligozoospermic or azoospermic patients. However, the 
common techniques and protocols used for semen cryopreservation 
still have certain limitations, and there is still no effective method for 
clinical cryopreservation of few human spermatozoa.

Up to now, cryopreservation of few spermatozoa  (2–3 items 
LPF−1) was studied by Cohen et al.9 and Desai et al.10 who used the 
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to the World Health Organization  (WHO) Laboratory Manual for 
the Examination and Processing of Human Semen (5th Edition), and 
parameters of these semen samples were within the following range: 
volume of semen  >2  ml, sperm concentration  >60  ×  106 ml−1, and 
progressive motility rate (PR) >60%. This study has been approved by 
the Reproductive Ethics Committee of Ren Ji Hospital, and all donors 
have signed the written informed consent.

Three types of straws: LSL micro‑straw, 0.25 ml and 0.5 ml straws
Micro‑straws (LSL straws, Figure 1a, including an outer metal shell and 
an inner tube) were supplied by Cryo BioSystem, Paris, France. The inner 
tube (diameter, 0.6–0.8 mm, thickness 0.07 mm, and volume 100 μl) with 
a fine end (diameter, 0.2–0.28 mm) is made of transparent polymerized 
resin. Importantly, the outer metal shell contributes to accelerating 
low‑temperature conduction and protecting the inner tube during freezing.

The 0.5 ml and 0.25 ml straws (Figure 1a), also supplied by Cryo 
BioSystem, Paris, France, are transparent tubes and widely used for 
sperm cryopreservation in sperm banks or reproductive centers.

Sperm preparation before freezing
Fresh semen samples were incubated at 37°C in a water bath for 
liquefaction. After liquefied, sperm concentration and motility were 
examined with Makler counting chamber (Sefi Medical Instruments, 
Haifa, Israel) by inverted phase‑contrast microscope (Olympus BX43, 
Tokyo, Japan). Then, the semen was diluted to the concentration 
of 10  ×  106 ml−1 with 5% human tubal fluid  (HTF). For freezing, 
cryoprotectant solution was dropped to the diluted semen in ratio of 
1:1. Modified GYC (glycerin ‑ yolk ‑ sodium citrate) was used as the 
cryoprotectant in this study, which is consisted of 2.0 g trehalase, 1.5 g 
fructose, 3.4 g sodium citrate, 1 g glycine, 15 ml glycerol, and 20 ml egg 
yolk in 100 ml distilled water. Moreover, the pH is 7.2.

The semen from each donor will be frozen with three types of 
straws, including LSL micro‑straw, 0.25 ml and 0.5 ml straws.

Freezing and thawing

For LSL straws
As shown in Figure 2, first, several drops of 50 µl mixed semen and 
cryoprotectant (About 2.5 × 105 spermatozoa per drop) were placed 
into a culture dish (Figure 2a). We pushed up the outer metal shell of 
LSL straw and exposed the inner tube (Figure 2b) to aspirate mixed 
sample with a sterile syringe (Figure 2c), and then pushed down the 
outer metal shell to protect the pine end of the inner tube (Figure 2d). 
Finally, LSL straw (About 2.5 × 105 spermatozoa per straw) was placed 
into a freezing stent (fumigated with liquid nitrogen) before stored in 
liquid nitrogen at −196°C.

For thawing of sperm, the LSL straws were exposed at room 
temperature for 10 s. The solution of the LSL straws was lightly blown 
into prewarmed recovery solution at 37°C in a 5% CO2 incubator for 
10 min. Then, the concentration and motility of cryopreserved sperm 
were immediately examined with Makler counting chamber by an 
inverted microscope.

For 0.25 ml and 0.5 ml straws
The mixture of semen and cryoprotectant was drawn into 0.25 ml and 
0.5 ml straws, and then the straws were sealed and directly fumigated 
in liquid nitrogen at −130–140°C for 3 h before transferred into liquid 
nitrogen for preservation.

The straws were thawed in a water bath at 37°C for 5 min. Then, 
we cut the sealed ends of the straws and lightly blew out the solution 
into prewarmed resuscitation drops. The following steps were the same 
with that of the LSL straw.

Detection of the cooling  (temperature‑descending) rate during 
freezing
In this study, agilent GL800 data acquisition instrument  (provided 
by Institute of Refrigeration and Cryogenics, School of Mechanical 
Engineering, Shanghai Jiao Tong University) was adopted as the 
temperature apparatus, with T‑type copper‑constantan thermocouple 
as thermometric component. Both ends of the thermocouple were 
welded to form the temperature measuring points. Copper wire was the 
thermocouple’s positive terminal with acquisition instrument’s cathode, 
and constantan wire was the negative terminal with instrument’s 
anode. To improve the measuring precision and accuracy, ice‑point 
compensation method was conducted to monitor temperature changes 
during freezing and thawing.

To measure the cooling (temperature‑descending) rate of the mixture 
in the straws during freezing and thawing, T‑type thermocouple’s 
temperature measurement point was placed into to‑be‑tested straws, 
which was fixed with cryogenic adhesive to prevent the probe drop‑off. 
The to‑be‑tested straws were placed directly into fumigation liquid 
nitrogen analyzer and tested the cooling rate (temperature/s). When 
the temperature dropped to −150°C, the straws were thawed in a water 
bath at 37°C. Each straw was measured at least 3 times.

Determination of sperm morphology, acrosome integrity, and DNA 
fragmentation index
Sperm morphology was assessed by Diff‑Quik staining  (Biomart, 
Shenzhen, China) in the fresh and postthawing samples. Acrosome 
integrity was also assessed by a triple‑fluorescence test  (fluorescein 

Figure 2: Steps of sperm freezing with the LSL straw. (a) Prepare micro‑drop 
of mixed semen and cryoprotectant in a culture dish. (b) Move up the mental 
cover of LSL straw. (c) Suction of mixed sample into the LSL straw using 
1 ml syringe attached rubber tube. (d) Placed LSL straw to a freezing stent 
for fumigating with liquid nitrogen.
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Figure  1: Difference between the cooling rates during liquid nitrogen 
fumigation of three types of straws. (a) Images of the structure of 0.25 ml 
straw, 0.5 ml straw, and LSL straw. Micro‑straws (LSL straws) are made of 
an outer metal shell and an inner tube. (b) The cooling rate of three different 
types of straws. The cooling rate of LSL straw was significantly faster than 
that of 0.25 mL and 0.5 mL straws, and the cooling rates of 0.25 mL straws 
showed obviously faster than that of 0.5 mL straws, but with the similar 
trends of changes.
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isothiocyanate‑conjugated Pisum sativum agglutinin staining, 
FITC‑PSA staining). The sperm was incubated with FITC‑PSA 
solution at 37°C for 30  min, and then observed with fluorescence 
microscope (Olympus, Tokyo, Japan). The DNA fragmentation index 
of sperm was performed using the Halosperm kit (sperm chromatin 
diffusion method, SCD method, Halotech DNA, SL, Madrid, Spain) 
according to the manufacturer’s protocol.

Statistical analysis
The resuscitation rate was calculated by comparing forward progressive 
motility before and after freezing‑thawing. The data of forward 
progressive motility rate (PR), sperm morphology, sperm acrosome 
integrity, and DNA fragmentation index were analyzed by the paired 
t‑test (one‑way variance analysis and Fisher LSD test) among these 
three groups.

RESULTS
Due to thin‑wall and small‑volume of LSL straw, heat conduction 
during freezing‑thawing reached the fastest rate  (Figure  1b). After 
freezing and thawing, sperm motility of the LSL straw showed obviously 
higher forward progressive motility and resuscitation rate (P < 0.003, 
Figure  3) than that of the 0.25  ml and 0.5  ml straws. In addition, 
LSL straw group also showed high normal morphology and normal 
acrosome and DNA integrity rate compared with the 0.25 ml and 0.5 ml 
straws. However, there was no difference in normal sperm morphology, 
normal acrosome integrity, and DNA fragmentation index between 
0.25 ml and 0.50 ml straws (P > 0.05, Figures 3 and 4).

The cooling rate during sperm cryopreservation showed meaningful 
difference between the LSL, 0.25 ml and 0.5 ml straws (Table 1 and 
Figure 1b). During the freezing process, the cooling rate of LSL straw 
was obviously faster than 0.25 ml and 0.5 ml straws, showing 262.80, 
153.45, and 42.99°C min−1 from −50°C to −80°C and 94.32°C min−1, 
57.12°C min−1 and 12.71°C min−1 from −80°C to −130°C, respectively, 
thus rapidly getting through the freezing point, during which the 
intracellular ice and extracellular ice formed. The trends of changes 
in cooling rates were very similar between 0.25 ml and 0.5 ml straws 
whereas cooling rate of 0.25 ml straw is 2.7–4.5‑folds of that of 0.5 ml 
straws.

DISCUSSION
Recently, minimally invasive sperm retrieval techniques have achieved 
rapid progress with the applications of microsurgical technique, such 
as percutaneous epididymal sperm aspiration  (PESA), testicular 

sperm extraction  (TESE), and microsurgical epididymal sperm 
aspiration  (MESA).14–17 These sperm retrieval techniques made it 
possible to successfully obtain few spermatozoa in azoospermia 
patients for further ICSI treatment. Sperm cryopreservation before 
oocyte collection plays a key role for further ICSI treatment and avoids 
repeating sperm extraction from epididymal or testicular. However, 
cryopreservation of few spermatozoa obtained from operation is still 
challenging. Therefore, it is necessary to develop an efficient procedure 
for cryopreserving few spermatozoa obtained from epididymis 
and testis by surgical sperm retrieval. In this study, sperm from the 
healthy donors was used as samples of few spermatozoa by diluting to 
the concentration of 10 × 106 ml−1 with 5% HTF, due to the rare and 
precious spermatozoa from azoospermia and oligoasthenospermia 
patients. Moreover, 5% HTF is widely used for human spermatozoa 
culturing and washing in clinical.

In this study, LSL straw improved sperm motility after 
freezing‑thawing by reducing ice damage with rapid heat conduction 
during cryopreservation.18 The routine cryopreservation method with 
0.25 ml and 0.5 ml straws is less optimal for cryopreservation of the few 
spermatozoa from severe oligozoospermic or azoospermic patients. 
T﻿he intracellular and extracellular ice formations during freezing are 
the major causes of cryoinjury for sperm motility and viability of 
IVF, vitrification method for cryopreservation of oocyte and embryo 
has gained great advance and is preferred to routine freeze‑thaw 
method, showing almost complete avoidance of ice formation with the 
extremely rapid rate of cooling. Nijs and Ombelet19 and Liebermann 
et al.20 suggested that the cooling rate in the process of freezing was 
determined by cryoprotectant and carrier. The LSL straw adopted 
in this study consisting of an outer metal shell and an inner tube, 

Figure 3: Semen parameters of samples before and after the freezing‑thawing 
process in 0.25 ml straw, 0.5 ml straw, and LSL straw. aP < 0.05, comparison 
between LSL and 0.5 ml straws; bP < 0.05, comparison between LSL and 
0.25ml straws.

Table  1: Comparison of cooling rate during freezing (liquid nitrogen 
fumigation) and thawing between LSL straw, 0.25 ml and 0.5 ml straws

Temperature range (°C) 
freezing/thawing

Cooling rate (°C min−1)

0.5 ml straw 0.25 ml straw LSL straw

25–−50/freezing 34.86 155.27 161.24

−50–−80/freezing 44.49 169.36 213.84

−80–−130/freezing 12.87 85.8 90.87

−130–−150/freezing 1.31 2.14 1.45

−150–25/thawing 371.22 678.0 797.01

LSL: LiSunLiu, represented three inventors Zheng Li, Feng Liu, and Can Sun

Figure  4: Assessment of sperm morphology, acrosome integrity, and DNA 
fragmentation index before and after freezing‑thawing. (a–d) Morphology 
of sperm before and after freezing‑thawing, no significant difference was 
observed in acrosome integrity (e–h) and DNA fragmentation index (i–l) of 
sperm between the 0.25 ml and 0.5 ml and LSL straws before and after 
freezing‑thawing. Scale bars = 8 μm.
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showed rapid cooling rate during freezing compared with the 0.25 ml 
and 0.5 ml straws, thus reducing the ice formation in the process of 
temperature descending during fumigating with liquid nitrogen. 
Moreover, motility of postthaw sperm in the LSL straw group showed 
an obvious increase (PR 41%, 30% and 29%, P < 0.003), compared 
with 0.25 ml and 0.5 ml straws. The results of LSL straw group also 
showed high normal morphology rate, acrosome, and DNA integrity 
rates. Therefore, the micro‑straw or LSL straw is preferred to 0.25 ml 
and 0.5 ml straws for clinical cryopreservation of a small group of 
spermatozoa, with the rapider cooling rate. The cooling rate of straws 
during freezing by fumigated with liquid nitrogen is dominated by 
the strength of heat flux from sample to liquid nitrogen and the cold 
transmission from liquid nitrogen to sample, according to the law 
of conservation of energy, which may explain the same trends of 
cooling rate of 0.25  ml and 0.5  ml straws during fumigation with 
liquid nitrogen gas.

CONCLUSION
Freezing‑thawing sperm motility of the LSL straw was significantly 
higher than that of 0.25 ml and 0.5 ml straw. The LSL straw holds 
smaller volume than 0.25 and 0.50 ml straws; therefore, it is much easy 
to find few spermatozoa postfreezing and thaw. The micro‑straw for 
freezing of testicular and epididymis sperm appears to be superior to 
conventional 0.25 ml and 0.5 ml straws.
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