
Model Transferability and Reduced
Experimental Burden in Cell Culture
Process Development Facilitated by
Hybrid Modeling and Intensified
Design of Experiments
Benjamin Bayer1,2, Mark Duerkop1,2, Gerald Striedner1,2 and Bernhard Sissolak3*

1Department of Biotechnology, University of Natural Resources and Life Sciences, Vienna, Austria, 2Novasign GmbH, Vienna,
Austria, 3Bilfinger Life Science GmbH, Salzburg, Austria

Reliable process development is accompanied by intense experimental effort. The
utilization of an intensified design of experiments (iDoE) (intra-experimental critical
process parameter (CPP) shifts combined) with hybrid modeling potentially reduces
process development burden. The iDoE can provide more process response
information in less overall process time, whereas hybrid modeling serves as a
commodity to describe this behavior the best way. Therefore, a combination of both
approaches appears beneficial for faster design screening and is especially of interest at
larger scales where the costs per experiment rise significantly. Ideally, profound process
knowledge is gathered at a small scale and only complemented with few validation
experiments on a larger scale, saving valuable resources. In this work, the
transferability of hybrid modeling for Chinese hamster ovary cell bioprocess
development along process scales was investigated. A two-dimensional DoE was fully
characterized in shake flask duplicates (300ml), containing three different levels for the
cultivation temperature and the glucose concentration in the feed. Based on these data, a
hybrid model was developed, and its performance was assessed by estimating the viable
cell concentration and product titer in 15 L bioprocesses with the same DoE settings. To
challenge the modeling approach, 15 L bioprocesses also comprised iDoE runs with intra-
experimental CPP shifts, impacting specific cell rates such as growth, consumption, and
formation. Subsequently, the applicability of the iDoE cultivations to estimate static
cultivations was also investigated. The shaker-scale hybrid model proved suitable for
application to a 15 L scale (1:50), estimating the viable cell concentration and the product
titer with an NRMSE of 10.92% and 17.79%, respectively. Additionally, the iDoE hybrid
model performed comparably, displaying NRMSE values of 13.75% and 21.13%. The low
errors when transferring the models from shaker to reactor and between the DoE and the
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iDoE approach highlight the suitability of hybrid modeling for mammalian cell culture
bioprocess development and the potential of iDoE to accelerate process characterization
and to improve process understanding.

Keywords: Chinese hamster ovary cells, quality by design, intensified DoE, monoclonal antibody, upstream
processing, grey box, scale up, process optimization

1 INTRODUCTION

Usually, tremendous effort is spent performing design of
experiments (DoE) as part of process characterization and
optimization (Hakemeyer et al., 2016; Tripathi and
Shrivastava, 2019; Bayer et al., 2020b) at different scales. This
leads to a huge burden on process development and enormous
consumption of resources. Depending on the dimensionality of
the design space, the burden can increase drastically. Upstream
processes in general and in particular mammalian cell culture
cultivations can be considered highly complex processes. Several
factors, referred to as critical process parameters (CPPs), can have
an impact on the produced quantity of the target molecule and
certain critical quality attributes (CQAs). This impact is either
directly due to changes in the surrounding environment or
indirectly due to altering how cells are producing the target
molecules.

Especially in biopharmaceutical production, the CQAs have to
be within a narrow range to ensure patient safety. Hence, in
consideration of the quality-by-design (QbD) approach (ICH
Harmonised Tripartite Guideline, 2009), this very impact of the
CPP on the CQA needs to be identified and understood. This is
achieved by utilizing a certain DoE approach. By performing a
DoE, data are generated and CPP effects can be studied. Since
each of these approaches has their intrinsic strengths and
weaknesses, the provided information also varies significantly
(Kumar et al., 2014).

The full-factorial characterization is the most common
design for design spaces with less than four parameters due
to its simplicity, resulting in high experimental effort. However,
several years ago, the concept of reduced experimental effort had
already been suggested, and recent advances showed that a
similar output with minimal loss in information can be
gained with a reduced experimental burden by applying
intensified DoE (iDoE) (von Stosch and Willis, 2016;
Sommeregger et al., 2017). It was demonstrated that for an
Escherichia coli fed-batch process, up to 67% of experiments
can be spared by using an iDoE approach for process
characterization instead of the standard DoE (Bayer et al.,
2020b). This iDoE concept is based on introducing intra-
experimental process variations (Spadiut et al., 2013). Herein,
by performing intra-experimental CPP shifts, the
characterization of multiple CPP combinations within one
experiment is possible, accelerating the characterization of a
design space. Additionally, these shifts induce changes in the
specific rates (e.g., growth, consumption, and formation),
maximizing the information output and enhancing process
understanding. In another publication, it was shown that the
iDoE approach was able to provide an in-depth process

understanding of a mammalian cell culture fed-batch process
(Pappenreiter et al., 2019).

Bioprocess modeling offers the possibility of exploiting the
information resulting from a DoE, e.g., to understand the process
behavior. Such models can then further be used to establish
proper tools for process monitoring and control to keep the
CQAs within their narrow operating ranges (Smiatek et al., 2020).
Generally, three different modeling approaches are utilized,
namely, mechanistic modeling, statistical modeling by
multivariate data analysis (MVDA), or hybrid modeling
approaches. A detailed description, evaluation, and
comparison of these modeling approaches have already been
reported (Solle et al., 2017). Considering a mammalian upstream
process, a pure mechanistic modeling approach takes high effort
to develop due to the complex nature of such a process. Currently,
the MVDA approaches used comprise partial least squares
regression, artificial neural networks, and support vector
machines (Kadlec et al., 2009), and novel applications
constantly increase the applicability of MVDA (Clavaud et al.,
2013; Mercier et al., 2014; Sokolov et al., 2015).

Such established MVDA models might not be flexible to deal
with process setup changes and often have limited extrapolation
capabilities. Process scaling, for instance from a shake flask to a
bioreactor, commonly results in differences in how the CPPs
affect the CQAs and potentially the cell behavior itself (Fox et al.,
2004; Li et al., 2010; Sissolak et al., 2019). It might even be possible
that other parameters, which were not showing any impact at all,
are now significantly altering the CQAs when changing the scale.
CO2 removal, oxygen transfer, and concentration gradients in a
stirred tank bioreactor are such parameters, which are not
considered relevant in a small-scale shaker dataset (Xing et al.,
2009; Nadal-Rey et al., 2021). The more knowledge about a
certain process is available, the fewer experiments have to be
performed when hybrid modeling approaches are chosen to
develop a well-performing model (Yang et al., 2015; Bayer
et al., 2020c; Smiatek et al., 2020). Recently, the incorporation
of mechanistic understanding at different levels in different
hybrid modeling approaches was evaluated for
chromatography (Narayanan et al., 2021a). Moreover, Krippl
et al. (2020) could demonstrate that by using hybrid modeling,
different tangential flow filtration operational modes can be
described from the same training data set. More details about
recent advances in using hybrid modeling for bioprocess
development can be found here (Narayanan et al., 2019,
Narayanan et al., 2020; Noll and Henkel, 2020; Bayer et al.,
2020b; Narayanan et al., 2021b).

While the hybrid modeling approach is assumed to be able to
facilitate improved model performance, the additional utilization
of the iDoE concept enables the description of more than one
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CPP combination, thereby potentially accelerating design space
characterization by reducing the number of practical
experiments. The combination of iDoE with a hybrid
modeling approach for mammalian cell culture has not
reported so far. Therefore, we assessed the applicability of
hybrid modeling to transfer process knowledge of a Chinese
hamster ovary (CHO) cell cultivation derived from a 300 ml bolus
feeding shake flask process to a 15 L continuous feeding stirred-
tank bioreactor (1:50). Herein, we evaluated the necessary factors
to develop a reliable hybrid model structure, which can estimate
key process parameters (viable cell concentration (VCC) and
product titer) based on the CPPs and amino acid consumption
patterns. This hybrid model was presented with new data from
15 L DoE and iDoE cultivations to test its performance.
Consecutively, the same hybrid model structure was utilized to
build a model based on the iDoE cultivations (re-estimating the
model parameters), testing the general applicability of iDoE for
mammalian bioprocesses to enable accelerated process
characterization in futures studies. The presented applications
of hybrid modeling, for transferability and in combination with
testing the general applicability of our chosen iDoE setup, have
the potential to reduce the experimental effort compared to a
static DoE. This facilitates the possibility of saving time, raw
materials, and financial resources. Simultaneously, the newly
gained understanding of the process is stored in the model in
a sustainable and easily retrievable way, so that future work can
already be built on this knowledge, independent of expert skills.

2 MATERIALS AND METHODS

2.1 Cell Line and Product
A recombinant monoclonal CHO cell line, generated by the
Rosa26 bacterial artificial chromosome expression strategy
(Zboray et al., 2015), was utilized, producing an antitumor
necrosis factor alpha IgG1 (Antibody Lab GmbH, Austria).
The cell line was cultured in a chemically defined cell culture
medium (Dynamis AGT, A26175-01, Thermo Fisher Scientific,
United States) supplemented with 8 mM L-glutamine. The feed
medium (CHO CD EfficientFeed A, A1442001, Thermo Fisher
Scientific, United States) was supplemented with 0.1% (v/v)
antifoam C (A8011, Sigma-Aldrich, Germany) and additional
10, 20, or 30 g L−1 D-glucose and 7 g L−1 L-asparagine
monohydrate.

2.2 Design Space
With the cultivation temperature and the glucose concentration
in the feed, two CPPs on three levels were chosen in order to
investigate these two factors in the design space. Due to the lack of
knowledge about the impact of iDoE, only these simple process
parameters were chosen. The cultivation temperature was varied
between 31°C, 34°C, and 37°C, and additional 10, 20, or 30 g L−1

glucose was added to the existing feed medium. These three
medium variations are subsequently referred to as F1, F2, and F3,
respectively. The harvest criterion for all experiments was set to a
viability threshold of <70%. With respect to the different
performed bioprocess scales, it is not to be expected that

known scale-up issues are influencing the bioprocesses,
e.g., mass-transfer limitations and concentration gradients
(Marques et al., 2010; Noorman, 2011). The significant
difference between shaker-scale and bioreactor-scale
experiments was found in the respective executed DoE
approaches. For the shaker scale, a simple full-factorial
design was performed. On the bioreactor scale, besides
static experiments (one CPP combination per cultivation),
a more complex iDoE approach was conducted (see also
Tables 1 and 2). This intensified approach consisted of
several intra-experimental CPP shifts. The herein-captured
design space slightly differed, since in the iDoE approach, an
extreme CPP value combination was not characterized as
indicated in Figure 1. This particular CPP combination was
omitted in the 15 L scale because high glucose concentrations
in the supernatant of the shake flask experiments were
observed (up to 15 g L−1). This finding indicated
unfavorable conditions for cell metabolism and
undesirable settings for upcoming processes.

2.3 Shaker-Scale Experiments
Eighteen shaker-scale fed-batch experiments with bolus feed
(3.3% v/v per day) were conducted as duplicates in shake
flasks (working volume of 300 ml), resulting in a full-factorial
characterization of the two-dimensional design. For all 18
experiments, the seeding density was set to 2.5 × 105 cells ml−1,
and the batch phase was conducted at 37°C for 3 days. Available
online data comprised the cultivation temperature, CO2 content,
and the rpm of the shaker platform. The temperature shift was
conducted at the start of the fed-batch process. In Table 1, this
experimental setup is displayed. A more detailed explanation of
the operating procedure and used substances can be found in
Sissolak et al. (2019).

TABLE 1 | Used process parameters and run numbers for the 18 shake flask DoE
experiments. F1, F2, and F3 represent the amount of added glucose in the
feed: 10, 20, and 30 g L−1, respectively.

No Process parameters from the start of fed
batch (72 h)

Temperature (°C) Feed

1 31°C F1
2
3 31°C F2
4
5 31°C F3
6
7 34°C F1
8
9 34°C F2
10
11 34°C F3
12
13 37°C F1
14
15 37°C F2
16
17 37°C F3
18
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2.4 Bioreactor-Scale Experiments
The process design was scaled up to a 15 L stainless steel stirred-
tank reactor (LabQube Bilfinger Industrietechnik Salzburg GmbH,
Austria). Eleven experiments were conducted on the bioreactor
scale, of which five were performed with static CPP combinations
and six with the intensified operating mode (intra-experimental
CPP shifts). Available online data comprised the cultivation
temperature, inlet process air, inlet CO2 to control the pH,
dissolved oxygen, stirrer speed, O2, and CO2 in the off-gas.
Herein, the iDoE approach was performed to investigate the
general applicability of CPP shifts to characterize more than
one CPP combination per experiment and understand the
impact on specific rates for subsequent modeling. In accordance
with the shaker-scale experiments, for all 11 experiments, the
seeding density was 2.5 × 105 cells ml−1, and the batch phase
was conducted at 37°C for 3 days. As before, the first parameter
shift was conducted at the start of the fed-batch process. The
experimental setup and the conducted intra-experimental CPP
shifts to capture multiple CPP combinations in the design space
within one experiment are displayed in Table 2. The cultivation
temperature was shifted by changing the set point temperature.

Shifts for the glucose concentration in the feed were enabled by
connecting feeds with the same medium constituents but different
amounts of glucose (F1, F2, or F3) to the reactor. Depending on the
current CPP setting, the respective feed was supplied to the reactor.
A more detailed explanation of the operating procedure and the
used chemicals can be found in Pappenreiter et al. (2019).

2.5 Offline Analytics
The total cell concentration was determined by counting the cell
nuclei using the particle counter Z2 (Beckman Coulter,
United States). The VCC was determined by assessing the
culture viability, using a hemocytometer and trypan blue exclusion.

Carbohydrates were determined via ion exclusion
chromatography (HPX 87H, 300 × 7.8 mm, #1250140, Bio-Rad,
United States) at 25°C and the amino acids via a reversed-phase
HPLC (Eclipse Plus C18 column) at 40°C on an Agilent 1200
series (Agilent, United States).

The product titer was determined by bio-layer interferometry
(Octet System, QK, ForteBio, United States).

All offline variables were measured once per day during the
whole process (day 0 to harvest) and additionally 6 h after each

TABLE 2 | Used parameters and time points of CPP shifts in iDoE experiments in 15 L stirred-tank bioprocesses.

No DoE mode Intra-experimental parameter shifts

Start of fed batch
(72 h)

Shift at 120 h Shift at 192 h Shift at 240 h

1 static 36.3°C/F3 — — —

2 static 34°C/F1 — — —

3 intensified 37°C/F3 — 37°C/F1 —

4 intensified 34°C/F2 37°C/F2 34°C/F1 31°C/F1
5 intensified 31°C/F2 34°C/F2 37°C/F3 34°C/F3
6 intensified 34°C/F1 31°C/F1 31°C/F2 34°C/F2
7 intensified 37°C/F2 34°C/F3 31°C/F2 34°C/F1
8 intensified 34°C/F3 37°C/F2 31°C/F2 37°C/F3
9 static 34°C/F2 — — —

10 static 34°C/F2 — — —

11 static 34°C/F2 — — —

FIGURE 1 | Design space of the DoE performed in a shake flask and 15 L scale. The DoE was conducted as a two-dimensional three-level full-factorial setup
comprising the cultivation temperature and the glucose concentration in the feed (A). The CPP shifts of the intensified bioprocesses (15 L) were performed according to
the iDoE approach (B). Herein, the CPP transitions are displayed as additional planes (z-axis). The individual iDoE bioprocesses are represented by different colors and
symbols.
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performed CPP shift in the iDoE experiments. More detailed
explanations of the used analytical methodology can be found in
Pappenreiter et al. (2019) and Sissolak et al. (2019).

2.6 Unsupervised Learning
Principal component analysis (PCA) was applied to analyze the
potential input variables for the hybrid model concerning available
variables in both the shake flask and the bioreactor system. We
therefore used the cultivation temperature and offline analytes
(glucose and amino acids) of the shaker and 15 L DoE cultivations.
PCA was performed to detect latent structures, being accountable
for the data variance, and to investigate possible differences
between the shaker and bioreactor scale. PCA was performed
with MATLAB (2019b, MathWorks, United States), taking
scaling of all inputs into account.

2.7 Hybrid Model Development
2.7.1 Model Building
As model inputs, the cultivation temperature (°C), glucose (g L−1),
glutamine (g L−1), asparagine (g L−1), alanine (g L−1), and aspartate-
to-glutamate ratio were chosen to estimate the two response
variables of primary interest for this study: the VCC
(106 cells ml−1) and the product titer (g L−1). Even though the
glucose concentration is of high interest for bioprocesses, it was
not selected as a model output since the chosen feeding strategy
guaranteed a glucose concentration above a limiting level. The inputs
were standardized using the z-score. To estimate the response
variables, a serial hybrid model structure was utilized. The data-
driven model, an artificial neural network (ANN) embedded in the
hybrid model, applying a Levenberg–Marquardt regularization
algorithm was chosen to estimate the specific growth rate μ and
the product formation rate vp/x as propagated estimations for the
mechanistic part, as a function of the model inputs (Eq. 1). Nodes of
the hidden layer used hyperbolic tangent transfer functions, while
the output layer used a linear transfer function.

µ, vp/x � f

(cultivation temperature, glucose, glutamine, asparagine, alanine,
aspartate
glutamate

)
(1)

The values derived from the ANN were subsequently used in the
mechanistic model, as shown in Eqs 2 and 3), where X is the VCC
(g L−1), P is the product titer (g L−1), and D is the dilution rate (h−1)
to describe the ratio between the flow of the feed addition into the
reactor (L h−1) and the overall reactor volume (L). The hybrid model
structure creation and the model evaluation were performed in the
Hybrid Modeling Toolbox (Novasign GmbH, Vienna, Austria).

dX
dt

� µ · X − D · X (2)

dP
dt

� vp/x · X − D · P (3)

2.7.2 Model Validation
For validation of the model performance, cross-validation was
performed, i.e., the training data were split into a training and a
validation partition (random data partitioning). The initial model

was built on this training partition, and the parameters were
optimized until a minimal error in the validation partition was
found. For the shake flask DoE, this split ratio was set to 0.6 and
repeated 40 times to generate a sound number of individual
models. In the iDoE modeling for each training/validation
distribution, one cultivation was always used as validation
partition. Model training stopped once no further
improvement was observed. A single hidden layer with four
neurons delivered the best performance with respect to the
normalized root mean square error (NRMSE) (Eq. 4), where y
is the analytical value, ŷ is the estimated counterpart for each
sampling point (t), �y is the mean of the analytical values, and N
the total number of observations.

NRMSE[%] �

���������������
1
N ·∑(y(t) − ŷ(t))2

√
�y

· 100 (4)

2.7.3 Model Averaging
Averaging of the individual models was performed to avoid
overfitting. Selecting a single model from each of the cross-
validation partitions and averaging over the selected partitions
represent a robust way to deal with model uncertainties. To access
this final averaged model performance, the NRMSE was used
along with the standard deviation (SD) (Eq. 5) and the confidence
interval (CI) (Eq. 6), where ŷaverage is the estimation of the
averaged model, ŷmodel is the estimation of the respective
model, i the index of these models, and n is the number of
observations for each time point.

SD(t) �
�����
1

n − 1

√
·∑(ŷaverage(t) − ŷmodel(i)(t))2

(5)

CI(t) � ŷaverage ± SD(t) (6)

These final averaged hybrid models were applied to the
independent test set (external validation), to assess the
performance on new data and to investigate the risk of
estimation uncertainty.

3 RESULTS

3.1 Investigation of Scale-Dependent
Bioprocess Behavior
For the development of a transferable hybrid model, it is of high
importance that the model is able to understand and describe the
metabolic behavior across the different process scales and applied
feeding profiles. To shed light on this scale-dependent process
behavior, the DoE center point was utilized (CPPs: 34°C and F2).
Herein, the VCC and the product titer of the duplicate (shaker)
and triplicate (15 L) cultivations of this CPP combination are
compared in Figure 2.

Although the two different cultivation process types in
Figure 2 were performed with identical CPP settings (DoE
center point), significantly different trends were observed.
Overall, the bolus-fed shake flask cultivations were terminated
after 11 days, as the cell viability fell below the threshold. This was
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not a problem in bioreactor cultivations applying a continuous
feed, where no decrease in viability was observed until the end of
the process on day 15. In addition, the VCC trends also differed
with respect to the highest values with a maximum of
20.8 × 106 cells ml−1 on day 9 in the shake flask culture. This is
approximately twice the maximum value in the bioreactor at the
end of the process (10.5 × 106 cells ml−1) (Figure 2A). However,
the maximum product titer of 0.64 g L−1 in the shaker reached on
day 10 was lower than the maximum value of 0.76 g L−1 achieved
in the bioreactor at the time of harvest, despite higher cell
numbers (Figure 2B). The specific growth rate in the shaker
almost linearly decreased from the start until the end (µ � 0.49 to
−0.14 day−1). The progression of the specific growth rate in the
bioreactor started similarly, but this decrease slowed down at day
6 (µ � 0.22 day−1), maintaining a positive growth rate until the
end (Figure 2C). The same trend was observed for the specific
product formation rate (Figure 2D). The shaker again displayed
decreasing values, resulting in a negative product formation rate
in the end. In contrast, even though the calculation displayed a
high standard deviation, the product formation rate in the
bioreactor appears to be almost constant, only slightly
decreasing. Both these rates were calculated by a cubic
smoothing spline function (Bayer et al., 2020a). This

comparison demonstrates significant and explicit differences in
the process behavior between the shaker scale and the 15 L
bioreactor. Additionally, the applied feeding strategies,
resulting in different substrate and feeding profiles, may also
have amajor impact. To also capture this bioreactor-scale-specific
behavior, the three 15 L bioreactor center point cultivations were
also included in the hybrid model development along with the
shaker DoE, enabling the hybrid model to learn the scale-
dependent process dynamics.

3.2 Input Selection Procedure for Hybrid
Model Development
The utilization of appropriate inputs for the hybrid model
development is essential for robust and transferable
performance. For this initial selection of potential variables
and to subsequently identify the final model inputs, a
workflow consisting of three serial steps was utilized. The
individual steps of this workflow are presented in Figure 3. To
select inputs, which are of importance for all investigated scales,
this input selection framework was performed with three data
sets: the shake flask experiments, bioreactor experiments, and all
experiments. Here, the bioreactor data comprise the DoE and

FIGURE 2 | Biomass and product-related trends for the center point CPP combination, performed in the bolus-fed shaker and bioreactor at which a continuous
feed was applied. The means of the analytical shaker (orange symbols) and bioreactor (blue symbols) measurements are compared. The average values for the VCC
(circles) (A), product titer (squares) (B), specific growth rate (downward triangles) (C), and specific product formation rate (triangles) (D) are shown. The standard
deviation for the bioreactor experiments (N � 3) is indicated by error bars.
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iDoE experiments since their results were highly similar when
separately investigated.

Three different approaches were considered for the initial
input selection and the consecutive selection steps (Figure 3A,
step I). According to Pappenreiter et al. (2019), the aspartate-to-
glutamate ratio indicates metabolic changes in the course of the
process and is thus an important process variable. The PCA of the
three different data sets displayed comparable results with respect
to the principal components. In all three scenarios, two
components were already sufficient to explain >94% of the
variance in the data (Figure 3B). Herein, glutamine,
asparagine, aspartate, serine, and the two CPPs (cultivation
temperature and glucose concentration in the feed) were
important variables explaining this variance. These were
therefore also taken into account for the initial selection.
Additionally, more potential model inputs were identified by
correlation analysis (Figure 3C). Here, aspartate, glycine, alanine,
tyrosine, and hydroxyproline were found to be correlated to the
target variables in all data sets. Proline was not considered due to
its collinearity to hydroxyproline. With all these inputs, potential
overfitting of the hybrid model is reasonable. To avoid this
behavior, the inputs to the model were reduced one at a time,
and the error was evaluated (Figure 3A, step II). This procedure
was repeated until the minimum validation error was found, and
therefore, the final hybrid model inputs were identified
(Figure 3A, step III). These final inputs comprise the two

CPPs, the aspartate-to-glutamate ratio, glutamine, asparagine,
and alanine.

3.3 Hybrid Model Performance on 15 L DoE
and iDoE Bioprocesses
Based on the shaker DoE (Table 1) and the three additional center
point bioprocesses (Figure 2), a hybrid model was developed
utilizing the identified inputs (Figure 3), hereafter referred to as
training data. This hybrid model was applied to the 15 L bioreactor
runs (Table 2), hereafter referred to as test data, to test the
transferability performance. This test set contained two static
runs, one at the DoE corner (maximum CPP settings) and the
other at intermediate settings (34°C and F10), as well as six iDoE
bioprocesses to investigate the robustness and applicability of the
hybrid model. Since the hybrid model is trained solely on
bioprocesses with static CPP conditions, it was assumed that the
iDoE bioprocesses with the intra-experimental CPP shifts would be
challenging due to the unseen process behavior. This performance
on the test set is presented in Figure 4, displaying the scatter plots for
the VCC and the product titer along with time-resolved modeling
results for an exemplary DoE (Table 2, No. 2) and an iDoE
bioprocess (Table 2, No. 6). The performed CPP shifts for the
presented iDoE process are shown in Table 2.

The expanded shaker hybrid model displayed good performance
for estimating the VCC in the 15 L bioprocesses (Figure 4A). Overall,

FIGURE 3 | Workflow for the identification of the final hybrid model inputs. Starting with an initial input selection derived from availability and in-depth knowledge,
unsupervised learning, and correlation to model targets (A, I), the complex overfitted model was simplified by eliminating the least important variable (A, II) until the
minimal validation error is found and the final model inputs were identified (A, III). The detailed results for the PCA (B) and the correlation heatmap of the target variables
(C) are presented for the different data sets. For PCA, the explained variance for each principal component is given as stacked bars, and the R2 is indicated from low
(0, blue) to high (1, red).
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the training data were estimated with an NRMSE of 5.53%, while the
test data resulted in an NRMSE of 10.92%. For the product titer
(Figure 4B), NRMSE values of 8.04% in the training and 17.79% in the
test data were obtained. This is also indicated by the more widely
spread data in the scatter plot and increased CIs, especially at higher
values, which were not present in the training data. This higher
standard deviation is also visible in the more detailed time-resolved
estimation of the product titer (Figure 4C). Moreover, the hybrid
model correctly estimated the trend for the VCC and only displayed
inaccurate estimations fromday 10 to day 14, not completelymatching
this peak. The estimation of the product titer of the iDoE bioprocess
(Figure 4D) was highly accurate and also displayed the impacts of the
CPP shifts, especially visible after the last shift on day 10. While the
overall hybrid model performance displayed good transferability, the
impact of these conducted CPP shifts was visible in the estimation of
the VCC, making the bioprocess interpretation more difficult due to
the never-seen bioprocess behavior in the training data.

3.4 15L iDoE Hybrid Model Performance on
Static 15 L Bioprocesses
Additionally, besides testing the transferability of the identified hybrid
model structure, the general applicability of iDoE was of high interest

due to its potential of accelerating process characterization by reducing
the overall experimental effort. Therefore, a hybridmodel based on the
15 L iDoE bioprocesses was developed, hereafter referred to as training
data. Since the input selection framework (Figure 3) displayed
comparable results for all data sets, the same structure as that for
the shaker data was utilized. The hybrid model performance was
tested on the static DoE runs, hereafter referred to as test data,
presented as scatter plots, and for two time-resolved exemplary
bioprocesses (Table 2, No. 1 and No. 10) in Figure 5.

The developed 15 L iDoE hybrid model overall performed well in
estimating the target variables, as presented in the scatter plots for the
VCC (Figure 5A) and the product titer (Figure 5B). Compared to the
more extensive shaker hybrid model, the NRMSE overall increased
along with an increased standard deviation, i.e., the VCC was
estimated with an NRMSE of 12.16% in the training data and
13.75% in the test data, while the NRMSE for the product titer
resulted in 15% (training) and 21.13% (test). The model estimation of
the presented static bioprocess, performed at the corner of the DoE
(highest temperature and highest glucose concentration in the feed),
was close to the analytical values. However, the CI of the VCC was
increased compared to that of the shaker hybridmodel (Figure 5C). A
similar model performance was observed for the second presented
bioprocess, performed at theDoE center point (Figure 5D).While the

FIGURE 4 | Performance of the shaker hybrid model estimating the VCC and product titer of 15 L bioprocesses. The scatter plots of the hybrid model on the
training data (green) and the test data (orange) for the VCC (A) and the product titer (B) are presented along with the standard deviation as error bars. Detailed time-
resolved model estimations are presented for a static DoE (C) and an iDoE bioprocess (D). The model estimations for the VCC (green lines) and product titer (blue lines)
are indicated along with the respective CI (shaded area). The analytical measurements are given for the VCC (green squares) and the product titer (blue triangles).
For the iDoE bioprocess, the time point of the CPP shifts is indicated (dashed grey lines).
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product titer was estimated highly accurately, the estimation of the
VCC overall matched the experimental values but displayed a high CI.
These results and the overall performance of the hybrid model based
on iDoE data indicate the general applicability of iDoE for the
modeling of mammalian bioprocesses. Nevertheless, more aspects
of iDoE and its proper planning should be investigated in future
studies. Thereby, a comparison to DoE will be allowed as well as an
increased information yield, i.e., to benefit from the time saved by
reducing the number of experiments while maintaining high
explanatory power of the model.

4 DISCUSSION

In this case study, we demonstrated that for the transferability of a
bioprocess, the required characterization of the process behavior
is challenging due to highly different scale characteristics as well
as differences in the feeding strategies. Even though the same CPP
settings were applied, significant differences between shake flasks
(300 ml) and the laboratory scale (15 L) were observed (Figure 2).
The herein-presented different trends for key process variables
and their respective rates again demonstrate that process
transferability is not straightforward, and challenges are found
early on. These varying process trends may derive from the

reactor design or the different feeding strategies, i.e., bolus
feed in the shaker and the continuous linear feed in the
bioreactor. An approach to still describe and understand the
behavior during upscaling can be found in hybrid modeling. The
advantage of applying hybrid models is that the process behavior
can be understood more rapidly, saving experiments. Hybrid
modeling has been proven to be beneficial for such complex
bioprocessing problems since multiple knowledge sources are
combined. Within this work, we wanted to get insights into the
cellular behavior in CHO cells and challenge the applicability of
hybrid modeling with respect to process transferability and a
combined utilization with iDoE. Herein, we only tested the
general applicability of such intra-experimental CPP shifts to
potentially reduce the required number of practical experiments.
This iDoE approach was investigated in the 15 L scale because the
execution of such intra-experimental CPP shifts is not executable
in shake flask experiments (considering only one available
incubation system).

To develop robust process models, meaningful inputs and the
correct data structure are crucial (Figure 3). Unsupervised
learning (Figure 3B), correlation to the target variables
(Figure 3C), and whether available previous in-depth
knowledge proved to be highly valuable for the initial selection
of potential inputs, which displayed importance and were

FIGURE 5 | Performance of the 15 L iDoE hybrid model estimating the VCC and product titer of static 15 L bioprocesses. The scatter plots of the hybrid model on
the training data (blue) and the test data (yellow) for the VCC (A) and the product titer (B) are presented along with the standard deviation as error bars. Detailed time-
resolved model estimations are presented for two static DoE bioprocesses (C,D). The model estimations for the VCC (green lines) and product titer (blue lines) are
indicated along with the respective CI (shaded area). The analytical measurements are given for the VCC (green squares) and the product titer (blue triangles).
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available for all investigated scales. This workflow enables the
reduction from the initial 11 inputs down to 6, which were
identified to be relevant in all performed DoEs: the two CPPs,
the aspartate-to-glutamate ratio, glutamine, asparagine, and
alanine, which are also confirmed by literature to be of high
impact for CHO cultivations (Carrillo-Cocom et al., 2015; Fan
et al., 2015; Zhang et al., 2016; Ghaffari et al., 2020). Due to this
procedure, the final hybrid model could be applied for both scales
and is more generic and its performance more robust when
presented with new data.

We first tested model transferability performance of the
developed shaker hybrid model extended with the center point
triplicates. We then applied the model to the static DoE and iDoE
bioprocess data in the 15 L scale (Figure 4). Herein, the
estimation of the VCC was close to the analytical values
(Figure 4A), while the product titer estimation displayed
decreased accuracy and increased CIs along with rising values
(Figure 4B). These model uncertainties were probably due to
product formation kinetics in the bioreactor, which was never
observed in the shaker scale. The NRMSE was within the range of
the analytical error, further indicating an adequate model
performance. The time-resolved examples for a static
(Figure 4C) and an intensified bioprocess (Figure 4D)
confirmed the applicability of the shaker-scale model for the
15 L scale. This behavior indicates that the basic metabolism, CPP
impacts, and amino acid consumption patterns can be
understood and properly interpreted by the shaker-scale
model, even when dealing with data from bioprocesses with
intra-experimental CPP variations.

Moreover, the model captured and correctly interpreted the
impact of the intra-experimental CPP shifts in the iDoE
experiments. Herein, it is also visible that the cells do not
rapidly adapt to the new settings, but an adaptation time of
roughly 2 days seems essential. Compared to the adaptation time
of 1 h reported for microbial systems, the expected shifting
frequency must be considered carefully (Bayer et al., 2020b).
This indicates that longer intervals between the shifts may be
beneficial in increasing the knowledge gain from iDoE
experiments. Nevertheless, the hybrid model based on shake
flask experiments only extended with the center point
triplicate was able to understand the bioreactor-scale process
behavior in the challenging test set from iDoE experiments. This
demonstrates that by choosing appropriate training data in
combination with a suitable hybrid model structure,
experimental effort on a larger scale can be reduced without
losing information and process knowledge.

In regard to the model structure, utilizing additional relevant
design variables would potentially increase the transferability
since more impacting factors can be considered for modeling,
e.g., the center point cultivations to recalibrate the shaker hybrid
model possibly could have been avoided. The challenge herein
becomes the number of required experiments to capture complex
high-dimensional design spaces. Therefore, iDoE might be a
suitable choice to facilitate this operational implementation, if
properly planned. Furthermore, by expanding the model, using
multiple design variables, accurate description of more outputs
would be enabled. However, it must be taken into account that the

overall modeling error increases if additional outputs are taken
into account since each individual error will impact the overall
performance.

Second, the direct comparison between a hybrid model trained
on iDoE to describe DoE data was investigated. Therefore, the
previously identified inputs and the hybrid model structure were
used to train a hybrid model based on the 15 L iDoE bioprocesses,
and the model was applied on the static DoE data (Figure 5).
Herein, the number of performed experiments to potentially screen
a design space could be reduced, while the knowledge about the
CPP impact on the specific rates is increased, providing an
accelerated learning rate for the hybrid model to rapidly
understand the process behavior. In comparison to the shaker
hybrid model, the scatter plots show increased CIs for both
target variables (Figures 5A,B). This could be due to the
reduced amount of data for model training and also due to the
performed iDoE itself. However, since no prior information about
an appropriate iDoE concept for mammalian cells is available by
now, these bioprocesses were performed for the first time ever in the
frame of the work reported here. The higher CIs are also seen in the
time-resolved examples (Figures 5C,D), especially for the VCC,
which indicates that the lowered amount of data results in increased
model uncertainties. This herein-reduced information further
highlights the importance of planning such an iDoE properly for
process modeling and process characterization. Additionally, to
exclude an irreversible impact of previous CPP settings on the cells,
the so-called memory effect, is a crucial consideration and of high
importance for the iDoE approach. To understand and investigate
the potential occurrence of this memory effect, when setting up an
iDoE in future studies, experiments should be performed with the
same experimental conditions but in opposite directions. The
impacts of the process change magnitude and the ideal time
point of the changes, i.e., earlier or later in the process, were not
considered yet. Finally, the already-stated shifting frequency must
be considered. Definitely, this promising concept of performing
intra-experimental shifts of CPPs must be further investigated to
maximize its potential. Nevertheless, the iDoE hybrid model
performed well, also considering the limited input factors
available from the shaker cultivation, demonstrating the
applicability of the concept for CHO cells.

5 CONCLUSION

We could demonstrate that a hybrid model trained on 300 ml
bolus feeding shake flask DoE could be used to correctly estimate
the cell behavior and product formation in a 15 L stirred-tank
bioreactor with a continuous feed, within the same design space,
requiring only minimal recalibration. Furthermore, we could
show that the information content from iDoE experiments in
the 15 L scale is comparable to that from DoE experiments.
Therefore, iDoE can potentially be used to cover a specific
design space with fewer experiments compared to classic DoE
approaches. However, a lot of attention has to be drawn to design
the iDoE experiment in a clever way to extract the maximum
information per process time. Finally, due to the limited available
variables in the shake flask experiments (merely offline analytes),
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the established descriptive hybrid models are applicable to gain
process understanding and capture the process behavior but
cannot be used for process control. Granted that more
monitoring and control strategies are already available in the
small scale, the created models could potentially be used for
multiple control purposes (pH, amino acids, and glucose). These
different setups would enable an even better understanding and
transferability and finally enable real-time monitoring and
control opportunities.

We could demonstrate that a hybrid model trained on 300 ml
bolus feeding shake flask DoE could be used to correctly estimate
the cell behavior and product formation in a 15 L stirred-tank
bioreactor with a continuous feed, within the same design space,
requiring only minimal recalibration. Furthermore, we could
show that the information content from iDoE experiments in
the 15 L scale is comparable to that from DoE experiments.
Therefore, iDoE can potentially be used to cover a specific
design space with fewer experiments compared to classic DoE
approaches. However, a lot of attention has to be drawn to design
the iDoE experiment in a clever way to extract the maximum
information per process time. Finally, due to the limited available
variables in the shake flask experiments (merely offline analytes),
the established descriptive hybrid models are applicable to gain
process understanding and capture the process behavior but
cannot be used for process control. Granted that more
monitoring and control strategies are already available in the
small scale, the created models could potentially be used for
multiple control purposes (pH, amino acids, and glucose). These
different setups would enable an even better understanding and
transferability and finally enable real-time monitoring and
control opportunities.
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