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Background: Filaggrin (FLG) loss-of-function mutations
lead to an impaired skin barrier associated with peanut
allergy. Household peanut consumption is associated
with peanut allergy, and peanut allergen in household
dust correlates with household peanut consumption.
Objective: We sought to determine whether environmental
peanut exposure increases the odds of peanut allergy and
whether FLG mutations modulate these odds.
Methods: Exposure to peanut antigen industwithin the first year of
life was measured in a population-based birth cohort. Peanut
sensitization and peanut allergy (defined by using oral food
challengesorcomponent-resolveddiagnostics [CRD])were assessed
at 8 and 11 years. Genotyping was performed for 6FLGmutations.
Results: After adjustment for infantile atopic dermatitis and
preceding egg skin prick test (SPT) sensitization, we found a
strong and significant interaction between natural log (ln [loge])
peanut dust levels andFLGmutations on peanut sensitization and
peanut allergy. Among children with FLGmutations, for each ln
unit increase in the house dust peanut protein level, there was a
more than6-fold increased odds of peanut SPT sensitization,CRD
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sensitization, or both in children at ages 8 years, 11 years, or both
and a greater than 3-fold increased odds of peanut allergy
compared with odds seen in children with wild-type FLG. There
was no significant effect of exposure in children without FLG
mutations. In children carrying an FLG mutation, the threshold
level for peanut SPT sensitization was 0.92 mg of peanut protein
per gram (95% CI, 0.70-1.22 mg/g), that for CRD sensitization
was 1.03 mg/g (95% CI, 0.90-1.82 mg/g), and that for peanut
allergy was 1.17 mg/g (95% CI, 0.01-163.83 mg/g).
Conclusion: Early-life environmental peanut exposure is
associated with an increased risk of peanut sensitization and
allergy in children who carry an FLGmutation. These data
support the hypothesis that peanut allergy develops
through transcutaneous sensitization in childrenwith an impaired
skin barrier. (J Allergy Clin Immunol 2014;134:867-75.)
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There is a clear association between early-onset atopic
dermatitis (AD) and food allergy.1,2 Children with AD have an
impaired skin barrier, which might allow antigen to penetrate
the skin and sensitize the subject.3,4 In children with a history
of AD, 90% of those who went on to have peanut allergy had
been exposed topically to creams containing Arachis species
(peanut) oil in the first 6 months of life.2 In mice epicutaneous
exposure to food allergens after skin stripping induces a potent
allergic TH2-type response associated with high IL-4, IL-5, and
allergen-specific IgE (sIgE) levels and systemic anaphylaxis after
oral challenge.5,6

Filaggrin is responsible for the strength and integrity of the
stratum corneum7 and regulates the permeability of the skin to
water and antigens.8 Loss-of-function mutations in the gene
encoding filaggrin (FLG) are present in up to 50% of patients
with moderate-to-severe AD9,10 and have been shown to increase
the risk of inhalant allergic sensitization, allergic rhinitis,
asthma,11,12 and peanut allergy.13 In the flaky tail mouse, which
has a 1-bp deletion mutation (5303delA) within the murine flg
gene (analogous to common human FLG loss-of-function
mutations), topical allergen application leads to cellular
infiltration and allergen-specific antibody response, even without
skin stripping.14 This suggests that filaggrin deficiency, even in
the absence of dermatitis, might be sufficient for transcutaneous
sensitization.

High consumption of peanut by household members during the
child’s first year of life is associated with an increased risk of
peanut allergy, possibly because of environmental peanut
exposure in the child’s home15; however, in this study
questionnaire-based assessment of household peanut consump-
tion was not validated against an objective measure of peanut in
the environment and was potentially subject to retrospective
bias. We recently showed that peanut protein in household dust
is positively correlated with household peanut consumption.16

In addition, we showed that peanut protein in dust activates
basophils from children with peanut allergy in a dose-
dependent manner and is thus biologically active.16

We hypothesized that peanut sensitization can occur through
presentation of environmental peanut antigen through an
impaired skin barrier to underlying antigen-presenting cells. To
address this hypothesis, we investigated whether early-life
environmental peanut exposure measured directly by quantifying
peanut antigen in household dust was a risk factor for the
development of peanut allergy and whether this relationship
was modified by FLG genotype. Specifically, we predicted that an
increase in the peanut protein concentration in household dust
during infancy would be associated with an increase in school-
age peanut sensitization and allergy and that this effect would
be augmented in children with 1 or more FLG loss-of-function
mutations.
METHODS

Study population
The Manchester Asthma and Allergy Study (MAAS) is an unselected birth

cohort described in detail elsewhere (registration: ICRCTN72673620).17 In

brief, 1184 subjects were recruited prenatally from 1995 to 1997 and followed

up at ages 1, 3, 5, 8, and 11 years. The study was approved by the local ethics

committee; parents provided written informed consent.
Data sources
Validated questionnaires were interviewer administered to collect infor-

mation on parentally reported symptoms and physicians’ diagnoses. Parental

report of a history of AD during infancy was assessed by using a modified

International Study of Asthma and Allergies in Childhood questionnaire to

apply the UK Working Party’s diagnostic criteria for AD.18 Peanut sensitiza-

tion was assessed at ages 8 and 11 years by using skin prick tests (SPTs) to

whole peanut extract (Hollister-Stier, Spokane, Wash)19 and by measuring

sIgE to whole peanut extract and peanut components Ara h 1, 2, and 3 with

ImmunoCAP (age 8 years) or the ISAC Multiplex Immuno Solid-phase

Allergen Chip (age 11 years; Thermo Fisher Scientific, Uppsala, Sweden).20

Maternal peanut consumption during pregnancy and breast-feeding were

collected retrospectively (aged 8 years) in a subset of patients assessed for

peanut allergy by means of diagnostic oral food challenge (OFC).
Definition of outcomes
Peanut SPT sensitization. Peanut SPT sensitization was defined

as a mean wheal diameter of 3 mm or greater than that elicited by the negative

control.

Peanut component-resolved diagnostics sensitiza-

tion. Peanut component-resolved diagnostics (CRD) sensitization was

defined as sIgE to the peanut components Ara h 1, 2, or 3 of 0.35 kUA/L or

(8 years) or 0.35 ISAC standardized units (ISU) or greater (11 years).20

Patients with Ara h 1, 2, or 3 levels of less than 0.35 kUA/L (8 years) or

0.35 ISU (11 years) were deemed non-CRD sensitized. If no CRD analysis

was available, then patients with peanut sIgE levels of less than 0.2 kUA/L

ImmunoCAP were considered not CRD sensitized.

Peanut allergy. All children with evidence of peanut sensitization at
age 8 years (peanut SPT response >_3 mm or sIgE level >_0.2 kUA/L) were

offered an OFC to peanut to determine allergy versus tolerance.19 Open

OFCs were applied among children who had a history of tolerating peanut

on consumption; all other children underwent a double-blind, placebo-

controlled OFC.19 OFC results were considered positive after development

of 2 or more objective signs indicating an allergic reaction.19 Children with

a convincing history of an immediate hypersensitivity reaction on exposure

to peanut combined with a peanut sIgE level of 15 kUA/L or greater,21 an

SPT response of 8 mm or greater,22 or both (age 8 years) were considered to

have peanut allergy and did not undergo an OFC. Two children with a

convincing history of an immediate hypersensitivity reaction on exposure to

peanut and an SPT response of 3 mm or greater who refused consent for

OFCs were considered to have peanut allergy based on an Ara h 2 level of

0.35 ISU or greater19 at subsequent follow-up at age 11 years.
Quantitation of environmental peanut exposure in

household dust
Dust sampleswere collected predominantly at 36weeks’ gestation from the

lounge-sofa, as previously described.23 If no antenatal dust sample was

available from the lounge-sofa, then dust samples from 6 or 12 months were

analyzed for peanut protein (where available). Dust samples were extracted



TABLE I. Demographics and clinical characteristics of the included group (n 5 623) versus the excluded group (n 5 561) and

whole group (n 5 1184)

Included group*

(n 5 623)

Excluded groupy
(n 5 561)

Whole group

(n 5 1184)

P value,

included

(n = 623)

vs excluded

(n = 561)Total no. No. (%) Total no. No. (%) Total no. No. (%)

Peanut SPT sensitization at 8 y 559 30 (5.4) 360 18 (5.0) 920 48 (5.2) .69

Peanut SPT sensitization at 11 y 450 19 (4.2) 256 13 (5.1) 706 32 (4.5) .41

Peanut SPT sensitization at age 8 and/or 11 y§ 434 35 (8.1) 237 24 (10.1) 710 59 (8.3) .15

Peanut CRD sensitization at age 8 y 371 13 (3.5) 211 7 (3.3) 584 20 (3.4) .84

Peanut CRD sensitization at age 11 y 297 12 (4.0) 154 8 (5.2) 451 20 (4.4) .37

Peanut CRD sensitization at age 8 and/or 11 y§ 241 19 (7.9) 116 9 (7.8) 357 28 (7.8) .94

Peanut allergy at age 8 and/or 11 y 577 20 (3.5) 382 10 (2.6) 959 30 (3.1) .19

History of AD during infancy 614 207 (33.7) 477 190 (39.8) 1091 397 (36.4) <.01

No AD on clinical assessment at age 1 y 338 272 (80.5) 173 142 (82.1) 511 414 (81.0) .46

Mild AD on assessment at age 1 y 338 46 (13.6) 173 25 (14.5) 511 71 (13.9) .66

Moderate/severe AD at age 1 y 338 20 (5.9) 173 6 (3.5) 511 26 (5.1) .01

Combined FLG loss-of-function mutation 623 57 (9.1) 234 29 (12.4) 857 86 (10.0) .02

Parental report of ‘‘hay fever ever’’ in the child 569 135 (23.7) 400 105 (26.3) 969 240 (24.8) .18

Egg SPT sensitization at age 3 y 545 21 (3.9) 398 15 (3.8) 943 36 (3.8) .92

Male sex 623 311 (49.9) 561 331 (59.0) 1184 642 (54.2) <.001

Full older siblings (same mother and father) 623 316 (50.7) 532 297 (55.8) 1155 614 (53.2) .02

Parental atopy (low vs medium/high risk) 621 501 (80.7) 514 443 (86.2) 1135 944 (83.2) .001

Breast-feeding (yes vs no) 618 443 (71.7) 497 337 (67.8) 1115 780 (70.0) .03

Peanut consumption during pregnancy (yes vs no) 70 56 (80.0) 41 35 (85.4) 111 91 (82.0) .28

Peanut consumption during breast-feeding (yes vs no) 59 45 (76.3) 29 24 (82.8) 88 69 (78.4) .26

House dust mite reduction measures� 160 88 (55.0) 93 45 (48.4) 253 133 (52.6) 1.00

Maternal age at baseline (y), mean (SD) 615 30.67 (4.74) 499 30.02 (4.81) 1114 30.38 (4.78) .51

Peanut protein in dust (mg/g) using values below

LLQ, median (IQR)

623 0.73 (0.40-1.33) 128 0.78 (0.36-1.40) 751 0.73 (0.38-1.35) .96

Peanut protein in dust (mg/g) using LLQ/2,

median (IQR)

623 0.73 (0.25-1.33) 128 0.78 (0.25-1.40) 751 0.73 (0.25-1.35) .90

IQR, Interquartile range.

*Included group comprised of white children enrolled in MAAS with available sofa dust within the first year of life and successful FLG genotyping.

�Children were excluded for the following reasons: (1) nonwhite ethnicity, (2) lack of available blood sample for FLG genotyping or failed genotyping, or (3) no dust extract

available for the assessment of environmental peanut allergen exposure.

�‘‘High-risk’’ infants (both parents with positive SPT responses) with no pets in the home in MAAS were randomized to house dust mite reduction measures versus control

subjects.

§Children who were not peanut sensitized at age 8 or 11 years and missing data at the other time point were classed as having missing sensitization data.
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in borate-buffered saline (0.1% Tween 20, pH 8.0) and stored at 2208C until

analysis. Peanut protein in dust extracts was determined by using the Veratox

polyclonal ELISA against whole peanut protein (Neogen, Lansing, Mich),

which has been validated for sensitivity, specificity, and reliability in

measuring peanut protein contamination of food,24,25 dust, and wipe

samples.26 The Veratox ELISA lower limit of quantitation (LLQ) for peanut

protein in dust was 100 ng/mL (0.5 mg/g based on a dust sample weighing

between 50-100 mg); this variable was analyzed by using a fixed calculation

for values of less than this level (LLQ/2; results are shown in Table E1 in

this article’s Online Repository at www.jacionline.org)27 and by using all

data of less than this value (results in the main body of the article) because

the variable with LLQ/2 created 230 (37%) censored data points.28 Analyses

for both forms of the peanut dust variable were compared to determine

whether the 2 different ways of dealing with data of less than the LLQ

made a material difference to the results obtained. Participant information

was blinded from the researcher performing the ELISA-based dust analyses.
Genotyping
FLG genotyping was performed with probes and primers, as previously

described.9 Genotyping for R501X, S3247X, and R2447X loss-of-function

mutations was performed with a TaqMan-based allelic discrimination assay

(Applied Biosystems, Cheshire, United Kingdom). Mutation 2282del4 was

genotyped by sizing of a fluorescently labeled PCR fragment on a 3100 or

3730 DNA sequencer. FLGmutations 3673delC and 3702delG were assessed
by means of GeneScan analysis of fluorescently labeled PCR products. These

6 FLG mutations have been consistently associated with AD in white

populations10; however, because some of these FLG mutations are not found

in nonwhite subjects,29 all nonwhite participants were excluded from analyses

that included FLG genotype. Data were analyzed as combined carriage of an

FLG null allele; that is, if a child carried 1 or more of the 6 genetic variations,

he or she was considered an FLG null allele carrier. Complete FLG genotype

results (ie, results for all 6 FLG loss-of-function mutations screened) were

available for 805 (76.0%) of 1059 white participants, 117 samples failed

genotype analysis for 1 or more mutations, and no sample was available in

137 participants. In cases with incomplete FLG data, the presence of 1 FLG

mutation defined that case as a carrier; participants with incomplete

genotyping data in whom all successfully tested alleles were wild-type alleles

were excluded from further analysis because their FLG genotype status

remained ambiguous.
Statistical analysis
Data were analyzed with STATA 12.1 software (StataCorp, College

Station, Tex). Demographics and clinical characteristics were compared

between participants and nonparticipants. Count data were compared by using

the Pearson x2 test. Continuous data were compared with the Student t test for

normally distributed data and the Mann-Whitney U test for nonnormally

distributed data. All variables except maternal age and peanut protein in

dust were compared by using the Pearson x2 test. Maternal age was normally

http://www.jacionline.org


FIG 1. CONSORT diagram outlining participant flow. Peanut allergy outcomes are highlighted in boxes
outlined in boldface. DBPCFC, Double-blind, placebo-controlled food challenge.
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distributed and thus was compared with the Student t test. Peanut protein in

dust (without natural log [ln] transformation) was not normally distributed

and thus was compared with the Mann-Whitney U test. Peanut protein in

dust (inmicrograms per gram) underwent ln transformation for subsequent an-

alyses. Factors associated with peanut allergy at the ages of 8 years, 11 years,

or both were assessed by using a penalized logistic regression methodology to

account for unbalanced data (20/577 had peanut allergy).30 Factors associated

with peanut sensitization (SPT and CRD results) were assessed by using

penalized generalized estimating equations methodology (GEE) through a

quasi–least squares approach, with an exchangeable working correlation ma-

trix to account for repeated measures within subjects at 8 and 11 years.31

Goodness of fit of the GEE statistical model was assessed by using the

quasilikelihood under independence model criterion. The goodness of fit of

the penalized logistic regression methodology statistical model was assessed

by using the Akaike information criterion. We tested whether the effect of

environmental peanut exposure on peanut sensitization and allergy was

modified by FLG genotype by including an interaction term.

The additive effect of FLG loss-of-function mutation was calculated by

using the exponential of the coefficient (b) of the interaction (FLG genotype

by peanut dust exposure) minus the baseline coefficient (b) of peanut dust

exposure. The predictive probability of peanut sensitization and allergy was

calculated from the multivariate regression model. Threshold levels of peanut

protein in dust for peanut sensitization and allergy were calculated by

using the intersection between wild-type FLG versus FLG mutation in the

multivariate regression model.30,32 To evaluate the reliability of the thresholds

obtained and the uncertainty around them, we conducted bootstrap cross-

validation with 1000 replications.
RESULTS

Participants and descriptive data
Details of the participant flow are presented in Fig 1. From

1184 participants, we analyzed data from 623 white children
with available FLG genotyping and early-life environmental pea-
nut exposure. Of these children, at age 8 years, 32 had no peanut
SPT or peanut sIgE data, 70 were peanut sensitized (of these, 3
children were sensitized at age 5 years and had no peanut SPT
or sIgE data at age 8 years), 1 was not peanut sensitized but
reported a reaction on peanut exposure, and 520 were not peanut
sensitized and reported no reactions to peanut (of these, 1 was
subsequently peanut sensitized at age 11 years and thus impos-
sible to classify). Seven children with a convincing history of
an allergic reaction on peanut exposure and a peanut sIgE level
of 15 kUA/L or greater, an SPT response of 8 mm or greater, or
both were classified as having peanut allergy; the remaining 64
sensitized children were invited for an OFC (29 double-blind,
placebo-controlled food challenges and 35 open challenges).
We were unable to contact 1 subject, and 14 refused consent (of
these, 2 were classified as having peanut allergy at age 11 years
on the basis of a convincing history of an immediate hypersensi-
tivity reaction on exposure to peanut and an Ara h 2 level >_0.35
ISU). Thus 20 children were defined as having peanut allergy,
557 were defined as nonallergic, and 46 could not be classified
(because of missing SPT and sIgE data or because they declined
consent for an OFC).

The demographics of the whole group, both included and
excluded children, are shown in Table I. Comparison of the
included and excluded groups revealed no differences in peanut
sensitization or allergy; we observed small (but statistically sig-
nificant) differences in parental atopy, FLG status, history and
severity of AD, sex, breast-feeding, and sibship position. FLG
loss-of-function mutations were carried by 57 (9.1%) of 623 chil-
dren (all children; Table I) and 4 (20%) of 20 children with peanut
allergy (Table II). A history of infantile AD was present in 207
(33.7%) of 614 (all children) children and 16 (80%) of 20 children
with peanut allergy. Of the 16 children with peanut allergy with
wild-type FLG, 13 (81%) had a history of infantile AD. The me-
dian peanut protein concentration in dust was 0.73 mg/g (inter-
quartile range, 0.40-1.33 mg/g); the peanut allergen level was
less than the LLQ in 230 (36.9%) of 623 homes.
FLG genotype modifies the effect of early-life

environmental peanut on the risk of peanut

sensitization and allergy
Factors associated with both peanut sensitization and

peanut allergy were history and severity of infantile AD, FLG



TABLE II. FLG genotype frequencies in 20 children with peanut allergy and 577 children without peanut allergy at ages 8 years, 11

years, or both

R501X 2282del4 S3247X R2447X 3673delC 3702delG

Combined FLG

loss-of-function genotype

No. (%) of peanut allergic children with FLG genotype (n 5 20)

Wild-type FLG 18 (90.0) 17 (85.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 16 (80.0)

FLG loss-of-function mutation 2 (10.0) 3 (15.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 4 (20.0)*�
Failure of analysis� 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0) 0 (0.0)

No. (%) of children without peanut allergy with FLG genotype (n 5 557)

Wild-type FLG 533 (95.7) 535 (96.05) 552 (99.1) 551 (98.9) 603 (100.0) 603 (100.0) 507 (91.0)

FLG loss-of-function mutation 23 (4.1) 20 (3.6) 4 (0.7) 5 (0.9) 0 (0.0) 0 (0.0) 50 (9.0)*§

Failure of analysis� 1 (0.2) 2 (0.35) 1 (0.2) 1 (0.2) 0 (0.0) 0 (0.0)

*There were no mutant allele homozygotes for any allele tested.

�This includes 1 compound heterozygote (R501X/2282del4).

�Although individual FLG genotypes failed, if a child had incomplete data but had a mutant FLG allele, they were included as a case in the combined loss-of-function genotype. If

they had incomplete data but all alleles successfully tested were wild-type alleles, they were excluded because this could indicate a false-negative result.

§This includes 2 compound heterozygotes (R501X/2282del4).

TABLE III. Clinical and demographic factors associated with peanut SPT and CRD sensitization and peanut allergy on univariate

GEE and penalized logistic regression methodology analysis

Peanut SPT sensitization

adjusted for age at

assessment (8 1 11 y;

GEE; n 5 584)

Peanut CRD sensitization

adjusted for age at

assessment (8 1 11 y;

GEE; n 5 437)

Peanut allergy at age 8 y, 11

y,

or both (LR; n 5 577)

OR 95% CI P value OR 95% CI P value OR 95% CI P value

History of AD during infancy 10.5 4.2-26.1 <.001 11.9 3.3-43.1 <.001 8.9 2.9-26.9 <.001

AD severity, no AD at 1 y Reference category Reference category Reference category

Mild AD on assessment at 1 y 2.2 0.6-8.4 .25 3.4 0.7-16.5 .13 5.0 1.1-23.2 .04

Moderate-to-severe AD at 1 y 20.8 4.1-62.4 <.001 16.6 3.2-86.6 .001 28.0 6.6-118.8 <.001

Combined FLG loss-of-function mutations 3.5 1.5-8.3 <.01 4.0 1.4-11.4 <.01 2.5 0.8-7.9 .11

Parental report of ‘‘hay fever ever’’ in the child 3.4 1.6-7.3 .001 3.4 1.3-9.2 .02 4.2 1.6-11.1 <.01

Egg SPT sensitization at age 3 y 12.3 4.5-33.6 <.001 16.4 4.8-56.0 <.001 25.5 8.4-77.0 <.001

Male sex 2.2 1.0-4.6 .04 1.8 0.7-4.8 .22 1.6 0.6-3.9 .33

Full older siblings (same mother and father) 0.9 0.4-1.8 .72 0.5 0.2-1.4 .19 0.7 0.3-1.8 .46

Parental atopy, low vs medium/high risk 6.9 0.9-51.4 .06 1.9 0.4-8.3 .42 4.7 0.6-35.5 .13

Breast-feeding (yes vs no) 1.0 0.5-2.2 .99 2.7 0.6-11.9 .19 1.6 0.5-4.8 .43

Peanut consumption during pregnancy (yes vs no) 1.0 0.3-2.8 .93 0.8 0.2-2.8 .72 0.5 0.2-1.9 .32

Peanut consumption during breast-feeding (yes vs no) 0.8 0.3-2.3 .65 0.8 0.2-2.7 .70 0.6 0.2-2.0 .38

House dust mite reduction measures 1.0 0.3-3.2 .95 0.8 0.2-4.4 .81 0.7 0.1-2.6 .57

Maternal age at baseline (y) 1.0 1.0-1.1 .31 1.1 1.0-1.1 .06 1.0 0.9-1.1 .79

Peanut protein in dust (ln transformed mg/g)* 1.3 0.9-1.7 .16 1.2 0.8-1.8 .33 1.2 0.8-1.8 .47

Age at assessment (8 or 11 y) 0.8 0.5-1.1 .10 1.0 0.7-1.5 1.00 NA NA NA

Values in boldface are significant.

LR, Penalized logistic regression methodology; NA, not applicable.

*Peanut protein in dust: values less than the LLQ were used in this analysis.
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loss-of-function mutation (trend for allergy), egg SPT sensitiza-
tion at age 3 years, and parental report of ‘‘hay fever ever’’ in
the child on univariate analysis (Table III). Peanut protein levels
in dust were not associated with peanut sensitization or allergy
overall; however, there was a strong and significant interaction
on univariate analysis between FLG genotype and early-life
environmental peanut exposure on peanut SPT sensitization
(odds ratio [OR], 5.3; 95% CI, 1.8-15.3; P < .01) and peanut
CRD sensitization (OR, 4.5; 95% CI, 1.5-13.5; P < .01)
and a trend toward peanut allergy (OR, 2.7; 95% CI, 0.9-8.0;
P5 .07) (Table IV). Given the low number of children with pea-
nut allergy outcomes, wewere conservative in the selection of co-
variates in the multivariate model and used 2 covariates (egg SPT
sensitization at age 3 years and a history of infantile AD) that were
both highly associated with peanut SPT/CRD sensitization and
allergy. In the multivariate analysis, with the inclusion of an inter-
action variable for FLG genotype*(ln peanut exposure), we found
a strong and significant change in FLG genotype divergence with
early-life environmental peanut exposure on both peanut sensiti-
zation and allergy (Table IV). These interactions were consistent
for peanut SPT sensitization (OR, 5.2; 95%CI, 2.1-13.1;P <.001;
Fig 2, A), peanut CRD sensitization (OR, 5.3; 95% CI, 1.9-14.8;
P5 .001; Fig 2, B), and clinically confirmed peanut allergy (OR,
3.2; 95% CI, 1.1-9.8; P5 .04; Fig 3). Analysis of the peanut dust
variable with LLQ/2 did not show a material difference in results
(see Table E1). The additive effect of each ln unit increase in
house dust peanut in children with 1 or more FLG loss-of-
function mutations was 6.1-fold for peanut SPT sensitization,
6.5-fold for peanut CRD sensitization, and 3.3-fold for peanut al-
lergy in the multivariate model. In children with a wild-type FLG



TABLE IV. GEE for peanut sensitization using quasilikelihood under independent model criterion goodness-of-fit analyses

GEE peanut SPT sensitization

adjusted for clustering at

age 8 1 11 y (n 5 584)

GEE peanut CRD sensitization

adjusted for clustering at

age 8 1 11 y (n 5 437)

LR for peanut allergy at

age 8 y, 11 y, or both (n 5 577)

No.* OR 95% CI P value QIC§ No.y OR 95% CI P value QIC§ No.z OR 95% CI P value AIC§

Combined FLG loss-of-function

mutation

584 3.5 1.5-8.3 <.01 386.6 437 4.0 1.4-11.4 <.01 215.3 577 2.54 0.82-7.88 .11 175.6

Age at assessment (8 or 11 y) 0.8 0.5-1.1 .10 0.9 0.6-1.4 .69 NA

Combined FLG loss-of-function

mutation

584 3.6 1.5-8.2 <.01 386.7 437 4.0 1.4-11.0 <.01 216.5 577 2.5 0.8-7.9 .11 177.1

Peanut protein in dust

(ln transformed mg/g)k
1.3 0.9-1.7 .15 1.2 0.8-1.8 .27 1.2 0.8-1.8 .46

Age at assessment (8 or 11 y) 0.7 0.5-1.1 .10 0.9 0.6-1.4 .66 NA

Combined FLG loss-of-function

mutation

584 2.4 0.7-8.6 .17 370.7 437 2.6 0.6-11.0 .20 207.9 577 2.2 0.6-8.2 .23 175.6

Peanut protein in dust

(ln transformed mg/g)k
0.9 0.6-1.3 .52 0.8 0.5-1.4 .38 0.9 0.6-1.6 .82

Interaction FLG*peanut in dust 5.3 1.8-15.3 <.01 4.5 1.5-13.5 <.01 2.70 0.9-8.0 .07

Age at assessment (8 or 11 y) 0.7 0.5-1.1 .10 0.9 0.6-1.4 .66 NA

Combined FLG loss-of-function

mutation

516 1.8 0.4-7.5 .41 303.9 396 1.3 0.2-7.6 .78 176.7 511 1.1 0.3-5.2 .87 132.5

Peanut protein in dust

(ln transformed mg/g)k
0.9 0.6-1.3 .50 0.8 0.5-1.5 .53 0.98 0.5-1.9 .98

Interaction FLG*peanut in dust 6.8 2.6-17.5 <.001 6.6 2.3-18.9 <.001 3.9 1.3-11.8 .02

Egg SPT sensitization at age 3 y 16.2 4.5-59.0 <.001 25.1 5.2-122.1 <.001 34.84 9.9-122.4 <.001

Age at assessment (8 or 11 y) 0.7 0.5-1.1 .14 0.9 0.6-1.6 .82 NA

Combined FLG loss-of-function

mutation

516 1.1 0.3-5.2 .87 279.4 396 1.0 0.2-5.5 .95 167.6 511 0.8 0.2-3.9 .83 129.3

Peanut protein in dust

(ln transformed mg/g)k
0.9 0.6-1.3 .45 0.8 0.5-1.4 .46 1.0 0.5-1.8 .95

Interaction FLG*peanut in dust 5.2 2.1-13.1 <.001 5.3 1.9-14.8 .001 3.2 1.1-9.8 .04

Egg SPT sensitization at age 3 y 8.8 2.2-34.5 <.01 13.0 2.3-75.3 <.01 19.95 5.4-74.0 <.001

History of AD during infancy 7.5 2.4-23.2 <.001 5.4 1.2-24.2 .03 4.04 1.2-14.1 .03

Age at assessment (8 or 11 y) 0.7 0.4-1.1 .12 1.0 0.6-1.7 .90 NA

Values in boldface are significant.

AIC, Akaike information criterion; LR, penalized logistic regression methodology; NA, not applicable; QIC, quasilikelihood under independent model criterion.

*��White children enrolled in MAAS with available sofa dust within the first year of life, successful FLG genotyping, and peanut SPT* or CRD� sensitization or peanut allergy�
assessment.

§Reductions in quasilikelihood under independent model criterion (GEE) and Akaike information criterion (LR) values denote improved goodness of fit of the statistical model.

kPeanut protein in dust: values less than the LLQ were used in this analysis.
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genotype, there was no association between early-life environ-
mental peanut exposure and subsequent peanut sensitization or
allergy.

Threshold environmental peanut levels in dust for

peanut sensitization and allergy
In children carrying 1 or more FLG loss-of-function mutations,

the threshold environmental peanut allergen level for peanut SPT
sensitization was20.079 ln transformed units (0.92 mg of peanut
protein/gram of dust; 95% CI, 0.70-1.22 mg/g), that for CRD
sensitization was 0.032 ln transformed units (1.03 mg/g; 95%
CI, 0.90-1.82 mg/g), and that for peanut allergy was 0.156 ln
transformed units (1.17 mg/g; 95% CI, 0.01-163.83 mg/g).

DISCUSSION
This study demonstrates a gene-environment interaction on the

development of peanut sensitization and clinically proven peanut
allergy. In children carrying 1 or more FLG loss-of-function
mutations, there was a dose-response relationship between
early-life environmental exposure to peanut protein in household
dust and subsequent peanut sensitization and allergy; each ln unit
(2.7-fold) increase in house dust peanut exposure during infancy
was associated with a more than 6-fold increase in the odds of
school-age peanut sensitization and a 3.3-fold increase in the
odds of school-age peanut allergy. Therefore we demonstrated a
consistent interaction between FLG genotype and peanut dust
exposure for peanut SPT sensitization, major allergen sensitiza-
tion, and clinically proven peanut allergy. Previous studies have
also shown a stronger effect of FLG loss-of-function mutations
on peanut sensitization than peanut allergy.33 The interaction
between FLG genotype and environmental peanut exposure was
significant after adjusting for infantile AD and preceding egg
sensitization; thus the modifying effect of FLG genotype was
independent of AD or other atopy markers.

Among FLG mutation carriers, peanut protein levels in dust
reached a maximum of 14.78 mg/g; thus an increase in peanut
dust exposure from the LLQ (0.5 mg/g) to 14.78 mg/g equated



FIG 2. Mean predictive probability of peanut sensitization over 8 and 11

years on GEE analysis with increasing environmental peanut exposure

(defined by ln transformed peanut protein in micrograms per gram of dust)

for children with 1 or more FLG loss-of-function mutations versus those

with wild-type FLG. The model was adjusted for a history of infantile AD

and egg SPT sensitization at age 3 years. Interaction ORs and 95% CIs dis-

played between peanut protein in dust and FLG loss-of-function mutations

on peanut sensitization are shown. Predictive probability is only shown

within the observable environmental peanut exposure data obtained.

A, Peanut SPT sensitization. B, Peanut CRD sensitization.

FIG 3. Mean adjusted predictive probability of peanut allergy at 8 years, 11

years, or both on multivariate penalized logistic regression analysis with

increasing environmental peanut exposure (defined by ln transformed

peanut protein in micrograms per gram of dust) in children with 1 or

more FLG loss-of-function mutations versus those with wild-type FLG.

Interaction ORs and 95% CIs are displayed between peanut protein in

dust and FLG loss-of-function mutations on peanut allergy. Predictive

probability is only shown within the observable environmental peanut

exposure data obtained.
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to an almost 30-fold increase (3.4 ln scales), which is equivalent to
a 58-fold (3.33.4) increase in the odds of peanut allergy. These re-
sults suggest that the level of early-life environmental peanut
exposure in children who carry FLG loss-of-function variants
might critically influence the development of peanut sensitization
and, importantly, clinical peanut allergy; however, future work is
required to ensure the linearity of peanut protein data over the
entire range of peanut protein in dust. In contrast, no association
was seen between environmental peanut exposure and peanut
sensitization or allergy in children without FLG mutations. In
children carrying an FLG mutant allele, the mean threshold
peanut protein level in dust for peanut sensitization and allergy
was around twice the LLQ of the ELISA (0.50 mg/g). Thus on
the basis of our findings in this white United Kingdom population,
minimal quantities of peanut protein in the environment could
lead to peanut sensitization and allergy in children who carry
FLG loss-of-function mutations, but the risk markedly increases
with increasing exposure.
Previous studies have shown gene-environment interactions
between FLG loss-of-function mutations and other atopic dis-
eases.34 Among children carrying an FLGmutation, those whose
families owned a cat had an approximately 4-fold odds of having
AD compared with those whose families did not own a cat; there
was no effect of cat ownership among children without FLG
mutations.34 Contact allergy to nickel is twice as common in
adults with the FLG frameshift mutation 2282del4,35 and in
murine models flg loss-of-function mutations lead to increased
bidirectional paracellular penetration of water-soluble tracers
and reduced inflammatory threshold to allergens.36 There is a
significant association between FLG mutations and development
of asthma and allergic sensitization but only in children with
preceding AD.37 This has been used as an argument for the role
of FLG loss-of-function mutations as a predisposing factor for
allergic sensitization after epicutaneous exposure to allergens.
Peanut protein in environmental dust and surfaces could penetrate
disrupted skin because of impaired filaggrin production and could
be taken up by Langerhans cells, leading to a TH2 response and
IgE production by B cells.38,39 Studies are investigating the role
of thymic stromal lymphopoietin produced by keratinocytes in
response to environmental antigens in patients with AD.40

Thymic stromal lymphopoietin in combination with enhanced
allergen penetration through a damaged epidermis could lead to
a TH2-type milieu; it would be interesting to review this in the
context of filaggrin-deficient children with high levels of environ-
mental peanut exposure.

There are certain limitations to this study. We were unable to
include all MAAS participants because of the availability of
early-life dust samples and FLG genotyping. Because the 6 FLG
loss-of-function mutations assessed have been associated with
AD in white populations,12 we excluded all nonwhite partici-
pants. Given that 95% of MAAS participants were white, this is
unlikely to lead to bias. On comparing the groups of included
versus excluded children, there were some small differences in
their demographic characteristics, but importantly, there were
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no significant differences in peanut sensitization or allergy rates;
therefore these are unlikely to have influenced the results. Peanut
allergen levels in lounge-sofa dust might not be the best index of
infant exposure; however, we have shown previously that there is
high within-home correlation of peanut protein levels in dust,
particularly between an infant’s bed and play area.26 In our
previously published work the infant play area was usually in
the lounge, which was also the location of the sofa in the
MAAS study. There were no available data on the amount of pea-
nut the infant was consuming; however, given that the majority of
dust collected was antenatal, these peanut dust levels would not
have been due to the infant consuming peanut.

We acknowledge that there are small numbers of subjects with
confirmed peanut allergy in whom FLG genotype and early-life
peanut exposure data are available. This reflects the complexities
of measuring all necessary predictors over the life course in
children with robustly ascertained clinical outcomes that are
themselves relatively uncommon (FLG loss-of-function muta-
tions and clinical peanut allergy). We emphasize that the findings
of an interaction between FLG loss-of-function genotype and
environmental peanut exposure for sensitization (however
measured) and peanut allergy are consistent, in keeping with pre-
vious gene-environment interactions for FLG, and biologically
plausible.

It is important to consider how peanut allergen in dust might
lead to sensitization to assess the clinical applicability of our
findings; although this might lead to epicutaneous sensitization
through direct skin contact, we cannot exclude the possibility of
inhalation of dust particles containing peanut allergen. Although
filaggrin is not expressed in the lung41 or inferior nasal turbi-
nates,42 it is expressed in the cornified epithelium in the vestibular
nasal lining.11 However, several studies suggest that peanut is
poorly aerosolizeable26,43 and report that allergic symptoms after
inhalation of peanut have not been replicated on blinded chal-
lenges.44 It is also important to determine how peanut protein
gets into household dust. Peanut protein is present on hand wipes
and in saliva up to 3 hours after peanut consumption and thus
might be amenable to transfer through this route.26 Fox et al15

found that household consumption of peanut butter was more
highly associated with peanut allergy in infants than household
consumption of covered forms of peanut-containing foods.
They hypothesized that peanut butter was more likely to lead to
sensitization through hand-to-hand contact because it is sticky
and thus more likely to be transferred onto surfaces (and dust)
or people. Peanut protein persists on table surfaces and sofa-
pillow dust, despite usual cleaning measures,26 and thus might
be an important source of exposure.

Although our study focused on peanut sensitization and allergy,
FLG loss-of-function mutations might confer susceptibility to
environmental exposure to other food allergens in dust, such as
fish, egg, and cow’s milk.45 The dual-allergen-exposure hypothe-
sis postulates that food allergy develops through transcutaneous
exposure to allergen through a disrupted skin barrier, whereas
oral exposure leads to tolerance induction.38 Our findings of a
dose-response effect for peanut allergen in dust on the develop-
ment of peanut allergy in children genetically predisposed to a
skin barrier defect support this hypothesis. Furthermore, our
study raises the intriguing possibility of identifying a group of
children with FLG loss-of-function mutations and targeting
them in interventional studies through early environmental
modification.
We thankMrs L. Campbell, Molecular Medicine, University of Dundee, for

developing the TaqMan assay conditions and Professor A. Grieve, PhD, Aptiv

Solutions, for his statistical help. We also thank the children and their parents

in MAAS for their continued support and enthusiasm. We greatly appreciate

the commitment they have given to the project. Finally, we acknowledge the

hard work and dedication of the MAAS study team (research fellows, nurses,
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Clinical implications: Children with FLG loss-of-function
mutations are at an increased risk of peanut sensitization and
allergy if they are exposed to peanut antigen in household
dust in early life. Interventional studies to assess a causal
relationship are required.
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TABLE E1. GEE for peanut sensitization using the quasilikelihood under independent model criterion goodness-of-fit analyses

GEE for peanut SPT sensitization

adjusted for clustering at

age 8 and 11 y (n 5 584)

GEE for peanut CRD sensitization

adjusted for clustering at

age 8 and 11 y (n 5 437)

LR for peanut allergy at

age 8 y, 11 y, or both (n 5 577)

No.* OR 95% CI P value QIC§ No.y OR 95% CI P value QIC§ No.z OR 95% CI P value AIC§

Combined FLG loss-of-function

mutation

584 3.5 1.5-8.3 <.01 386.6 437 4.0 1.4-11.4 <.01 215.3 577 2.5 0.8-7.9 .11 175.6

Age at assessment (8 or 11 y) 0.8 0.5-1.1 .10 0.9 0.6-1.4 .69 NA

Combined FLG loss-of-function

mutation

584 3.6 1.5-8.2 <.01 386.5 437 3.9 1.4-10.9 <.01 215.9 577 2.6 0.8-7.9 .11 176.8

Peanut protein in dust

(ln transformed mg/g)k
1.2 0.9-1.7 .15 1.3 0.90-1.8 .19 1.2 0.8-1.8 .35

Age at assessment (8 or 11 y) 0.7 0.5-1.1 .10 0.9 0.6-1.4 .65 NA

Combined FLG loss-of-function

mutation

584 2.8 0.8-9.8 .17 373.2 437 2.6 0.6-11.1 .20 208.2 577 2.3 0.6-8.4 .21 175.5

Peanut protein in dust

(ln transformed mg/g)k
0.9 0.6-1.3 .58 0.9 0.5-1.4 .51 1.0 0.6-1.6 .97

Interaction FLG*peanut in dust 4.3 1.4-12.8 .01 4.0 1.4-11.4 .01 2.5 0.9-7.1 .08

Age at assessment (8 or 11 y) 0.7 0.5-1.1 .10 0.9 0.6-1.4 .66 NA

Combined FLG loss-of-function

mutation

516 2.1 0.5-8.4 .30 307.1 396 1.2 0.2-7.2 .78 177.0 511 1.1 0.2-5.1 .91 132.4

Peanut protein in dust

(ln transformed mg/g)k
0.9 0.6-1.3 .59 0.9 0.6-1.5 .75 1.1 0.6-1.9 .83

Interaction FLG*peanut in dust 5.5 2.0-14.7 .001 6.0 2.2-16.2 <.001 3.7 1.3-10.7 .02

Egg SPT sensitization at age 3 y 15.9 4.4-57.8 <.001 26.3 5.3-130.2 <.001 35.9 10.1-127.7 <.001

Age at assessment (8 or 11 y) 0.7 0.5-1.1 .13 0.9 0.6-1.6 .81 NA

Combined FLG loss-of-function

mutation

516 1.3 0.3-5.8 .71 279.4 396 0.9 0.2-5.3 .93 167.9 511 0.8 0.2-3.9 .81 129.3

Peanut protein in dust

(ln transformed mg/g)k
0.9 0.6-1.3 .52 0.9 0.6-1.4 .67 1.0 0.6-1.8 .89

Interaction FLG*peanut in dust 4.3 1.7-11.0 <.01 4.8 1.8-12.6 <.01 3.1 1.1-8.9 .04

Egg SPT sensitization at age 3 y 8.6 2.2-33.6 <.01 13.5 2.3-79.2 <.01 20.4 5.5-76.3 <.001

Atopic eczema during infancy 7.6 2.5-23.3 <.001 5.4 1.2-24.2 <.01 4.1 1.2-14.1 .03

Age at assessment (8 or 11 y) 0.7 0.4-1.1 .12 1.0 0.6-1.7 .91 NA

Values in boldface are significant.

AIC, Akaike information criterion; LR, penalized logistic regression methodology; NA, not applicable; QIC, quasilikelihood under independent model criterion.

*��White children enrolled in the MAAS with available sofa dust within the first year of life, successful FLG genotyping, and peanut SPT* or CRD� sensitization or peanut

allergy� assessment.

kPeanut protein levels in dust less than the LLQ were assigned an LLQ/2 calculation.

§Reductions in QIC (GEE) and AIC (LR) values denote improved goodness-of-fit of statistical model.
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